Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (12,066)

Search Parameters:
Keywords = convergence result

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1907 KiB  
Article
Multi-Innovation-Based Parameter Identification for Vertical Dynamic Modeling of AUV Under High Maneuverability and Large Attitude Variations
by Jianping Yuan, Zhixun Luo, Lei Wan, Cenan Wang, Chi Zhang and Qingdong Chen
J. Mar. Sci. Eng. 2025, 13(8), 1489; https://doi.org/10.3390/jmse13081489 (registering DOI) - 1 Aug 2025
Abstract
The parameter identification of Autonomous Underwater Vehicles (AUVs) serves as a fundamental basis for achieving high-precision motion control, state monitoring, and system development. Currently, AUV parameter identification typically relies on the complete motion information obtained from onboard sensors. However, in practical applications, it [...] Read more.
The parameter identification of Autonomous Underwater Vehicles (AUVs) serves as a fundamental basis for achieving high-precision motion control, state monitoring, and system development. Currently, AUV parameter identification typically relies on the complete motion information obtained from onboard sensors. However, in practical applications, it is often challenging to accurately measure key state variables such as velocity and angular velocity, resulting in incomplete measurement data that compromises identification accuracy and model reliability. This issue is particularly pronounced in vertical motion tasks involving low-speed, large pitch angles, and highly maneuverable conditions, where the strong coupling and nonlinear characteristics of underwater vehicles become more significant. Traditional hydrodynamic models based on full-state measurements often suffer from limited descriptive capability and difficulties in parameter estimation under such conditions. To address these challenges, this study investigates a parameter identification method for AUVs operating under vertical, large-amplitude maneuvers with constrained measurement information. A control autoregressive (CAR) model-based identification approach is derived, which requires only pitch angle, vertical velocity, and vertical position data, thereby reducing the dependence on complete state observations. To overcome the limitations of the conventional Recursive Least Squares (RLS) algorithm—namely, its slow convergence and low accuracy under rapidly changing conditions—a Multi-Innovation Least Squares (MILS) algorithm is proposed to enable the efficient estimation of nonlinear hydrodynamic characteristics in complex dynamic environments. The simulation and experimental results validate the effectiveness of the proposed method, demonstrating high identification accuracy and robustness in scenarios involving large pitch angles and rapid maneuvering. The results confirm that the combined use of the CAR model and MILS algorithm significantly enhances model adaptability and accuracy, providing a solid data foundation and theoretical support for the design of AUV control systems in complex operational environments. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

