Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (65)

Search Parameters:
Keywords = control heterosis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1057 KiB  
Article
Genetic Merit of Parents and Heterosis in Cassava (Manihot esculenta Crantz)
by Vanderlei da Silva Santos, Helcio Duarte Pereira, Juraci Souza Sampaio Filho and Luciano Rogério Braatz de Andrade
Horticulturae 2025, 11(7), 714; https://doi.org/10.3390/horticulturae11070714 - 20 Jun 2025
Viewed by 338
Abstract
Cassava breeders are led to discard plants before evaluating families, failing to obtain important information, such as the genetic merit of the parents. In this work, we evaluated a Clonal Evaluation Trial (CET) with 1886 clones from 57 crosses in an augmented block [...] Read more.
Cassava breeders are led to discard plants before evaluating families, failing to obtain important information, such as the genetic merit of the parents. In this work, we evaluated a Clonal Evaluation Trial (CET) with 1886 clones from 57 crosses in an augmented block design with the 15 parents used as check treatments. We applied a mixed-model framework incorporating pedigree information. Three traits (fresh root yield (FRY), dry matter content (DMC) and dry matter yield (DMY)) were evaluated, and genetic gains considering several selection intensities were investigated. Disregarding the family structure, the gains for FRY (19.96 to 30.80%) and DMY (16.63 to 27.56%) were much higher than the estimated for DMC (7.79 to 11.46%). The means of clones were very near to the mean of parents for all traits, suggesting the absence of heterosis. However, considering the data by family, heterosis varied from −4.38 to 7.53% for FRY, from −2.74 to 1.89% for DMC and from −4.36 to 6.89% for DMY. Heterosis for FRY is not negligible, although it is small. The analysis by family enables us to infer the genetic control of the traits under study. This is not possible when the family structure is disregarded. Full article
Show Figures

Graphical abstract

15 pages, 981 KiB  
Article
Correlation, Path-Coefficient, and Economic Heterosis Studies in CMS-Based Cabbage Hybrids over Different Environments
by Shipra Singh Parmar, Ramesh Kumar, Amit Vikram, Rajesh Kumar Dogra, Meenu Gupta, Abhishek Singh, Karen Ghazaryan, Rupesh Kumar Singh and João Ricardo Sousa
Horticulturae 2025, 11(6), 606; https://doi.org/10.3390/horticulturae11060606 - 29 May 2025
Viewed by 449
Abstract
Securing food for an expanding population in the face of climate change necessitates a transformation of global food systems towards sustainability, emphasizing nutritional quality and environmental consequences. This research assessed eight cytoplasmic male sterility-based cabbage hybrids and two controls across nine environments from [...] Read more.
Securing food for an expanding population in the face of climate change necessitates a transformation of global food systems towards sustainability, emphasizing nutritional quality and environmental consequences. This research assessed eight cytoplasmic male sterility-based cabbage hybrids and two controls across nine environments from 2020 to 2022 to improve cabbage output and sustainability. Essential characteristics, including head weight, compactness, and yield, were examined, revealing considerable heterogeneity and elevated heritability for features such as ascorbic acid content (98.41%) and net head weight (86.12%). Yield had a favorable correlation with characteristics such as net head weight and harvest index. Path coefficient research revealed that gross and net head weight have the most significant direct effects on yield. Heterosis research indicated UHF-CAB-HYB-1 had the highest significant positive heterosis in yield compared to the standard checks, Pusa Hybrid-81 and Pusa Cabbage-1, across all nine conditions. The results underscore the need to identify essential characteristics for the creation of high-yield, hardy cabbage hybrids, in accordance with sustainable agriculture and food security objectives. Full article
Show Figures

