Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = copper heap leaching

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 5644 KB  
Article
Technology Development and Industrial Practice of Distinct Low-Cost Heap Bioleaching at Monywa Copper Mine
by Zhentang Wang, Baojun Yang, Jun Wang, Keqi Guo, Xin Zhang, Rui Liao and Guanzhou Qiu
Minerals 2025, 15(9), 985; https://doi.org/10.3390/min15090985 - 16 Sep 2025
Viewed by 1141
Abstract
This paper presents a case study on heap bioleaching at the Monywa copper mine in Myanmar. Through mineralogical characterization and leaching tests, specific heap bioleaching technologies were developed and implemented at the mine. These technologies include acidification and start-up of heap bioleaching without [...] Read more.
This paper presents a case study on heap bioleaching at the Monywa copper mine in Myanmar. Through mineralogical characterization and leaching tests, specific heap bioleaching technologies were developed and implemented at the mine. These technologies include acidification and start-up of heap bioleaching without external acid addition, ore classification with process optimization, and selective inhibition of pyrite oxidation for acid/iron balance during heap bioleaching. The optimized heap bioleaching technologies implemented at the Monywa copper mine have reduced both capital and operating costs. These advantages are specifically reflected in the use of multi-lift pads for both heap bioleaching and final residue storage, optimized processing based on ore characteristics, and the implementation of a solution closed cycle process without the need for additional acid or neutralization. These findings demonstrate a cost-effective approach to heap bioleaching and provide practical insights for operational optimization in similar copper mines. Full article
(This article belongs to the Special Issue Advances in the Theory and Technology of Biohydrometallurgy)
Show Figures

Figure 1

43 pages, 2907 KB  
Systematic Review
A Systematic Review of Copper Heap Leaching: Key Operational Variables, Green Reagents, and Sustainable Engineering Strategies
by Fabian León, Luis Rojas, Vanesa Bazán, Yuniel Martínez, Alvaro Peña and José Garcia
Processes 2025, 13(5), 1513; https://doi.org/10.3390/pr13051513 - 15 May 2025
Cited by 3 | Viewed by 7722
Abstract
Heap leaching of copper is faced with a complex set of challenges, including mineral heterogeneity, the formation of passivating species, and the need to regulate critical variables such as pH, redox potential (Eh), oxidant concentration, and irrigation rate. If these factors are not [...] Read more.
Heap leaching of copper is faced with a complex set of challenges, including mineral heterogeneity, the formation of passivating species, and the need to regulate critical variables such as pH, redox potential (Eh), oxidant concentration, and irrigation rate. If these factors are not properly managed, copper recovery is reduced, and significant environmental impacts may be generated, highlighting the urgency for systematic and sustainable approaches. To address this challenge, a systematic literature review (SLR) was conducted, screening 2344 documents and selecting 106 primary sources to analyze operational drivers and environmental considerations. Statistical methodologies (factorial designs, response surface methodology), multiscale modeling, and laboratory column tests were used to validate key variables, including pH (1.5–2.0), Eh (600–750 mV), temperature (25–55 °C), irrigation rate (5–15 L/(h·m2)), acid concentration (0.5–2.0 M), and emerging “green” reagents (e.g., glycine, organic surfactants). Precise control of these factors was found to reduce passivation, minimize fine-particle migration, and improve copper extraction up to 90%. The incorporation of oxidizing agents (e.g., Fe3+, H2O2) further accelerated mineral dissolution while preventing unwanted precipitates. In parallel, bioleaching strategies maintained high recoveries with lower chemical demand. Reviews of pilot studies confirmed the scalability of these optimized conditions, emphasizing both sustainability and cost-effectiveness. Full article
(This article belongs to the Special Issue Green Separation and Purification Processes)
Show Figures

