Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = cooperative oncogenesis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3313 KiB  
Article
Bioinformatic RNA-Seq Functional Profiling of the Tumor Suppressor Gene OPCML in Ovarian Cancers: The Multifunctional, Pleiotropic Impacts of Having Three Ig Domains
by Adam G. Marsh, Franziska Görtler, Sassan Hafizi and Hani Gabra
Curr. Issues Mol. Biol. 2025, 47(6), 405; https://doi.org/10.3390/cimb47060405 - 29 May 2025
Viewed by 537
Abstract
The IgLON family of tumor suppressor genes (TSG) impact a variety of cellular processes involved in cancer and non-cancer biology. OPCML is a member of this family and its inactivation is an important control point in oncogenesis and tumor growth. Here, we analyze [...] Read more.
The IgLON family of tumor suppressor genes (TSG) impact a variety of cellular processes involved in cancer and non-cancer biology. OPCML is a member of this family and its inactivation is an important control point in oncogenesis and tumor growth. Here, we analyze RNA-Seq expression ratios in ovarian cancers from The Cancer Genome Atlas (TCGA) (189 subjects at Stage III) to identify genes that exhibit a cooperative survival impact (via Kaplan–Meier survival curves) with OPCML expression. Using enrichment analyses, we reconstruct functional pathway impacts revealing interactions of OPCML, and then validate these in independent cohorts of ovarian cancer. These results emphasize the role of OPCML’s regulation of receptor tyrosine kinase (RTK) signaling pathways (PI3K/AKT and MEK/ERK) while identifying three new potential RTK transcriptomic linkages to KIT, TEK, and ROS1 in ovarian cancer. We show that other known extracellular signaling receptor ligands are also transcriptionally linked to OPCML. Several key genes were validated in GEO datasets, including KIT and TEK. Considering the range of OPCML impacts evident in our analyses on both external membrane interactions and cytosolic signal transduction, we expand the understanding of OPCML’s broad cellular influences, demonstrating a multi-functional, pleiotropic, tumor suppressor, in keeping with prior published studies of OPCML function. Full article
Show Figures

Graphical abstract

24 pages, 10807 KiB  
Article
A Tumor-Specific Molecular Network Promotes Tumor Growth in Drosophila by Enforcing a Jun N-Terminal Kinase–Yorkie Feedforward Loop
by Indrayani Waghmare, Karishma Gangwani, Arushi Rai, Amit Singh and Madhuri Kango-Singh
Cancers 2024, 16(9), 1768; https://doi.org/10.3390/cancers16091768 - 2 May 2024
Viewed by 2226
Abstract
Cancer cells expand rapidly in response to altered intercellular and signaling interactions to achieve the hallmarks of cancer. Impaired cell polarity combined with activated oncogenes is known to promote several hallmarks of cancer, e.g., activating invasion by increased activity of Jun N-terminal kinase [...] Read more.
Cancer cells expand rapidly in response to altered intercellular and signaling interactions to achieve the hallmarks of cancer. Impaired cell polarity combined with activated oncogenes is known to promote several hallmarks of cancer, e.g., activating invasion by increased activity of Jun N-terminal kinase (JNK) and sustained proliferative signaling by increased activity of Hippo effector Yorkie (Yki). Thus, JNK, Yki, and their downstream transcription factors have emerged as synergistic drivers of tumor growth through pro-tumor signaling and intercellular interactions like cell competition. However, little is known about the signals that converge onto JNK and Yki in tumor cells and enable tumor cells to achieve the hallmarks of cancer. Here, using mosaic models of cooperative oncogenesis (RasV12,scrib) in Drosophila, we show that RasV12,scrib tumor cells grow through the activation of a previously unidentified network comprising Wingless (Wg), Dronc, JNK, and Yki. We show that RasV12,scrib cells show increased Wg, Dronc, JNK, and Yki signaling, and all these signals are required for the growth of RasV12,scrib tumors. We report that Wg and Dronc converge onto a JNK–Yki self-reinforcing positive feedback signal-amplification loop that promotes tumor growth. We found that the Wg–Dronc–Yki–JNK molecular network is specifically activated in polarity-impaired tumor cells and not in normal cells, in which apical-basal polarity remains intact. Our findings suggest that the identification of molecular networks may provide significant insights into the key biologically meaningful changes in signaling pathways and paradoxical signals that promote tumorigenesis. Full article
(This article belongs to the Section Cancer Pathophysiology)
Show Figures