25 pages, 1138 KiB  
Article
Quality over Quantity: An Effective Large-Scale Data Reduction Strategy Based on Pointwise V-Information
by Fei Chen and Wenchi Zhou
Electronics 2025, 14(15), 3092; https://doi.org/10.3390/electronics14153092 (registering DOI) - 1 Aug 2025
Abstract
In order to increase the effectiveness of model training, data reduction is essential to data-centric Artificial Intelligence (AI). It achieves this by locating the most instructive examples in massive datasets. To increase data quality and training efficiency, the main difficulty is choosing the [...] Read more.
In order to increase the effectiveness of model training, data reduction is essential to data-centric Artificial Intelligence (AI). It achieves this by locating the most instructive examples in massive datasets. To increase data quality and training efficiency, the main difficulty is choosing the best examples rather than the complete datasets. In this paper, we propose an effective data reduction strategy based on Pointwise 𝒱-Information (PVI). To enable a static method, we first use PVI to quantify instance difficulty and remove instances with low difficulty. Experiments show that classifier performance is maintained with only a 0.0001% to 0.76% decline in accuracy when 10–30% of the data is removed. Second, we train the classifiers using a progressive learning strategy on examples sorted by increasing PVI, accelerating convergence and achieving a 0.8% accuracy gain over conventional training. Our findings imply that training a classifier on the chosen optimal subset may improve model performance and increase training efficiency when combined with an efficient data reduction strategy. Furthermore, we have adapted the PVI framework, which was previously limited to English datasets, to a variety of Chinese Natural Language Processing (NLP) tasks and base models, yielding insightful results for faster training and cross-lingual data reduction. Full article
(This article belongs to the Special Issue Data Retrieval and Data Mining)
9 pages, 4716 KiB  
Commentary
A Lens on Fire Risk Drivers: The Role of Climate and Vegetation Index Anomalies in the May 2025 Manitoba Wildfires
by Afshin Amiri, Silvio Gumiere and Hossein Bonakdari
Earth 2025, 6(3), 88; https://doi.org/10.3390/earth6030088 (registering DOI) - 1 Aug 2025
Abstract
In early May 2025, extreme wildfires swept across Manitoba, Canada, fueled by unseasonably warm temperatures, prolonged drought, and stressed vegetation. We explore how multi-source satellite indicators—such as anomalies in snow cover, precipitation, temperature, vegetation indices, and soil moisture in April–May—jointly signal landscape preconditioning [...] Read more.
In early May 2025, extreme wildfires swept across Manitoba, Canada, fueled by unseasonably warm temperatures, prolonged drought, and stressed vegetation. We explore how multi-source satellite indicators—such as anomalies in snow cover, precipitation, temperature, vegetation indices, and soil moisture in April–May—jointly signal landscape preconditioning for fire, highlighting the potential of these compound anomalies to inform fire risk awareness in boreal regions. Results indicate that rainfall deficits and diminished snowpack significantly reduced soil moisture, which subsequently decreased vegetative greenness and created a flammable environment prior to ignition. This concept captures how multiple moderate anomalies, when occurring simultaneously, can converge to create high-impact fire conditions that would not be flagged by individual thresholds alone. These findings underscore the importance of integrating climate and biosphere anomalies into wildfire risk monitoring to enhance preparedness in boreal regions under accelerating climate change. Full article
22 pages, 2988 KiB  
Article
Enhanced Cuckoo Search Optimization with Opposition-Based Learning for the Optimal Placement of Sensor Nodes and Enhanced Network Coverage in Wireless Sensor Networks
by Mandli Rami Reddy, M. L. Ravi Chandra and Ravilla Dilli
Appl. Sci. 2025, 15(15), 8575; https://doi.org/10.3390/app15158575 (registering DOI) - 1 Aug 2025
Abstract
Network connectivity and area coverage are the most important aspects in the applications of wireless sensor networks (WSNs). The resource and energy constraints of sensor nodes, operational conditions, and network size pose challenges to the optimal coverage of targets in the region of [...] Read more.
Network connectivity and area coverage are the most important aspects in the applications of wireless sensor networks (WSNs). The resource and energy constraints of sensor nodes, operational conditions, and network size pose challenges to the optimal coverage of targets in the region of interest (ROI). The main idea is to achieve maximum area coverage and connectivity with strategic deployment and the minimal number of sensor nodes. This work addresses the problem of network area coverage in randomly distributed WSNs and provides an efficient deployment strategy using an enhanced version of cuckoo search optimization (ECSO). The “sequential update evaluation” mechanism is used to mitigate the dependency among dimensions and provide highly accurate solutions, particularly during the local search phase. During the preference random walk phase of conventional CSO, particle swarm optimization (PSO) with adaptive inertia weights is defined to accelerate the local search capabilities. The “opposition-based learning (OBL)” strategy is applied to ensure high-quality initial solutions that help to enhance the balance between exploration and exploitation. By considering the opposite of current solutions to expand the search space, we achieve higher convergence speed and population diversity. The performance of ECSO-OBL is evaluated using eight benchmark functions, and the results of three cases are compared with the existing methods. The proposed method enhances network coverage with a non-uniform distribution of sensor nodes and attempts to cover the whole ROI with a minimal number of sensor nodes. In a WSN with a 100 m2 area, we achieved a maximum coverage rate of 98.45% and algorithm convergence in 143 iterations, and the execution time was limited to 2.85 s. The simulation results of various cases prove the higher efficiency of the ECSO-OBL method in terms of network coverage and connectivity in WSNs compared with existing state-of-the-art works. Full article
22 pages, 1287 KiB  
Article
Comparative Analysis of the Gardner Equation in Plasma Physics Using Analytical and Neural Network Methods
by Zain Majeed, Adil Jhangeer, F. M. Mahomed, Hassan Almusawa and F. D. Zaman
Symmetry 2025, 17(8), 1218; https://doi.org/10.3390/sym17081218 (registering DOI) - 1 Aug 2025
Abstract
In the present paper, a mathematical analysis of the Gardner equation with varying coefficients has been performed to give a more realistic model of physical phenomena, especially in regards to plasma physics. First, a Lie symmetry analysis was carried out, as a result [...] Read more.
In the present paper, a mathematical analysis of the Gardner equation with varying coefficients has been performed to give a more realistic model of physical phenomena, especially in regards to plasma physics. First, a Lie symmetry analysis was carried out, as a result of which a symmetry classification following the different representations of the variable coefficients was systematically derived. The reduced ordinary differential equation obtained is solved using the power-series method and solutions to the equation are represented graphically to give an idea of their dynamical behavior. Moreover, a fully connected neural network has been included as an efficient computation method to deal with the complexity of the reduced equation, by using traveling-wave transformation. The validity and correctness of the solutions provided by the neural networks have been rigorously tested and the solutions provided by the neural networks have been thoroughly compared with those generated by the Runge–Kutta method, which is a conventional and well-recognized numerical method. The impact of a variation in the loss function of different coefficients has also been discussed, and it has also been found that the dispersive coefficient affects the convergence rate of the loss contribution considerably compared to the other coefficients. The results of the current work can be used to improve knowledge on the nonlinear dynamics of waves in plasma physics. They also show how efficient it is to combine the approaches, which consists in the use of analytical and semi-analytical methods and methods based on neural networks, to solve nonlinear differential equations with variable coefficients of a complex nature. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