Figure 1

26 pages, 5048 KB  
Article
Estimation of Copper Grade, Acid Consumption, and Moisture Content in Heap Leaching Using Extended and Unscented Kalman Filters
by Lisbel Bárzaga-Martell, Simón Diaz-Quezada, Humberto Estay and Javier Ruiz-del-Solar
Minerals 2025, 15(5), 521; https://doi.org/10.3390/min15050521 - 14 May 2025
Viewed by 1960
Abstract
The leaching process is essential in the mining industry, because it efficiently extracts valuable minerals, such as copper. However, monitoring and controlling the leaching process presents significant challenges due to material variability, uneven distribution of the leaching solution, and the effects of environmental [...] Read more.
The leaching process is essential in the mining industry, because it efficiently extracts valuable minerals, such as copper. However, monitoring and controlling the leaching process presents significant challenges due to material variability, uneven distribution of the leaching solution, and the effects of environmental factors like temperature and moisture content. One of the main technological challenges is measuring variables within the leaching heap. Implementing state observers or estimators (i.e., virtual sensors) offers a promising solution, allowing for a cost-effective estimation of non-measurable process variables. To validate this approach, this paper proposes and analyzes the use of two estimation methods, the Extended Kalman Filter (EKF) and the Unscented Kalman Filter (UKF), to estimate the moisture content, copper in the ore, and acid consumption based on measurements of acid and copper concentrations in the heap leaching process. The results obtained from simulations demonstrate accurate estimations from both state observers. The variable best estimated with EKF was the moisture content, achieving a 0.041% Integral Absolute Error (IAE) and a 0.069% Integral Square Error (ISE) in one of the analyzed scenarios. Utilizing these state estimators improves the understanding of the internal dynamics of heap leaching, often limited by the lack of field-level instrumentation, such as sensors and transmitters. This approach can enhance the operational efficiency of heap leaching plants by enabling the real-time estimation of unmeasurable variables, ultimately improving metal recovery and reducing acid consumption. Full article
Show Figures

Figure 1

20 pages, 1884 KB  
Review
Multi-Scale and Trans-Disciplinary Research and Technology Developments of Heap Bioleaching
by Yan Jia, Renman Ruan, Jingkui Qu, Qiaoyi Tan, Heyun Sun and Xiaopeng Niu
Minerals 2024, 14(8), 808; https://doi.org/10.3390/min14080808 - 10 Aug 2024
Cited by 4 | Viewed by 4410
Abstract
Heap bioleaching is considered to be a less energy-intensive metal-extraction technique compared to other methods, making it particularly attractive for low-grade sulfide ores. It has been successfully applied to recovery of copper, gold, and uranium from ores over decades. Despite its seemingly straightforward [...] Read more.
Heap bioleaching is considered to be a less energy-intensive metal-extraction technique compared to other methods, making it particularly attractive for low-grade sulfide ores. It has been successfully applied to recovery of copper, gold, and uranium from ores over decades. Despite its seemingly straightforward nature, heap bioleaching can experience failures if the ore is unsuitable or the heap leach process is not thoroughly investigated and well-developed. Therefore, multidisciplinary approaches are essential for research and development in heap bioleaching, as its performance depends on numerous processes operating across a wide range of length scales. This review focused on the current state of knowledge regarding the understanding of multi-scale mechanisms in heap bioleaching and the use of multidisciplinary approaches at different scales to develop the process. The investigation covered various scales, such as atomic and molecular, mineralogy and microbes, reaction particles, heap bioleaching units and full-scale factory production. Different approaches were employed to gain a comprehensive understanding of the microbial molecular structure and metabolism, the structure and reaction of minerals, microbial–mineral interaction, particles and aggregation states, and multiphase flow transfer, as well as laboratory experiments, modeling, industrialization, and operation optimization. We emphasized the need for collaboration among researchers from different disciplines and stress the importance of considering the coupling effects of physical, chemical, and microbiological factors when running heap bioleaching plants. Such collaboration and coupling are vital for successful implementation and optimization of heap bioleaching processes. This paper aimed to provide a comprehensive overview of current research related to heap bioleaching at different scales and disciplines, and gave implications to heap bioleaching technology development. Full article
(This article belongs to the Special Issue Bioleaching of Metals from Waste/Wastewater)
Show Figures