Figure 1

13 pages, 2366 KiB  
Communication
Role of B Cells beyond Antibodies in HBV-Induced Oncogenesis: Fulminant Cancer in Common Variable Immunodeficiency—Clinical and Immunotransplant Implications with a Review of the Literature
by Przemyslaw Zdziarski and Andrzej Gamian
Diseases 2024, 12(5), 80; https://doi.org/10.3390/diseases12050080 - 23 Apr 2024
Viewed by 2310
Abstract
Although lymphoma is the most frequent malignancy in common variable immunodeficiency (CVID), solid tumors, especially affected by oncogenic viruses, are not considered. Furthermore, in vitro genetic studies and cell cultures are not adequate for immune system and HBV interaction. We adopted a previously [...] Read more.
Although lymphoma is the most frequent malignancy in common variable immunodeficiency (CVID), solid tumors, especially affected by oncogenic viruses, are not considered. Furthermore, in vitro genetic studies and cell cultures are not adequate for immune system and HBV interaction. We adopted a previously introduced clinical model of host–virus interaction (i.e., infectious process in immunodeficiency) for analysis of B cells and the specific IgG role (an observational study of a CVID patient who received intravenous immunoglobulin (IVIG). Suddenly, the patient deteriorated and a positive results of for HBs and HBV-DNA (369 × 106 copies) were detected. Despite lamivudine therapy and IVIG escalation (from 0.3 to 0.4 g/kg), CT showed an 11 cm intrahepatic tumor (hepatocellular carcinoma). Anti-HBs were positive in time-lapse analysis (range 111–220 IU/mL). Replacement therapy intensification was complicated by an immune complex disease with renal failure. Fulminant HCC in CVID and the development of a tumor as the first sign is of interest. Unfortunately, treatment with hepatitis B immune globulins (HBIG) plays a major role in posttransplant maintenance therapy. Anti-HB substitution has not been proven to be effective, oncoprotective, nor safe. Therefore, immunosuppression in HBV-infected recipients should be carefully minimized, and patient selection more precise with the exclusion of HBV-positive donors. Our clinical model showed an HCC pathway with important humoral host factors, contrary to epidemiological/cohort studies highlighting risk factors only (e.g., chronic hepatitis). The lack of cell cooperation as well as B cell deficiency observed in CVID play a crucial role in high HBV replication, especially in carcinogenesis. Full article
Show Figures

Graphical abstract

21 pages, 1559 KiB  
Review
Antitumor Potential of Antiepileptic Drugs in Human Glioblastoma: Pharmacological Targets and Clinical Benefits
by Manuela Stella, Giammarco Baiardi, Stefano Pasquariello, Fabio Sacco, Irene Dellacasagrande, Alessandro Corsaro, Francesca Mattioli and Federica Barbieri
Biomedicines 2023, 11(2), 582; https://doi.org/10.3390/biomedicines11020582 - 16 Feb 2023
Cited by 15 | Viewed by 5268
Abstract
Glioblastoma (GBM) is characterized by fast-growing cells, genetic and phenotypic heterogeneity, and radio-chemo-therapy resistance, contributing to its dismal prognosis. Various medical comorbidities are associated with the natural history of GBM. The most disabling and greatly affecting patients’ quality of life are neurodegeneration, cognitive [...] Read more.
Glioblastoma (GBM) is characterized by fast-growing cells, genetic and phenotypic heterogeneity, and radio-chemo-therapy resistance, contributing to its dismal prognosis. Various medical comorbidities are associated with the natural history of GBM. The most disabling and greatly affecting patients’ quality of life are neurodegeneration, cognitive impairment, and GBM-related epilepsy (GRE). Hallmarks of GBM include molecular intrinsic mediators and pathways, but emerging evidence supports the key role of non-malignant cells within the tumor microenvironment in GBM aggressive behavior. In this context, hyper-excitability of neurons, mediated by glutamatergic and GABAergic imbalance, contributing to GBM growth strengthens the cancer-nervous system crosstalk. Pathogenic mechanisms, clinical features, and pharmacological management of GRE with antiepileptic drugs (AEDs) and their interactions are poorly explored, yet it is a potentially promising field of research in cancer neuroscience. The present review summarizes emerging cooperative mechanisms in oncogenesis and epileptogenesis, focusing on the neuron-to-glioma interface. The main effects and efficacy of selected AEDs used in the management of GRE are discussed in this paper, as well as their potential beneficial activity as antitumor treatment. Overall, although still many unclear processes overlapping in GBM growth and seizure onset need to be elucidated, this review focuses on the intriguing targeting of GBM-neuron mutual interactions to improve the outcome of the so challenging to treat GBM. Full article
(This article belongs to the Special Issue 10th Anniversary of Biomedicines—Novel Targets for Cranial Tumors)
Show Figures