Figure 1

11 pages, 1072 KiB  
Article
Integrating Cytochrome P450-Mediated Herbicide Tolerance into Anthocyanin-Rich Maize Through Conventional Breeding
by Sergio Arias-Martínez, Luis Jesús Peña-Vázquez, Jose Manuel Oregel-Zamudio, José Andrés Barajas-Chávez, Ernesto Oregel-Zamudio and Jesús Rubén Torres-García
Agronomy 2025, 15(6), 1308; https://doi.org/10.3390/agronomy15061308 - 27 May 2025
Viewed by 486
Abstract
Meeting the rising demand for staple grains now requires cultivars that combine high yield, enhanced nutritional value, and strong chemical resilience. Blue-kernel landraces from central Mexico are rich in anthocyanins yet remain highly susceptible to post-emergence herbicides, whereas modern hybrids detoxify these compounds [...] Read more.
Meeting the rising demand for staple grains now requires cultivars that combine high yield, enhanced nutritional value, and strong chemical resilience. Blue-kernel landraces from central Mexico are rich in anthocyanins yet remain highly susceptible to post-emergence herbicides, whereas modern hybrids detoxify these compounds through cytochrome P450 (CYP450) enzymes. We crossed the anthocyanin-rich variety Polimaize with a CYP450-tolerant hybrid and evaluated the two parents and their F1 segregants (designated “White” and “Yellow”) under greenhouse applications of mesotrione (75 g a.i. ha−1), nicosulfuron (30 g a.i. ha−1), and their mixture. Across 160 plants, the hybrid retained 95% of control dry matter and showed ≤7% foliar injury under all treatments, whereas Polimaize lost 28% biomass and exhibited 36% injury after nicosulfuron. The Yellow class matched hybrid performance while maintaining a blue pericarp and a β-carotene-rich endosperm, demonstrating that nutritional and agronomic traits can be stacked. The White class displayed heterosis-driven compensatory growth, exceeding its untreated biomass by 60% with nicosulfuron and by 82% with the mixture despite transient bleaching. Chlorophyll and carotenoid fluorescence revealed rapid, zeaxanthin-linked photoprotection in all tolerant genotypes, consistent with accelerated CYP450-mediated detoxification. These findings show that broad-spectrum herbicide tolerance can be introgressed into pigment-rich germplasm through conventional breeding, providing a non-transgenic path to herbicide-ready, anthocyanin-rich maize. The strategy preserves local biodiversity while delivering cultivars suited to intensive, weed-competitive agriculture and offers a template for integrating metabolic resilience into other native crops. Full article
(This article belongs to the Special Issue Maize Germplasm Improvement and Innovation)
Show Figures

Figure 1

16 pages, 3469 KiB  
Article
Phenotypic Characters and Inheritance Tendency of Agronomic Traits in F1 Progeny of Pear
by Xiaojie Zhang, Mengyue Tang, Jiamei Li, Yue Chi, Kexin Wang, Jianying Peng and Yuxing Zhang
Plants 2025, 14(10), 1491; https://doi.org/10.3390/plants14101491 - 16 May 2025
Viewed by 478
Abstract
Studying fruit genetic trends, heterosis, and growth traits in pear hybrid progeny provides the foundation for variety breeding. The aim of this research is to reveal the trait performance of the hybrid progeny of Chinese white pear and Western pear and provide a [...] Read more.
Studying fruit genetic trends, heterosis, and growth traits in pear hybrid progeny provides the foundation for variety breeding. The aim of this research is to reveal the trait performance of the hybrid progeny of Chinese white pear and Western pear and provide a theoretical basis for other breeders to predict the trait performance of their hybrid progeny when selecting Eastern pear and Western pear as parents. Our research team constructed a ‘Yuluxiang’ × ‘Xianghongli’ interspecific hybrid population in 2015, and in 2023, we conducted a two-year investigation of 16 traits in 140 hybrid progeny, including 11 fruit traits and 5 growth traits, and analyzed and compared the genetic variation and heterosis of traits, as well as the correlation between various traits. The results showed that the hybrid progeny was widely segregated for single fruit weight (FW), soluble solid (SS) content, and titratable acid (TA) content and conformed to a normal distribution, with quantitative genetic traits under polygenic control. The highest two-year coefficients of variation for TA were 54.42% in 2023 and 39.17% in 2024. A genetic trend of decreasing FW was observed, which was greatly influenced by the male sex. The ratio of soft soluble flesh to crispy flesh was 1:1, and the gene controlling this trait may be a quality trait controlled by a single gene. The traits that showed transgressive heterosis for two years included fruit longitudinal diameter (FLoD), fruit shape index (FSI), and TA, and those that showed negative heterosis included FW, SS, leaf longitudinal diameter (LLoD), and leaf lateral diameter (LLaD). Correlation analysis indicated that the progeny of crosses in this combination, which had red fruit skin, may also present red early flowering color (EFC) and young leaf color (YLC), reddish brown annual branch color (ABC), and lower FSI, fruit stalk length (FSL), LLaD, and TA. Thus, at the seedling stage, individuals with red-colored fruit may be screened by observing the color of young leaves and young stems and the lateral diameter of the leaves. Principal component analysis showed that among the 16 traits included in six principal components, peel color (PC), FLoD, 2024SS, fruit tape (FT), and FSI were the main factors causing differences in fruit phenotypes. This study systematically elucidated the genetic trends of agronomic traits in pears and will provide a theoretical basis for the selection of parents and early selection of hybrid progeny in pear hybrid breeding. Full article
Show Figures