Figure 1

13 pages, 14614 KB  
Article
Fluorescence-Based Image Analysis of Seepage Behavior in Drip Irrigation: Exploring Varied Fractal Grading in Media Permeability
by Xiaolong Wang, Junjie Huang, Xiang Li, Wenbin Yuan, Hongchang Liu, Min Gan, Jun Wang and Yansheng Zhang
Minerals 2024, 14(5), 482; https://doi.org/10.3390/min14050482 - 30 Apr 2024
Viewed by 1415
Abstract
In the recycling of low-value metallic elements, heap leaching is commonly employed. The particle size distribution is a crucial parameter in heap leaching implementation, and the percolation behavior of a heap has always been a focal point in heap leaching technology. This paper [...] Read more.
In the recycling of low-value metallic elements, heap leaching is commonly employed. The particle size distribution is a crucial parameter in heap leaching implementation, and the percolation behavior of a heap has always been a focal point in heap leaching technology. This paper utilizes a novel form of ultraviolet fluorescence image acquisition and fluorescence image analysis to investigate the percolation process with different fractal dimension particle size distributions, where the maximum particle diameter is 10 mm. The ore used was low-grade copper ore. The results indicate that the new fluorescence image analysis method can reveal different percolation regions during the heap leaching process, aiding in a better understanding of heap leaching behavior. The combined study found that under irrigation conditions of 10 mL/min, seepage was more uniform under the heap structure formed by a particle gradation with a fractal dimension of 2.2. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

12 pages, 1677 KB  
Article
Dynamic of Mining Systems: Impact of Cl Ion Concentration on Heap Copper Leaching Process at Industrial Scale
by Manuel Saldaña, Edelmira Gálvez, Sandra Gallegos, Felipe M. Galleguillos Madrid, Pedro Robles and Norman Toro
Metals 2023, 13(3), 465; https://doi.org/10.3390/met13030465 - 23 Feb 2023
Cited by 1 | Viewed by 3385
Abstract
Analytical models are of vital importance to study the dynamics of complex systems, including the heap leaching process. In this work, a methodology to study the dynamics of copper recovery in the heap leaching by means of fit of analytical models that capture [...] Read more.
Analytical models are of vital importance to study the dynamics of complex systems, including the heap leaching process. In this work, a methodology to study the dynamics of copper recovery in the heap leaching by means of fit of analytical models that capture the leaching dynamics product of variations of leaching agents as a function of the feeding is proposed, establishing a first mode of operation keeping the leaching agent fixed (H2SO4) and a second operation mode, where Cl is added to accelerate the reaction kinetics of sulfide minerals (secondary sulfides). Mineral recovery was modeled for the different modes of operation, dependent on the independent variables/control parameters time, heap height, leach flow rate, and feed granulometry. The results indicate that the recovery of ore from sulfide minerals is proportional to the addition of Cl, reaching recovery levels of approximately 60%, very close to 65% recovery in conventional oxide leaching, using only H2SO4 as leaching agent. Additionally, high copper recoveries from sulfide ores are achieved at medium Cl concentrations, but the increase in recovery at high Cl concentrations is marginal. Full article
(This article belongs to the Section Extractive Metallurgy)
Show Figures

Figure 1

15 pages, 4119 KB  
Article
Hydrodynamic Hysteresis and Solute Transport in Agglomerated Heaps under Irrigation, Stacking, and Bioleaching Controlling
by Leiming Wang, Shenghua Yin, Xuelan Zhang, Zepeng Yan and Wensheng Liao
Minerals 2022, 12(12), 1623; https://doi.org/10.3390/min12121623 - 16 Dec 2022
Cited by 4 | Viewed by 2062
Abstract
Hydrodynamic hysteresis exists widely in agglomerated heaps with well-developed intra-pores, and it directly affects solute transports and bioleaching reaction. In this paper, the dynamic liquid retention behavior under different heap porosity and irrigation condition is quantified via a novel real-time, in-situ liquid retention [...] Read more.
Hydrodynamic hysteresis exists widely in agglomerated heaps with well-developed intra-pores, and it directly affects solute transports and bioleaching reaction. In this paper, the dynamic liquid retention behavior under different heap porosity and irrigation condition is quantified via a novel real-time, in-situ liquid retention characterizing system (RILRCS), and the potential effects of initial liquid retention on solute transport and leaching reaction are carefully discussed. The results show that the immobile liquid is dominant in agglomerated heaps. The ratio of immobile and mobile liquid (η) dynamically changes due to mineral dissolution and new flow path appearances. The η normally increases and mobile liquid occupies a higher proportion due to acidic leaching reactions, especially at a smaller Rg (10.32 mm) and a larger u (0.10 mm/s). The dynamic liquid retention is more sensitive to the diameter of packed feeds (Rg) and superficial flow rate (u) instead of leaching reactions. This might be because the damage of leaching reaction on minerals pores/voids is limited and cannot extensively change the potential pore channels or fluid flow paths. Based on pulse tracing and conductivity tests, we reveal that the solute resides longer under a slower u and smaller packed Rg condition, which corresponds well with desirable copper leaching efficiency. Specifically, the liquid hysteresis behavior is more obvious at a lower u (0.01 mm/s) and smaller Rg (10.32 mm). This paper gives a good reference to ascertain the liquid retention and hydrodynamic hysteresis and promote mineral leaching performance. Full article
Show Figures