Figure 1

17 pages, 3368 KiB  
Article
Identification and Characterization of Immunogene-Related Alternative Splicing Patterns and Tumor Microenvironment Infiltration Patterns in Breast Cancer
by Shuang Guo, Xinyue Wang, Hanxiao Zhou, Yue Gao, Peng Wang, Hui Zhi, Yue Sun, Yangyang Hao, Jing Gan, Yakun Zhang, Jie Sun, Wen Zheng, Xiaoxi Zhao, Yun Xiao and Shangwei Ning
Cancers 2022, 14(3), 595; https://doi.org/10.3390/cancers14030595 - 25 Jan 2022
Cited by 2 | Viewed by 2836
Abstract
Alternative splicing (AS) plays a crucial role in tumor development and tumor microenvironment (TME) formation. However, our current knowledge about AS, especially immunogene-related alternative splicing (IGAS) patterns in cancers, remains limited. Herein, we identified and characterized post-transcriptional mechanisms of breast cancer based on [...] Read more.
Alternative splicing (AS) plays a crucial role in tumor development and tumor microenvironment (TME) formation. However, our current knowledge about AS, especially immunogene-related alternative splicing (IGAS) patterns in cancers, remains limited. Herein, we identified and characterized post-transcriptional mechanisms of breast cancer based on IGAS, TME, prognosis, and immuno/chemotherapy. We screened the differentially spliced IGAS events and constructed the IGAS prognostic model (p-values < 0.001, AUC = 0.939), which could be used as an independent prognostic factor. Besides, the AS regulatory network suggested a complex cooperative or competitive relationship between splicing factors and IGAS events, which explained the diversity of splice isoforms. In addition, more than half of the immune cells displayed varying degrees of infiltration in the IGAS risk groups, and the prognostic characteristics of IGAS demonstrated a remarkable and consistent trend correlation with the infiltration levels of immune cell types. The IGAS risk groups showed substantial differences in the sensitivity of immunotherapy and chemotherapy. Finally, IGAS clusters defined by unsupervised cluster analysis had distinct prognostic patterns, suggesting an essential heterogeneity of IGAS events. Significant differences in immune infiltration and unique prognostic capacity of immune cells were also detected in each IGAS cluster. In conclusion, our comprehensive analysis remarkably enhanced the understanding of IGAS patterns and TME in breast cancer, which may help clarify the underlying mechanisms of IGAS in neoplasia and provide clues to molecular mechanisms of oncogenesis and progression. Full article
(This article belongs to the Special Issue Alternative and Aberrant Splicing in Cancer: How Can We Fix It?)
Show Figures

Figure 1

25 pages, 1509 KiB  
Review
Emerging Molecular Dependencies of Mutant EGFR-Driven Non-Small Cell Lung Cancer
by Dylan A. Farnsworth, Yankuan T. Chen, Georgia de Rappard Yuswack and William W. Lockwood
Cells 2021, 10(12), 3553; https://doi.org/10.3390/cells10123553 - 16 Dec 2021
Cited by 12 | Viewed by 7405
Abstract
Epidermal growth factor receptor (EGFR) mutations are the molecular driver of a subset of non-small cell lung cancers (NSCLC); tumors that harbor these mutations are often dependent on sustained oncogene signaling for survival, a concept known as “oncogene addiction”. Inhibiting EGFR with tyrosine [...] Read more.
Epidermal growth factor receptor (EGFR) mutations are the molecular driver of a subset of non-small cell lung cancers (NSCLC); tumors that harbor these mutations are often dependent on sustained oncogene signaling for survival, a concept known as “oncogene addiction”. Inhibiting EGFR with tyrosine kinase inhibitors has improved clinical outcomes for patients; however, successive generations of inhibitors have failed to prevent the eventual emergence of resistance to targeted agents. Although these tumors have a well-established dependency on EGFR signaling, there remain questions about the underlying genetic mechanisms necessary for EGFR-driven oncogenesis and the factors that allow tumor cells to escape EGFR dependence. In this review, we highlight the latest findings on mutant EGFR dependencies, co-operative drivers, and molecular mechanisms that underlie sensitivity to EGFR inhibitors. Additionally, we offer perspective on how these discoveries may inform novel combination therapies tailored to EGFR mutant NSCLC. Full article
Show Figures