Figure 1

19 pages, 5581 KiB  
Article
Genetic Analysis and Fine Mapping of Spontaneously Mutated Male Sterility Gene in Chinese Cabbage (Brassica rapa L. ssp. pekinensis)
by Qian Xu, Xiaochun Wei, Yanyan Zhao, Jianqi Feng, Peiyun Wang, Cong Ding, Wenjing Zhang, Henan Su, Weiwei Chen, Fang Wei, Yuxiang Yuan and Xiaowei Zhang
Plants 2025, 14(5), 779; https://doi.org/10.3390/plants14050779 - 3 Mar 2025
Viewed by 713
Abstract
Chinese cabbage (Brassica rapa L. ssp. pekinensis), an important traditional vegetable indigenous to China, is a typical cross-pollinated Brassica crop exhibiting pronounced heterosis. However, its small flower organs make artificial pollination for hybrid seed production highly challenging. The use of male-sterile [...] Read more.
Chinese cabbage (Brassica rapa L. ssp. pekinensis), an important traditional vegetable indigenous to China, is a typical cross-pollinated Brassica crop exhibiting pronounced heterosis. However, its small flower organs make artificial pollination for hybrid seed production highly challenging. The use of male-sterile lines has emerged as a crucial approach in hybrid seed production. Therefore, understanding the genetic and molecular mechanisms underlying male sterility in Chinese cabbage holds profound theoretical and economic importance and is pivotal for advancing Chinese cabbage crossbreeding. Here, cytological comparative analysis of anthers from sterile line 366-2S and fertile line 366-2F revealed abnormalities in 366-2S during the late tetrad stage, including delayed tapetum degradation and the aggregation of tetrad microspores without separation, which prevented pollen production and caused male sterility. Construction of the F2 segregating population, with 366-2S as the female parent and genetically diverse fertile material Y636-9 as the male parent, indicated that male sterility in 366-2S is controlled by a single recessive gene. Using bulked segregant analysis sequencing and kompetitive allele-specific polymerase chain reaction (KASP) technology, the sterile gene was mapped to 65 kb between the PA11 and PA13 markers, with 11 genes in the candidate region. Functional annotation, expression, and sequence variation analyses identified BraA09g012710.3C, encoding acyl-CoA synthetase 5, as a candidate gene for 366-2S male sterility. Quantitative real-time polymerase chain reaction analysis revealed minimal expression of BraA09g012710.3C in 366-2S but high expression in the flower buds of 366-2F. Further analysis of candidate gene DNA sequences identified a large deletion encompassing BraA09g012710.3C, BraA09g012720.3C, BraA09g012730.3C, and BraA09g012740.3C in sterile line 366-2S (A09: 7452347–7479709). Cloning and verification of the other three deleted genes in the F2 population via agarose gel electrophoresis confirmed their presence in F2 sterile individuals, indicating that their deletion was not associated with male sterility, underscoring BraA09g012710.3C as the key gene driving male sterility in 366-2S. Full article
(This article belongs to the Special Issue Reproductive and Developmental Mechanisms of Vegetable Crops)
Show Figures