17 pages, 3062 KiB  
Article
Spatiotemporal Risk-Aware Patrol Planning Using Value-Based Policy Optimization and Sensor-Integrated Graph Navigation in Urban Environments
by Swarnamouli Majumdar, Anjali Awasthi and Lorant Andras Szolga
Appl. Sci. 2025, 15(15), 8565; https://doi.org/10.3390/app15158565 (registering DOI) - 1 Aug 2025
Abstract
This study proposes an intelligent patrol planning framework that leverages reinforcement learning, spatiotemporal crime forecasting, and simulated sensor telemetry to optimize autonomous vehicle (AV) navigation in urban environments. Crime incidents from Washington DC (2024–2025) and Seattle (2008–2024) are modeled as a dynamic spatiotemporal [...] Read more.
This study proposes an intelligent patrol planning framework that leverages reinforcement learning, spatiotemporal crime forecasting, and simulated sensor telemetry to optimize autonomous vehicle (AV) navigation in urban environments. Crime incidents from Washington DC (2024–2025) and Seattle (2008–2024) are modeled as a dynamic spatiotemporal graph, capturing the evolving intensity and distribution of criminal activity across neighborhoods and time windows. The agent’s state space incorporates synthetic AV sensor inputs—including fuel level, visual anomaly detection, and threat signals—to reflect real-world operational constraints. We evaluate and compare three learning strategies: Deep Q-Network (DQN), Double Deep Q-Network (DDQN), and Proximal Policy Optimization (PPO). Experimental results show that DDQN outperforms DQN in convergence speed and reward accumulation, while PPO demonstrates greater adaptability in sensor-rich, high-noise conditions. Real-map simulations and hourly risk heatmaps validate the effectiveness of our approach, highlighting its potential to inform scalable, data-driven patrol strategies in next-generation smart cities. Full article
(This article belongs to the Special Issue AI-Aided Intelligent Vehicle Positioning in Urban Areas)
Show Figures