Figure 1

21 pages, 1562 KiB  
Review
Emerging Role of isomiRs in Cancer: State of the Art and Recent Advances
by Veronica Zelli, Chiara Compagnoni, Roberta Capelli, Alessandra Corrente, Jessica Cornice, Davide Vecchiotti, Monica Di Padova, Francesca Zazzeroni, Edoardo Alesse and Alessandra Tessitore
Genes 2021, 12(9), 1447; https://doi.org/10.3390/genes12091447 - 20 Sep 2021
Cited by 16 | Viewed by 4902
Abstract
The advent of Next Generation Sequencing technologies brought with it the discovery of several microRNA (miRNA) variants of heterogeneous lengths and/or sequences. Initially ascribed to sequencing errors/artifacts, these isoforms, named isomiRs, are now considered non-canonical variants that originate from physiological processes affecting the [...] Read more.
The advent of Next Generation Sequencing technologies brought with it the discovery of several microRNA (miRNA) variants of heterogeneous lengths and/or sequences. Initially ascribed to sequencing errors/artifacts, these isoforms, named isomiRs, are now considered non-canonical variants that originate from physiological processes affecting the canonical miRNA biogenesis. To date, accurate IsomiRs abundance, biological activity, and functions are not completely understood; however, the study of isomiR biology is an area of great interest due to their high frequency in the human miRNome, their putative functions in cooperating with the canonical miRNAs, and potential for exhibiting novel functional roles. The discovery of isomiRs highlighted the complexity of the small RNA transcriptional landscape in several diseases, including cancer. In this field, the study of isomiRs could provide further insights into the miRNA biology and its implication in oncogenesis, possibly providing putative new cancer diagnostic, prognostic, and predictive biomarkers as well. In this review, a comprehensive overview of the state of research on isomiRs in different cancer types, including the most common tumors such as breast cancer, colorectal cancer, melanoma, and prostate cancer, as well as in the less frequent tumors, as for example brain tumors and hematological malignancies, will be summarized and discussed. Full article
(This article belongs to the Special Issue The Role of MicroRNA in Cancer)
Show Figures

Figure 1

27 pages, 2476 KiB  
Review
RasV12; scrib−/− Tumors: A Cooperative Oncogenesis Model Fueled by Tumor/Host Interactions
by Caroline Dillard, José Gerardo Teles Reis and Tor Erik Rusten
Int. J. Mol. Sci. 2021, 22(16), 8873; https://doi.org/10.3390/ijms22168873 - 18 Aug 2021
Cited by 11 | Viewed by 6184
Abstract
The phenomenon of how oncogenes and tumor-suppressor mutations can synergize to promote tumor fitness and cancer progression can be studied in relatively simple animal model systems such as Drosophila melanogaster. Almost two decades after the landmark discovery of cooperative oncogenesis between oncogenic Ras [...] Read more.
The phenomenon of how oncogenes and tumor-suppressor mutations can synergize to promote tumor fitness and cancer progression can be studied in relatively simple animal model systems such as Drosophila melanogaster. Almost two decades after the landmark discovery of cooperative oncogenesis between oncogenic RasV12 and the loss of the tumor suppressor scribble in flies, this and other tumor models have provided new concepts and findings in cancer biology that has remarkable parallels and relevance to human cancer. Here we review findings using the RasV12; scrib−/− tumor model and how it has contributed to our understanding of how these initial simple genetic insults cooperate within the tumor cell to set in motion the malignant transformation program leading to tumor growth through cell growth, cell survival and proliferation, dismantling of cell–cell interactions, degradation of basement membrane and spreading to other organs. Recent findings have demonstrated that cooperativity goes beyond cell intrinsic mechanisms as the tumor interacts with the immediate cells of the microenvironment, the immune system and systemic organs to eventually facilitate malignant progression. Full article
(This article belongs to the Special Issue Basic and Translational Models of Cooperative Oncogenesis 2.0)
Show Figures