Figure 1

14 pages, 3414 KB  
Article
Solvent Extraction Studies of Copper from a Heap Leach Liquor Using Mextral 5640H
by Mostafa Hosseinzadeh, Jochen Petersen and Asghar Azizi
Minerals 2022, 12(10), 1322; https://doi.org/10.3390/min12101322 - 20 Oct 2022
Cited by 17 | Viewed by 6938
Abstract
In this study the extractive capability of Mextral 5640H was investigated for extraction of copper from a heap leach liquor. In this regard, the influence of parameters such as pH (0.2–2.8), extractant concentration in kerosene diluent (2.5%–10% v/v), temperature (25–70 [...] Read more.
In this study the extractive capability of Mextral 5640H was investigated for extraction of copper from a heap leach liquor. In this regard, the influence of parameters such as pH (0.2–2.8), extractant concentration in kerosene diluent (2.5%–10% v/v), temperature (25–70 °C), contact time (0–300 s), stirring speed (100–1200 rpm), phase ratio (O/A) (0.6–1.8) and Cu initial concentration (0.5–2 g/L) in the leach liquor were examined and optimized. The findings demonstrated that the Mextral 5640H extractant had a very high efficiency and selectivity in copper extraction from the leachate. 98.17% Cu, with less than 0.5% of Fe and Mn, were extracted at pH 1.6, 10% (v/v) Mextral 5640H concentration, ambient temperature (25 °C), 400 rpm stirring speed, 2 min contact time and an O/A phase ratio of 1:1. Under equilibrium conditions it was found that one mol of Cu is extracted by 7 mol of Mextral 5640H. Additionally, analysis using a McCabe–Thiele diagram suggests a two-stage extraction to reach the maximum extraction of copper (99.5%) from the leachate at operational condition using industrial mixer-settlers. Furthermore, a thermodynamic study was conducted, and the measured values of ΔH = 15.13 kJ/mol, ΔG = −6.95 kJ/mol and ΔS = 74.10 J/mol/K indicate an endothermic, spontaneous nature and high affinity of copper extraction. Full article
(This article belongs to the Special Issue Recent Developments in Mineral Processing at University of Cape Town)
Show Figures