Figure 1

18 pages, 3344 KiB  
Article
Elite Episode Replay Memory for Polyphonic Piano Fingering Estimation
by Ananda Phan Iman and Chang Wook Ahn
Mathematics 2025, 13(15), 2485; https://doi.org/10.3390/math13152485 (registering DOI) - 1 Aug 2025
Abstract
Piano fingering estimation remains a complex problem due to the combinatorial nature of hand movements and no best solution for any situation. A recent model-free reinforcement learning framework for piano fingering modeled each monophonic piece as an environment and demonstrated that value-based methods [...] Read more.
Piano fingering estimation remains a complex problem due to the combinatorial nature of hand movements and no best solution for any situation. A recent model-free reinforcement learning framework for piano fingering modeled each monophonic piece as an environment and demonstrated that value-based methods outperform probability-based approaches. Building on their finding, this paper addresses the more complex polyphonic fingering problem by formulating it as an online model-free reinforcement learning task with a novel training strategy. Thus, we introduce a novel Elite Episode Replay (EER) method to improve learning efficiency by prioritizing high-quality episodes during training. This strategy accelerates early reward acquisition and improves convergence without sacrificing fingering quality. The proposed architecture produces multiple-action outputs for polyphonic settings and is trained using both elite-guided and uniform sampling. Experimental results show that the EER strategy reduces training time per step by 21% and speeds up convergence by 18% while preserving the difficulty level and result of the generated fingerings. An empirical study of elite memory size further highlights its impact on training performance in solving piano fingering estimation. Full article
(This article belongs to the Special Issue New Advances in Data Analytics and Mining)
Show Figures

Figure 1

26 pages, 1669 KiB  
Article
Predefined-Time Adaptive Neural Control with Event-Triggering for Robust Trajectory Tracking of Underactuated Marine Vessels
by Hui An, Zhanyang Yu, Jianhua Zhang, Xinxin Wang and Cheng Siong Chin
Processes 2025, 13(8), 2443; https://doi.org/10.3390/pr13082443 (registering DOI) - 1 Aug 2025
Abstract
This paper addresses the trajectory tracking control problem of underactuated ships in ocean engineering, which faces the dual challenges of tracking error time–performance regulation and robustness design due to the system’s underactuated characteristics, model uncertainties, and external disturbances. Aiming to address the issues [...] Read more.
This paper addresses the trajectory tracking control problem of underactuated ships in ocean engineering, which faces the dual challenges of tracking error time–performance regulation and robustness design due to the system’s underactuated characteristics, model uncertainties, and external disturbances. Aiming to address the issues of traditional finite-time control (convergence time dependent on initial states) and fixed-time control (control chattering and parameter conservativeness), this paper proposes a predefined-time adaptive control framework that integrates an event-triggered mechanism and neural networks. By constructing a Lyapunov function with time-varying weights and designing non-periodic dynamically updated dual triggering conditions, the convergence process of tracking errors is strictly constrained within a user-prespecified time window without relying on initial states or introducing non-smooth terms. An adaptive approximator based on radial basis function neural networks (RBF-NNs) is employed to compensate for unknown nonlinear dynamics and external disturbances in real-time. Combined with the event-triggered mechanism, it dynamically adjusts the update instances of control inputs, ensuring prespecified tracking accuracy while significantly reducing computational resource consumption. Theoretical analysis shows that all signals in the closed-loop system are uniformly ultimately bounded, tracking errors converge to a neighborhood of the origin within the predefined-time, and the update frequency of control inputs exhibits a linear relationship with the predefined-time, avoiding Zeno behavior. Simulation results verify the effectiveness of the proposed method in complex marine environments. Compared with traditional control strategies, it achieves more accurate trajectory tracking, faster response, and a substantial reduction in control input update frequency, providing an efficient solution for the engineering implementation of embedded control systems in unmanned ships. Full article
(This article belongs to the Special Issue Design and Analysis of Adaptive Identification and Control)
23 pages, 3153 KiB  
Article
Research on Path Planning Method for Mobile Platforms Based on Hybrid Swarm Intelligence Algorithms in Multi-Dimensional Environments
by Shuai Wang, Yifan Zhu, Yuhong Du and Ming Yang
Biomimetics 2025, 10(8), 503; https://doi.org/10.3390/biomimetics10080503 (registering DOI) - 1 Aug 2025
Abstract
Traditional algorithms such as Dijkstra and APF rely on complete environmental information for path planning, which results in numerous constraints during modeling. This not only increases the complexity of the algorithms but also reduces the efficiency and reliability of the planning. Swarm intelligence [...] Read more.
Traditional algorithms such as Dijkstra and APF rely on complete environmental information for path planning, which results in numerous constraints during modeling. This not only increases the complexity of the algorithms but also reduces the efficiency and reliability of the planning. Swarm intelligence algorithms possess strong data processing and search capabilities, enabling them to efficiently solve path planning problems in different environments and generate approximately optimal paths. However, swarm intelligence algorithms suffer from issues like premature convergence and a tendency to fall into local optima during the search process. Thus, an improved Artificial Bee Colony-Beetle Antennae Search (IABCBAS) algorithm is proposed. Firstly, Tent chaos and non-uniform variation are introduced into the bee algorithm to enhance population diversity and spatial searchability. Secondly, the stochastic reverse learning mechanism and greedy strategy are incorporated into the beetle antennae search algorithm to improve direction-finding ability and the capacity to escape local optima, respectively. Finally, the weights of the two algorithms are adaptively adjusted to balance global search and local refinement. Results of experiments using nine benchmark functions and four comparative algorithms show that the improved algorithm exhibits superior path point search performance and high stability in both high- and low-dimensional environments, as well as in unimodal and multimodal environments. Ablation experiment results indicate that the optimization strategies introduced in the algorithm effectively improve convergence accuracy and speed during path planning. Results of the path planning experiments show that compared with the comparison algorithms, the average path planning distance of the improved algorithm is reduced by 23.83% in the 2D multi-obstacle environment, and the average planning time is shortened by 27.97% in the 3D surface environment. The improvement in path planning efficiency makes this algorithm of certain value in engineering applications. Full article
(This article belongs to the Section Biological Optimisation and Management)
Show Figures