Figure 1

16 pages, 2209 KiB  
Review
DLX Genes: Roles in Development and Cancer
by Yinfei Tan and Joseph R. Testa
Cancers 2021, 13(12), 3005; https://doi.org/10.3390/cancers13123005 - 15 Jun 2021
Cited by 43 | Viewed by 6936
Abstract
Homeobox genes control body patterning and cell-fate decisions during development. The homeobox genes consist of many families, only some of which have been investigated regarding a possible role in tumorigenesis. Dysregulation of HOX family genes have been widely implicated in cancer etiology. DLX [...] Read more.
Homeobox genes control body patterning and cell-fate decisions during development. The homeobox genes consist of many families, only some of which have been investigated regarding a possible role in tumorigenesis. Dysregulation of HOX family genes have been widely implicated in cancer etiology. DLX homeobox genes, which belong to the NK-like family, exert dual roles in development and cancer. The DLX genes are the key transcription factors involved in regulating the development of craniofacial structures in vertebrates. The three DLX bigenes have overlapping expression in the branchial arches. Disruption of DLX function has destructive consequences in organogenesis and is associated with certain congenital disorders in humans. The role of DLX genes in oncogenesis is only beginning to emerge. DLX2 diminishes cellular senescence by regulating p53 function, whereas DLX4 has been associated with metastasis in breast cancer. In human ovarian cancer cells, DLX5 is essential for regulating AKT signaling, thereby promoting cell proliferation and survival. We previously implicated Dlx5 as an oncogene in murine T-cell lymphoma driven by a constitutively active form of Akt2. In this mouse model, overexpression of Dlx5 was caused by a chromosomal rearrangement that juxtaposed the Tcr-beta promoter region near the Dlx5 locus. Moreover, transgenic mice overexpressing Dlx5, specifically in immature T-cells, develop spontaneous thymic lymphomas. Oncogenesis in this mouse model involves binding of Dlx5 to the Notch1 and Notch3 gene loci to activate their transcription. Dlx5 also cooperates with Akt signaling to accelerate lymphomagenesis by activating Wnt signaling. We also discuss the fact that human DLX5 is aberrantly expressed in several human malignancies. Full article
(This article belongs to the Special Issue NKL Homeobox Genes in Normal and Aberrant Hematopoiesis)
Show Figures

Graphical abstract

37 pages, 4997 KiB  
Review
Sophisticated Conversations between Chromatin and Chromatin Remodelers, and Dissonances in Cancer
by Cedric R. Clapier
Int. J. Mol. Sci. 2021, 22(11), 5578; https://doi.org/10.3390/ijms22115578 - 25 May 2021
Cited by 30 | Viewed by 6110
Abstract
The establishment and maintenance of genome packaging into chromatin contribute to define specific cellular identity and function. Dynamic regulation of chromatin organization and nucleosome positioning are critical to all DNA transactions—in particular, the regulation of gene expression—and involve the cooperative action of sequence-specific [...] Read more.
The establishment and maintenance of genome packaging into chromatin contribute to define specific cellular identity and function. Dynamic regulation of chromatin organization and nucleosome positioning are critical to all DNA transactions—in particular, the regulation of gene expression—and involve the cooperative action of sequence-specific DNA-binding factors, histone modifying enzymes, and remodelers. Remodelers are molecular machines that generate various chromatin landscapes, adjust nucleosome positioning, and alter DNA accessibility by using ATP binding and hydrolysis to perform DNA translocation, which is highly regulated through sophisticated structural and functional conversations with nucleosomes. In this review, I first present the functional and structural diversity of remodelers, while emphasizing the basic mechanism of DNA translocation, the common regulatory aspects, and the hand-in-hand progressive increase in complexity of the regulatory conversations between remodelers and nucleosomes that accompanies the increase in challenges of remodeling processes. Next, I examine how, through nucleosome positioning, remodelers guide the regulation of gene expression. Finally, I explore various aspects of how alterations/mutations in remodelers introduce dissonance into the conversations between remodelers and nucleosomes, modify chromatin organization, and contribute to oncogenesis. Full article
(This article belongs to the Special Issue Positioning of Nucleosomes)
Show Figures