Figure 1

16 pages, 5790 KiB  
Article
Cytological Characterization of vrnp 1, a Pollen-Free Male Sterile Mutant in Mung Bean (Vigna radiata)
by Yuxin Cheng, Tianjiao Lan, Kunpeng Deng, Minghai Wang, Shuying Bao, Dan Han, Yapeng Xu, Han Wang, Ning Xu and Zhongxiao Guo
Agronomy 2025, 15(2), 312; https://doi.org/10.3390/agronomy15020312 - 26 Jan 2025
Viewed by 980
Abstract
Mung bean (Vigna radiata) plays a significant role in agricultural trade, food processing and utilization, and cropping structure adjustment due to its abundant nutritional components, medicine-food homology, capacity for nitrogen fixation, and soil improvement. The low yield level is a crucial [...] Read more.
Mung bean (Vigna radiata) plays a significant role in agricultural trade, food processing and utilization, and cropping structure adjustment due to its abundant nutritional components, medicine-food homology, capacity for nitrogen fixation, and soil improvement. The low yield level is a crucial limitation factor in the mung bean industry, while heterosis is an efficient path for increasing crop yields. The flexible utilization of male sterile mung bean materials may solve this pressing demand in the industry. This study identified a completely male-sterile mutant, vrnp 1, in the EMS-mutagenized mung bean cultivar Jilv 10 population, which is controlled by a single recessive nuclear gene. Furthermore, we employed a series of microscopical and histological techniques and observed that the tapetal cells in the vrnp 1 mutant did not perform as expected when reaching stage 8 of anther development, notably exhibiting a delay in entering PCD. This was accompanied by a failure to deposit cell wall components onto the pollen wall, culminating in a complete absence of mature pollen and the manifestation of male sterility. In conclusion, the vrnp 1 mutant could potentially serve as a promising candidate for male sterility in exploiting hybrid vigor in mung bean. Our research may elucidate how the delayed initiation of programmed cell death in tapetal cells contributes to a factor implicated in mung bean male sterility. Furthermore, the phenotypic data collected during pivotal developmental phases may have contributed to a better grasp of mung bean microspores and anther development. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

25 pages, 18859 KiB  
Article
DNA Methylation and Subgenome Dominance Reveal the Role of Lipid Metabolism in Jinhu Grouper Heterosis
by Yang Liu, Linna Wang, Zhentong Li, Linlin Li, Shuai Chen, Pengfei Duan, Xinyi Wang, Yishu Qiu, Xiaoyu Ding, Jinzhi Su, Yuan Deng and Yongsheng Tian
Int. J. Mol. Sci. 2024, 25(17), 9740; https://doi.org/10.3390/ijms25179740 - 9 Sep 2024
Cited by 1 | Viewed by 1347
Abstract
Heterosis of growth traits in economic fish has benefited the production of aquaculture for many years, yet its genetic and molecular basis has remained obscure. Nowadays, a new germplasm of hybrid Jinhu grouper (Epinephelus fuscoguttatus ♀ × E. tukula ♂), abbreviated as [...] Read more.
Heterosis of growth traits in economic fish has benefited the production of aquaculture for many years, yet its genetic and molecular basis has remained obscure. Nowadays, a new germplasm of hybrid Jinhu grouper (Epinephelus fuscoguttatus ♀ × E. tukula ♂), abbreviated as EFT, exhibiting paternal-biased growth heterosis, has provided an excellent model for investigating the potential regulatory mechanisms of heterosis. We integrated transcriptome and methylome to unravel the changes of gene expression, epigenetic modification, and subgenome dominance in EFT compared with maternal E. fuscoguttatus. Integration analyses showed that the heterotic hybrids showed lower genomic DNA methylation levels than the purebred parent, and the up-regulated genes were mostly DNA hypomethylation. Furthermore, allele-specific expression (ASE) detected paternal subgenome dominance-regulated paternal-biased heterosis, and paternal bias differentially expressed genes (DEGs) were wholly up-regulated in the muscle. Multi-omics results highlighted the role of lipid metabolism, particularly “Fatty acid synthesis”, “EPA biosynthesis”, and “Signaling lipids”, in EFT heterosis formation. Coherently, our studies have proved that the eicosapentaenoic acid (EPA) of EFT was greater than that of maternal E. fuscoguttatus (8.46% vs. 7.46%). Finally, we constructed a potential regulatory network for control of the heterosis formation in EFT. Among them, fasn, pparg, dgat1, igf1, pomca, fgf8a, and fgfr4 were identified as key genes. Our results provide new and valuable clues for understanding paternal-biased growth heterosis in EFT, taking a significant step towards the molecular basis of heterosis. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