Figure 1

49 pages, 24339 KiB  
Article
An Enhanced Slime Mould Algorithm Based on Best–Worst Management for Numerical Optimization Problems
by Tongzheng Li, Hongchi Meng, Dong Wang, Bin Fu, Yuanyuan Shao and Zhenzhong Liu
Biomimetics 2025, 10(8), 504; https://doi.org/10.3390/biomimetics10080504 (registering DOI) - 1 Aug 2025
Abstract
The Slime Mould Algorithm (SMA) is a widely used swarm intelligence algorithm. Encouraged by the theory of no free lunch and the inherent shortcomings of the SMA, this work proposes a new variant of the SMA, called the BWSMA, in which three improvement [...] Read more.
The Slime Mould Algorithm (SMA) is a widely used swarm intelligence algorithm. Encouraged by the theory of no free lunch and the inherent shortcomings of the SMA, this work proposes a new variant of the SMA, called the BWSMA, in which three improvement mechanisms are integrated. The adaptive greedy mechanism is used to accelerate the convergence of the algorithm and avoid ineffective updates. The best–worst management strategy improves the quality of the population and increases its search capability. The stagnant replacement mechanism prevents the algorithm from falling into a local optimum by replacing stalled individuals. In order to verify the effectiveness of the proposed method, this paper conducts a full range of experiments on the CEC2018 test suite and the CEC2022 test suite and compares BWSMA with three derived algorithms, eight SMA variants, and eight other improved algorithms. The experimental results are analyzed using the Wilcoxon rank-sum test, the Friedman test, and the Nemenyi test. The results indicate that the BWSMA significantly outperforms these compared algorithms. In the comparison with the SMA variants, the BWSMA obtained average rankings of 1.414, 1.138, 1.069, and 1.414. In comparison with other improved algorithms, the BWSMA obtained average rankings of 2.583 and 1.833. Finally, the applicability of the BWSMA is further validated through two structural optimization problems. In conclusion, the proposed BWSMA is a promising algorithm with excellent search accuracy and robustness. Full article
(This article belongs to the Special Issue Nature-Inspired Metaheuristic Optimization Algorithms 2025)
Show Figures