Figure 1

19 pages, 27113 KiB  
Review
In Silico Logical Modelling to Uncover Cooperative Interactions in Cancer
by Gianluca Selvaggio, Claudine Chaouiya and Florence Janody
Int. J. Mol. Sci. 2021, 22(9), 4897; https://doi.org/10.3390/ijms22094897 - 5 May 2021
Cited by 4 | Viewed by 2930
Abstract
The multistep development of cancer involves the cooperation between multiple molecular lesions, as well as complex interactions between cancer cells and the surrounding tumour microenvironment. The search for these synergistic interactions using experimental models made tremendous contributions to our understanding of oncogenesis. Yet, [...] Read more.
The multistep development of cancer involves the cooperation between multiple molecular lesions, as well as complex interactions between cancer cells and the surrounding tumour microenvironment. The search for these synergistic interactions using experimental models made tremendous contributions to our understanding of oncogenesis. Yet, these approaches remain labour-intensive and challenging. To tackle such a hurdle, an integrative, multidisciplinary effort is required. In this article, we highlight the use of logical computational models, combined with experimental validations, as an effective approach to identify cooperative mechanisms and therapeutic strategies in the context of cancer biology. In silico models overcome limitations of reductionist approaches by capturing tumour complexity and by generating powerful testable hypotheses. We review representative examples of logical models reported in the literature and their validation. We then provide further analyses of our logical model of Epithelium to Mesenchymal Transition (EMT), searching for additional cooperative interactions involving inputs from the tumour microenvironment and gain of function mutations in NOTCH. Full article
(This article belongs to the Special Issue Basic and Translational Models of Cooperative Oncogenesis 2.0)
Show Figures

Figure 1

20 pages, 3566 KiB  
Article
Oncogenic Orphan Nuclear Receptor NR4A3 Interacts and Cooperates with MYB in Acinic Cell Carcinoma
by David Y. Lee, Kathryn J. Brayer, Yoshitsugu Mitani, Eric A. Burns, Pulivarthi H. Rao, Diana Bell, Michelle D. Williams, Renata Ferrarotto, Kristen B. Pytynia, Adel K. El-Naggar and Scott A. Ness
Cancers 2020, 12(9), 2433; https://doi.org/10.3390/cancers12092433 - 27 Aug 2020
Cited by 22 | Viewed by 4136
Abstract
Acinic cell carcinoma (AcCC) is a morphologically distinctive salivary gland malignancy often associated with chromosome rearrangements leading to overexpression of the NR4A3 transcription factor. However, little is known about how NR4A3 contributes to AcCC biology. Detailed RNA-sequencing of 21 archived AcCC samples revealed [...] Read more.
Acinic cell carcinoma (AcCC) is a morphologically distinctive salivary gland malignancy often associated with chromosome rearrangements leading to overexpression of the NR4A3 transcription factor. However, little is known about how NR4A3 contributes to AcCC biology. Detailed RNA-sequencing of 21 archived AcCC samples revealed fusion reads arising from recurrent t(4;9), t(9;12), t(8;9) or t(2;4) chromosomal translocations, which positioned highly active enhancers adjacent to the promoter of the NR4A3 gene or the closely related NR4A2 gene, resulting in their aberrant overexpression. Transcriptome analyses revealed several distinct subgroups of AcCC tumors, including a subgroup that overexpressed both NR4A3 and MSANTD3. A poor survival subset of the tumors with high-grade transformation expressed NR4A3 and POMC as well as MYB, an oncogene that is the major driver in a different type of salivary gland tumor, adenoid cystic carcinoma. The combination of NR4A3 and MYB showed cooperativity in regulating a distinct set of genes. In addition, the ligand binding domain of NR4A3 directly bound the Myb DNA binding domain. Transformation assays indicated that, while overexpressed NR4A3 was sufficient to generate transformed colonies, the combination of NR4A3 plus Myb was more potent, leading to anchorage-independent growth and increased cellular invasiveness. The results confirm that NR4A3 and NR4A2 are the main driver genes of AcCC and suggest that concurrent overexpression of NR4A3 and MYB defines a subset of AcCC patients with high-grade transformation that display exceptionally poor outcome. Full article
(This article belongs to the Section Molecular Cancer Biology)
Show Figures