Figure 1

17 pages, 4315 KB  
Article
Use of Alternative Water Resources in Copper Leaching Processes in Chilean Mining Industry—A Review
by Norman Toro, Edelmira Gálvez, Pedro Robles, Jonathan Castillo, Grecia Villca and Eleazar Salinas-Rodríguez
Metals 2022, 12(3), 445; https://doi.org/10.3390/met12030445 - 4 Mar 2022
Cited by 16 | Viewed by 6661
Abstract
Due to the significant growth of the world population, the accelerated growth of economic industries in various countries, and improved living conditions, freshwater consumption has increased dramatically and is currently under critical pressure. Its good use and rationing are essential. Even though mining [...] Read more.
Due to the significant growth of the world population, the accelerated growth of economic industries in various countries, and improved living conditions, freshwater consumption has increased dramatically and is currently under critical pressure. Its good use and rationing are essential. Even though mining is an industry that consumes much less water than other industries, such as agriculture, surrounding communities are constantly questioned. This occurs mainly because mining deposits are generally found in arid areas where freshwater is scarce, forcing government authorities to regulate water use in mining processes more severely. Faced with this scenario, the mining industry has innovated the use of seawater and wastewater from processes for its production processes. In addition, various projects are under development to construct desalination plants and water impulsion systems of the sea; therefore, it is expected that seawater and/or wastewater in mining will continue to grow in the coming years. Among the main challenges faced in the use of these water resources in mining is: (i) the close relationship that exists between the use of seawater and energy consumption, transferring the problem of water scarcity to a problem of energy cost overruns; (ii) generation of greater integration between the use of water and sustainable energy; and (iii) brine management is economically expensive and technically challenging and, therefore, most desalination plants discharge untreated brine directly into the sea, causing an environmental impact. On the other hand, regarding the use of these water resources in leaching processes, there are very positive results for the dissolution of copper from sulfide minerals, where the wastewater from desalination plants presents better results than seawater due to its higher concentration of chloride ions, allowing it to work at higher redox potential values in order to increase copper dissolution. This manuscript is a bibliographic review in which finally, it is concluded that it is feasible to incorporate wastewater from water desalination plants in heap leaching processes for copper sulfide ores, as long as the cost of transfer from water desalination plants to mining sites can be supported. Full article
(This article belongs to the Special Issue Flotation and Leaching Processes in Metallurgy)
Show Figures

Figure 1

9 pages, 3515 KB  
Article
Sulfuric Acid Granulation of Copper—Nickel Ore Tailings: Leaching of Copper and Nickel in the Presence of Sulfide Oxidation Activators
by Andrey Goryachev, Anton Svetlov, Alena Kompanchenko and Dmitriy Makarov
Minerals 2022, 12(2), 129; https://doi.org/10.3390/min12020129 - 23 Jan 2022
Cited by 5 | Viewed by 3719
Abstract
A laboratory scale study was conducted, aimed at finding an effective method for processing fine concentration tailings of copper-nickel ores. A sulfuric acid tailing granulation process followed by subsequent heap leaching of granules is proposed. Various methods of preparation and storage of the [...] Read more.
A laboratory scale study was conducted, aimed at finding an effective method for processing fine concentration tailings of copper-nickel ores. A sulfuric acid tailing granulation process followed by subsequent heap leaching of granules is proposed. Various methods of preparation and storage of the granular material are discussed. A solution of sulfuric acid was used as a binder. It was found that the addition of an oxidizing agent (Fe3+ and NO2) when irrigating the granules had an effect on the recovery of metals. Changes in the recovery performance of non-ferrous metals into solution were studied under subsequent heap leaching of the material during a period of positive temperatures. The role of nitrogen compounds, in particular, nitrous acid, on the recovery of metals into solution after the preliminary storage of granules at below 0 °C temperatures is also discussed. Full article
Show Figures

Figure 1

16 pages, 621 KB  
Review
Environmental and Socioeconomic Impact of Copper Slag—A Review
by Tlotlo Solomon Gabasiane, Gwiranai Danha, Tirivaviri A. Mamvura, Tebogo Mashifana and Godfrey Dzinomwa
Crystals 2021, 11(12), 1504; https://doi.org/10.3390/cryst11121504 - 3 Dec 2021
Cited by 56 | Viewed by 11016
Abstract
Copper slag is generated when copper and nickel ores are recovered from their parent ores using a pyrometallurgical process, and these ores usually contain other elements which include iron, cobalt, silica, and alumina. Slag is a major problem in the metallurgical industries as [...] Read more.
Copper slag is generated when copper and nickel ores are recovered from their parent ores using a pyrometallurgical process, and these ores usually contain other elements which include iron, cobalt, silica, and alumina. Slag is a major problem in the metallurgical industries as it is dumped into heaps which have accumulated into millions of tons over the years. Moreover, they pose a danger to the environment as they occupy vacant land (space problems). Over the past few years, studies have been conducted to investigate the copper slag-producing outlets to learn their behavior, as well as properties of slag, to have the knowledge of how to better reuse and recycle copper slag. This review article provides the environmental and socioeconomic impacts of slag, as well as a characterization of copper slag, with the aim of reusing and recycling the slag to benefit the environment and economy. Recycling methods are considered an attractive technological pathway for reducing waste and greenhouse gas emissions, as well as promoting the concept of circular economy through the utilization of waste. These metal elements have value depending on their characteristics; hence, copper slag is considered as a secondary source of valuable metals. Some of the pyrometallurgical and hydrometallurgical processes to consider are physical separation, magnetic separation, flotation, leaching, and direct reduction roasting of iron (DRI). Some of the possible metals that can be recovered from the copper slag include Cu, Fe, Ni, Co, and Ag (precious metals). Full article
(This article belongs to the Special Issue Metallurgical Slag)
Show Figures