Figure 1

21 pages, 670 KiB  
Article
I-fp Convergence in Fuzzy Paranormed Spaces and Its Application to Robust Base-Stock Policies with Triangular Fuzzy Demand
by Muhammed Recai Türkmen and Hasan Öğünmez
Mathematics 2025, 13(15), 2478; https://doi.org/10.3390/math13152478 - 1 Aug 2025
Abstract
We introduce I-fp convergence (ideal convergence in fuzzy paranormed spaces) and develop its core theory, including stability results and an equivalence to I*-fp convergence under the AP Property. Building on this foundation, we design an adaptive base-stock policy for a single-echelon [...] Read more.
We introduce I-fp convergence (ideal convergence in fuzzy paranormed spaces) and develop its core theory, including stability results and an equivalence to I*-fp convergence under the AP Property. Building on this foundation, we design an adaptive base-stock policy for a single-echelon inventory system in which weekly demand is expressed as triangular fuzzy numbers while holiday or promotion weeks are treated as ideal-small anomalies. The policy is updated by a simple learning rule that can be implemented in any spreadsheet, requires no optimisation software, and remains insensitive to tuning choices. Extensive simulation confirms that the method simultaneously lowers cost, reduces average inventory and raises service level relative to a crisp benchmark, all while filtering sparse demand spikes in a principled way. These findings position I-fp convergence as a lightweight yet rigorous tool for blending linguistic uncertainty with anomaly-aware decision making in supply-chain analytics. Full article
Show Figures

Figure 1

24 pages, 440 KiB  
Article
New Applications and Improvements of Sinc Functions for Solving a System of Fredholm Integral Equations
by Saeed Althubiti and Abdelaziz Mennouni
Axioms 2025, 14(8), 596; https://doi.org/10.3390/axioms14080596 (registering DOI) - 1 Aug 2025
Abstract
This study introduces two novel methodologies for solving systems of Fredholm integral equations, with particular emphasis on second-kind equations. The first method integrates the Sinc-collocation technique with a newly developed singular exponential transformation, enhancing convergence behavior and numerical stability. A comprehensive convergence analysis [...] Read more.
This study introduces two novel methodologies for solving systems of Fredholm integral equations, with particular emphasis on second-kind equations. The first method integrates the Sinc-collocation technique with a newly developed singular exponential transformation, enhancing convergence behavior and numerical stability. A comprehensive convergence analysis is conducted to support this approach. The second method employs a double exponential transformation, leading to a pair of linear equations whose solvability is established using the double projection method. Rigorous theoretical analysis is presented, including convergence theorems and newly derived error bounds. A system of two Fredholm integral equations is treated as a practical case study. Numerical examples are provided to illustrate the effectiveness and accuracy of the proposed methods, substantiating the theoretical results. Full article
(This article belongs to the Special Issue Recent Trends in Numerical Methods for Functional Equations)
Show Figures

Figure 1

19 pages, 1771 KiB  
Article
Steady Radial Diverging Flow of a Particle-Laden Fluid with Particle Migration
by C. Q. Ru
Fluids 2025, 10(8), 200; https://doi.org/10.3390/fluids10080200 - 1 Aug 2025
Abstract
The steady plane radial diverging flow of a viscous or inviscid particle-fluid suspension is studied using a novel two-fluid model. For the initial flow field with a uniform particle distribution, our results show that the relative velocity of particles with respect to the [...] Read more.
The steady plane radial diverging flow of a viscous or inviscid particle-fluid suspension is studied using a novel two-fluid model. For the initial flow field with a uniform particle distribution, our results show that the relative velocity of particles with respect to the fluid depends on their inlet velocity ratio at the entrance, the mass density ratio and the Stokes number of particles, and the particles heavier (or lighter) than the fluid will move faster (or slower) than the fluid when their inlet velocities are equal (then Stokes drag vanishes at the entrance). The relative motion of particles with respect to the fluid leads to particle migration and the non-uniform distribution of particles. An explicit expression is obtained for the steady particle distribution eventually attained due to particle migration. Our results demonstrated and confirmed that, for both light particles (gas bubbles) and heavy particles, depending on the particle-to-fluid mass density ratio, the volume fraction of particles attains its maximum or minimum value near the entrance of the radial flow and after then monotonically decreases or increases with the radial coordinate and converges to an asymptotic value determined by the particle-to-fluid inlet velocity ratio. Explicit solutions given here could help quantify the steady particle distribution in the decelerating radial flow of a particle-fluid suspension. Full article
(This article belongs to the Special Issue 10th Anniversary of Fluids—Recent Advances in Fluid Mechanics)
Show Figures