Figure 1

4 pages, 183 KiB  
Editorial
Basic and Translational Models of Cooperative Oncogenesis
by Helena E. Richardson, Julia B. Cordero and Daniela Grifoni
Int. J. Mol. Sci. 2020, 21(16), 5919; https://doi.org/10.3390/ijms21165919 - 18 Aug 2020
Cited by 5 | Viewed by 2937
(This article belongs to the Special Issue Basic and Translational Models of Cooperative Oncogenesis)
19 pages, 5251 KiB  
Article
Statin Drugs Plus Th1 Cytokines Potentiate Apoptosis and Ras Delocalization in Human Breast Cancer Lines and Combine with Dendritic Cell-Based Immunotherapy to Suppress Tumor Growth in a Mouse Model of HER-2pos Disease
by Crystal M. Oechsle, Loral E. Showalter, Colleen M. Novak, Brain J. Czerniecki and Gary K. Koski
Vaccines 2020, 8(1), 72; https://doi.org/10.3390/vaccines8010072 - 6 Feb 2020
Cited by 17 | Viewed by 3809
Abstract
A dendritic cell-based, Type 1 Helper T cell (Th1)-polarizing anti-Human Epidermal Growth Factor Receptor-2 (HER-2) vaccine supplied in the neoadjuvant setting eliminates disease in up to 30% of recipients with HER-2-positive (HER-2pos) ductal carcinoma in situ (DCIS). We hypothesized that drugs [...] Read more.
A dendritic cell-based, Type 1 Helper T cell (Th1)-polarizing anti-Human Epidermal Growth Factor Receptor-2 (HER-2) vaccine supplied in the neoadjuvant setting eliminates disease in up to 30% of recipients with HER-2-positive (HER-2pos) ductal carcinoma in situ (DCIS). We hypothesized that drugs with low toxicity profiles that target signaling pathways critical for oncogenesis may work in conjunction with vaccine-induced immune effector mechanisms to improve efficacy while minimizing side effects. In this study, a panel of four phenotypically diverse human breast cancer lines were exposed in vitro to the combination of Th1 cytokines Interferon-gamma (IFN-γ) and Tumor Necrosis Factor-alpha (TNF-α) and lipophilic statins. This combination was shown to potentiate multiple markers of apoptotic cell death. The combination of statin drugs and Th1 cytokines minimized membrane K-Ras localization while maximizing levels in the cytoplasm, suggesting a possible means by which cytokines and statin drugs might cooperate to maximize cell death. A combined therapy was also tested in vivo through an orthotopic murine model using the neu-transgenic TUBO mammary carcinoma line. We showed that the combination of HER-2 peptide-pulsed dendritic cell (DC)-based immunotherapy and simvastatin, but not single agents, significantly suppressed tumor growth. Consistent with a Th1 cytokine-dependent mechanism, parenterally administered recombinant IFN-γ could substitute for DC-based immunotherapy, likewise inhibiting tumor growth when combined with simvastatin. These studies show that statin drugs can amplify a DC-induced effector mechanism to improve anti-tumor activity. Full article
(This article belongs to the Section Vaccination Against Cancer and Chronic Diseases)
Show Figures

Figure 1

17 pages, 2874 KiB  
Review
Capsaicin: Effects on the Pathogenesis of Hepatocellular Carcinoma
by Cristian Scheau, Ioana Anca Badarau, Constantin Caruntu, Gratiela Livia Mihai, Andreea Cristiana Didilescu, Carolina Constantin and Monica Neagu
Molecules 2019, 24(13), 2350; https://doi.org/10.3390/molecules24132350 - 26 Jun 2019
Cited by 42 | Viewed by 5869
Abstract
Hepatocellular carcinoma (HCC) is one of the most frequent cancers, and to date, there have been very few drugs available that can improve survival, the most well-known being sorafenib. The pathogenesis of HCC is complex, involving multiple processes including abnormal cell and tissue [...] Read more.
Hepatocellular carcinoma (HCC) is one of the most frequent cancers, and to date, there have been very few drugs available that can improve survival, the most well-known being sorafenib. The pathogenesis of HCC is complex, involving multiple processes including abnormal cell and tissue regeneration, angiogenesis, genomic instability, cellular proliferation, and signaling pathway alterations. Capsaicin is a substance that holds increasingly high interest and is studied as a therapeutic option in a wide array of diseases. Several studies have investigated capsaicin roles in various stages of HCC oncogenesis. This paper aims to thoroughly detail the available information on the individual effects of capsaicin on the cellular mechanisms and pathways involved in HCC development, as well as investigate their possible cooperation and interferences. The synergistic antitumor effects of capsaicin and sorafenib are also addressed. Full article
(This article belongs to the Special Issue Capsaicin—2nd Edition)
Show Figures

Figure 1

Back to TopTop