Figure 1

15 pages, 3031 KB  
Article
Industrial Heap Bioleaching of Copper Sulfide Ore Started with Only Water Irrigation
by Yan Jia, Heyun Sun, Qiaoyi Tan, Jingyuan Xu, Xinliang Feng and Renman Ruan
Minerals 2021, 11(11), 1299; https://doi.org/10.3390/min11111299 - 22 Nov 2021
Cited by 9 | Viewed by 5856
Abstract
Sulfuric acid solution containing ferric iron is the extractant for industrial heap bioleaching of copper sulfides. To start a heap bioleaching plant, sulfuric acid is usually added to the irrigation solution to maintain adequate acidity (pH 1.0–2.0) for copper dissolution. An industrial practice [...] Read more.
Sulfuric acid solution containing ferric iron is the extractant for industrial heap bioleaching of copper sulfides. To start a heap bioleaching plant, sulfuric acid is usually added to the irrigation solution to maintain adequate acidity (pH 1.0–2.0) for copper dissolution. An industrial practice of heap bioleaching of secondary copper sulfide ore that began with only water irrigation without the addition of sulfuric acid was successfully implemented and introduced in this manuscript. The mineral composition and their behavior related to the production and consumption of sulfuric acid during the bioleaching in heaps was analyzed. This indicated the possibility of self-generating of sulfuric acid in heaps without exogenous addition. After proving by batches of laboratory tests, industrial measures were implemented to promote the sulfide mineral oxidation in heaps throughout the acidifying stages, from a pH of 7.0 to 1.0, thus sulfuric acid and iron was produced especially by pyrite oxidation. After acidifying of the heaps, adapted microbial consortium was inoculated and established in a leaching system. The launch of the bioleaching heap and finally the production expansion were realized without the addition of sulfuric acid, showing great efficiency under low operation costs. Full article
(This article belongs to the Special Issue Recent Advances in Copper Ore Processing and Extraction)
Show Figures

Figure 1

15 pages, 3057 KB  
Review
Gangues and Clays Minerals as Rate-Limiting Factors in Copper Heap Leaching: A Review
by Norman Toro, Yousef Ghorbani, Mehmet Deniz Turan, Pedro Robles and Edelmira Gálvez
Metals 2021, 11(10), 1539; https://doi.org/10.3390/met11101539 - 27 Sep 2021
Cited by 19 | Viewed by 8523
Abstract
Heap leaching is a firm extractive metallurgical technology facilitating the economical processing of different kinds of low-grade ores that are otherwise not exploited. Nevertheless, regardless of much development since it was first used, the process advantages are restricted by low recoveries and long [...] Read more.
Heap leaching is a firm extractive metallurgical technology facilitating the economical processing of different kinds of low-grade ores that are otherwise not exploited. Nevertheless, regardless of much development since it was first used, the process advantages are restricted by low recoveries and long extraction times. It is becoming progressively clear that the selection of heap leaching as an appropriate technology to process a specific mineral resource that is both environmentally sound and economically feasible very much relies on having an ample understanding of the essential underlying mechanisms of the processes and how they interrelate with the specific mineralogy of the ore body under concern. This paper provides a critical overview of the role of gangues and clays minerals as rate-limiting factors in copper heap leaching operations. We aim to assess and deliver detailed descriptions and discussions on the relations between different gangues and clays minerals and their impacts on the operational parameters and chemical dynamics in the copper heap leaching processes. Full article
(This article belongs to the Special Issue Flotation and Leaching Processes in Metallurgy)
Show Figures