Figure 1

26 pages, 1112 KiB  
Review
The Invisible Influence: Can Endocrine Disruptors Reshape Behaviors Across Generations?
by Antonella Damiano, Giulia Caioni, Claudio D’Addario, Carmine Merola, Antonio Francioso and Michele Amorena
Stresses 2025, 5(3), 46; https://doi.org/10.3390/stresses5030046 (registering DOI) - 1 Aug 2025
Abstract
Among the numerous compounds released as a result of human activities, endocrine-disrupting chemicals (EDCs) have attracted particular attention due to their widespread detection in human biological samples and their accumulation across various ecosystems. While early research primarily focused on their effects on reproductive [...] Read more.
Among the numerous compounds released as a result of human activities, endocrine-disrupting chemicals (EDCs) have attracted particular attention due to their widespread detection in human biological samples and their accumulation across various ecosystems. While early research primarily focused on their effects on reproductive health, it is now evident that EDCs may impact neurodevelopment, altering the integrity of neural circuits essential for cognitive abilities, emotional regulation, and social behaviors. These compounds may elicit epigenetic modifications, such as DNA methylation and histone acetylation, that result in altered expression patterns, potentially affecting multiple generations and contribute to long-term behavioral phenotypes. The effects of EDCs may occur though both direct and indirect mechanisms, ultimately converging on neurodevelopmental vulnerability. In particular, the gut–brain axis has emerged as a critical interface targeted by EDCs. This bidirectional communication network integrates the nervous, immune, and endocrine systems. By altering the microbiota composition, modulating immune responses, and triggering epigenetic mechanisms, EDCs can act on multiple and interconnected pathways. In this context, elucidating the impact of EDCs on neurodevelopmental processes is crucial for advancing our understanding of their contribution to neurological and behavioral health risks. Full article
(This article belongs to the Collection Feature Papers in Human and Animal Stresses)
Show Figures

Figure 1

18 pages, 3114 KiB  
Article
Heavy Rainfall Induced by Typhoon Yagi-2024 at Hainan and Vietnam, and Dynamical Process
by Venkata Subrahmanyam Mantravadi, Chen Wang, Bryce Chen and Guiting Song
Atmosphere 2025, 16(8), 930; https://doi.org/10.3390/atmos16080930 (registering DOI) - 1 Aug 2025
Abstract
Typhoon Yagi (2024) was a rapidly moving storm that lasted for eight days and made landfall in three locations, producing heavy rainfall over Hainan and Vietnam. This study aims to investigate the dynamical processes contributing to the heavy rainfall, concentrating on enthalpy flux [...] Read more.
Typhoon Yagi (2024) was a rapidly moving storm that lasted for eight days and made landfall in three locations, producing heavy rainfall over Hainan and Vietnam. This study aims to investigate the dynamical processes contributing to the heavy rainfall, concentrating on enthalpy flux (EF) and moisture flux (MF). The results indicate that both EF and MF increased significantly during the typhoon’s intensification stage and were high at the time of landfall. Before landfalling at Hainan, latent heat flux (LHF) reached 600 W/m2, while sensible heat flux (SHF) was recorded as 80 W/m2. Landfall at Hainan resulted in a decrease in LHF and SHF. LHF and SHF subsequently increased to 700 W/m2 and 100 W/m2, respectively, as noted prior to the landfall in Vietnam. The increased LHF led to higher evaporation, which subsequently elevated moisture flux (MF) following the landfall in Vietnam, while the region’s topography further intensified the rainfall. The mean daily rainfall observed over Philippines is 75 mm on 2 September (landfall and passing through), 100 mm over Hainan (landfall and passing through) on 6 September, and 95 mm at over Vietnam on 7 September (landfall and after), respectively. Heavy rainfall was observed over the land while the typhoon was passing and during the landfall. This research reveals that Typhoon Yagi’s intensity was maintained by a well-organized and extensive circulation system, supported by favorable weather conditions, including high sea surface temperatures (SST) exceeding 30.5 °C, substantial low-level moisture convergence, and elevated EF during the landfall in Vietnam. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

Back to TopTop