14 pages, 2588 KiB  
Article
Genome-Wide Association Studies of Growth Trait Heterosis in Crossbred Meat Rabbits
by Zhanjun Xiao, Yuchao Li, Li Yang, Mingyan Cui, Zicheng Wang, Wenqiang Sun, Jie Wang, Shiyi Chen, Songjia Lai and Xianbo Jia
Animals 2024, 14(14), 2096; https://doi.org/10.3390/ani14142096 - 18 Jul 2024
Viewed by 1495
Abstract
The application of heterosis can not only effectively improve the disease resistance and meat quality of livestock, but also significantly enhance the reproduction and growth of livestock and poultry. We conducted genome-wide association studies using data from F2 crossbred meat rabbits to screen [...] Read more.
The application of heterosis can not only effectively improve the disease resistance and meat quality of livestock, but also significantly enhance the reproduction and growth of livestock and poultry. We conducted genome-wide association studies using data from F2 crossbred meat rabbits to screen out candidate genes with significant dominant effects associated with economic trait variation. High-throughput sequencing technology was used to obtain SNPs covering the whole genome to evaluate the homozygosity of the population genome, and analyze the number, length, frequency, and distribution of ROHs in the population. Candidate genes related to economic traits of meat rabbits were searched based on high-frequency ROH regions. After quality control filtering of genotype data, 380 F2 crossbred rabbits were identified with 78,579 SNPs and 42,018 ROHs on the autosomes. The fitting of the Logistic growth curve model showed that 49-day-old rabbits were a growth inflection point. Then, through genome-wide association studies, 10 SNP loci and seven growth trait candidate genes were found to be significantly related to body weight in meat rabbits at 84 days of age. In addition, we revealed the functional roles and locations of 20 candidate genes in the high-frequency ROH region associated with economic traits in meat rabbits. This study identified potential genes associated with growth and development in the high-frequency ROH region of meat rabbits. In this study, the identified candidate genes can be used as molecular markers for assisted selection in meat rabbits. At the same time, the inbreeding situation based on ROH assessment can provide reference for breeding and breeding preservation of meat rabbits. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

19 pages, 6962 KiB  
Article
Combining Ability and Hybrid Breeding in Tunisian Melon (Cucumis melo L.) for Fruit Traits
by Hela Chikh-Rouhou, Lydia Kienbaum, Amani H. A. M. Gharib, Oreto Fayos and Ana Garcés-Claver
Horticulturae 2024, 10(7), 724; https://doi.org/10.3390/horticulturae10070724 - 9 Jul 2024
Cited by 2 | Viewed by 1745
Abstract
A half-diallel cross study of seven melon inbred lines was carried out. The seven parents and their 21 F1 hybrids were evaluated for precocity of maturity, average weight per fruit, and fruit quality (fruit size, rind thickness, and soluble solids). The Diallel [...] Read more.
A half-diallel cross study of seven melon inbred lines was carried out. The seven parents and their 21 F1 hybrids were evaluated for precocity of maturity, average weight per fruit, and fruit quality (fruit size, rind thickness, and soluble solids). The Diallel analysis was investigated for breeding values of these melon genotypes via general and specific combining ability, relationships between general and specific combining ability, and heterosis for the evaluated traits. The analysis of variance of the traits evaluated indicated highly significant differences among genotypes, suggesting the presence of adequate genetic variation for breeding. Additive genetic effects were most important with respect to fruit weight, while genetic dominance and epistasis effects mainly controlled fruit quality traits (fruit size, rind thickness, and TSS). Parent 1 (P1) and parent 3 (P3) had significant positive general combining ability effects for fruit weight. Also, P3 had positive general combining ability effects for fruit length and diameter, and cavity diameter. P3 was found to show maximum significant GCA in the desirable direction for all the traits except for TSS. Evaluation of heterosis (%) revealed that hybrid P1 × P3 can be considered as the best-performing hybrid for average fruit weight, TSS, and precocity, which also exhibited the highest positive and significant SCA effect for these traits. These results suggested that, among the melon genotypes studied, there is the potential to generate superior new varieties in hybrid production. Full article
(This article belongs to the Special Issue Germplasm and Breeding Innovations in Cucurbitaceous Crops)
Show Figures