Figure 1

14 pages, 8235 KB  
Article
Copper Extraction from Oxide Ore of Almalyk Mine by H2SO4 in Simulated Heap Leaching: Effect of Particle Size and Acid Concentration
by Chan-Ung Kang, Seung-Eun Ji, Thomas Pabst, Kung-Won Choi, Moonis Ali Khan, Rahul Kumar, Prakash Krishnaiah, Yosep Han, Byong-Hun Jeon and Do-Hyeon Kim
Minerals 2021, 11(9), 1020; https://doi.org/10.3390/min11091020 - 18 Sep 2021
Cited by 11 | Viewed by 9696
Abstract
In this investigation, a laboratory-scale study to extract copper (Cu) from its oxide ore (0.425–11.2 mm particle size) was conducted using varied sulfuric acid (H2SO4) concentrations (0.05–0.5 M) as a lixiviant. Through a physicochemical and mineralogical analysis of real [...] Read more.
In this investigation, a laboratory-scale study to extract copper (Cu) from its oxide ore (0.425–11.2 mm particle size) was conducted using varied sulfuric acid (H2SO4) concentrations (0.05–0.5 M) as a lixiviant. Through a physicochemical and mineralogical analysis of real field ore samples from the Almalyk mine heap site (Tashkent, Uzbekistan), malachite was identified as a Cu-bearing mineral. Extraction rates were analyzed according to the ore particle size and acid concentration. The Cu extraction with the smallest particle size (in 24 h) varied between 76.7% and 94.26% at varied H2SO4 concentrations (0.05–0.5 M). Almost half (50%) of Cu was extracted from the ore within 4 and 72 h of contact time for 0.425–2 mm and 5.6–11.2 mm particle sizes, respectively, using 0.15 M H2SO4. Weeklong leaching experiments with 0.5 M H2SO4 revealed a higher copper extraction rate (≥73%) from coarse ore particles (5.6–11.2 mm). Along with the copper extraction, iron (29.6 wt%), aluminum (70.2 wt%), magnesium (85.4 wt%), and calcium (44.4 wt%) were also leached out considerably through the dissolution of silicate and carbonate gangue minerals. In this study, an 80.0–94.26% copper extraction rate with reduced acid consumption (20%) proved to be a cost-effective approach. Full article
(This article belongs to the Special Issue Recent Advances in Copper Ore Processing and Extraction)
Show Figures

Figure 1

7 pages, 2018 KB  
Article
Processing of Sulfide Copper-Nickel Ores from the Deposits in Murmansk Region by Heap Leaching
by Elena Yanishevskya, Nadezhda Fokina, Ekaterina Selivanova, Alena Kompanchenko, Dmitriy Makarov and Andrey Goryachev
Minerals 2021, 11(8), 820; https://doi.org/10.3390/min11080820 - 28 Jul 2021
Cited by 6 | Viewed by 4008
Abstract
The feasibility of processing low-grade copper-nickel ores by heap bioleaching was investigated. It was found that an iron-oxidizing strain of acidophilic microorganisms, Acidithiobacillus ferrivorans, is effective in the leaching of sulfide ores from the deposits in Russia’s Murmansk region. Sulfide mineralization of [...] Read more.
The feasibility of processing low-grade copper-nickel ores by heap bioleaching was investigated. It was found that an iron-oxidizing strain of acidophilic microorganisms, Acidithiobacillus ferrivorans, is effective in the leaching of sulfide ores from the deposits in Russia’s Murmansk region. Sulfide mineralization of the studied mineral feeds was described using the methods of X-ray phase analysis and optical microscopy. In the process of leaching, the pH and Eh values and the concentrations of ferric and ferrous iron, nickel, and copper ions were monitored. By the end of the experiment, 16.5% of nickel and 7.5% of copper was recovered from the ore of the Allarechensk technogenic deposit, while 22.5% of nickel and 12.7% copper were recovered from the ore of the Nud II deposit. By silicate analysis of the solid phase, patterns of ore chemistry change were described during the process of bioleaching. Full article
(This article belongs to the Special Issue Bioleaching from Sulfide Minerals)
Show Figures

Figure 1

Back to TopTop