Figure 1

19 pages, 1785 KiB  
Article
Inheritance of Some Traits in Crosses between Hybrid Tea Roses and Old Garden Roses
by Tuğba Kılıç, Soner Kazaz, Ezgi Doğan Meral and Emine Kırbay
Plants 2024, 13(13), 1797; https://doi.org/10.3390/plants13131797 - 28 Jun 2024
Cited by 1 | Viewed by 2159
Abstract
The limited knowledge about the inheritance of traits in roses makes the efficient development of rose varieties challenging. In order to achieve breeding goals, the inheritance of traits needs to be explored. Additionally, for the inheritance of a trait like scent, which remains [...] Read more.
The limited knowledge about the inheritance of traits in roses makes the efficient development of rose varieties challenging. In order to achieve breeding goals, the inheritance of traits needs to be explored. Additionally, for the inheritance of a trait like scent, which remains a mystery, it is crucial to know the success of parental traits in transmitting them to the next generation. Understanding this allows for accurate parental selection, ensuring sustainability in meeting market demand and providing convenience to breeders. The aim of this study was to assess the success of cross-combinations between scented old garden roses and hybrid tea roses used in cut roses in transferring their existing traits, with the objective of achieving scented cut roses. The evaluated traits included recurrent blooming, flower stem length, flower diameter, petal number, scent, and bud length of both parents and progenies. The inheritance of these traits was evaluated through theoretical evaluations, including calculating heterosis and heterobeltiosis and determining narrow-sense heritability. The combinations and examined traits were assessed using a hierarchical clustering heat map. The results of this study indicated that flower stem length, flower diameter, petal number, and bud length traits had a moderate degree of narrow-sense heritability, suggesting the influence of non-additive genes on these traits. This study observed a low success rate in obtaining progenies with scent in cross combinations between cut roses and old garden roses, indicating the challenges in obtaining scented genotypes. The discrepancy between the observed phenotypic rates and the expected phenotypic and genotypic rates, according to Punnett squares, suggests that the examined traits could be controlled by polygenic genes. The progenies were observed to exhibit a greater resemblance to old garden roses than hybrid tea roses and did not meet the commercial quality standards for cut flowers. The significant negative heterosis observed in 65.12% (petal number) and 99.61% (flower diameter) of the progenies provides strong evidence of resemblance to old garden roses. Considering these findings, it is recommended to consider old garden roses as parents, taking into account their suitability for other breeding objectives. Full article
(This article belongs to the Special Issue Ornamental Plants and Urban Gardening II)
Show Figures

Figure 1

14 pages, 253 KiB  
Article
Combining Ability, Heritability, and Heterosis for Seed Weight and Oil Content Traits of Castor Bean (Ricinus communis L.)
by Mu Peng, Zhiyan Wang, Zhibiao He, Guorui Li, Jianjun Di, Rui Luo, Cheng Wang and Fenglan Huang
Agronomy 2024, 14(6), 1115; https://doi.org/10.3390/agronomy14061115 - 23 May 2024
Cited by 2 | Viewed by 2362
Abstract
Hybridization is an important evolutionary force, and heterosis describes the phenomenon where hybrids exhibit superior traits compared to their parents. This study aimed to evaluate the one-hundred-seed weight and fatty acid content in F1 generations, investigating the effects of different parental crosses [...] Read more.
Hybridization is an important evolutionary force, and heterosis describes the phenomenon where hybrids exhibit superior traits compared to their parents. This study aimed to evaluate the one-hundred-seed weight and fatty acid content in F1 generations, investigating the effects of different parental crosses using a 9 × 3 incomplete diallel design (NCII). One of the challenges faced in this study was the complexity of accurately determining the influence of both genetic and environmental factors on trait inheritance. A total of 36 F1 crosses were analyzed for general combining ability (GCA), specific combining ability (SCA), and heritability. The results showed that the level of each index in F1 is closely related to its parents. Significant differences in GCA and SCA were observed among parental traits in most crosses. The ratio of GCA to SCA ranged from 0 to 3, indicating the pivotal role of SCA over GCA in castor breeding efforts. High narrow-sense heritability was recorded in palmitic acid (30.98%), oleic acid (28.68%), and arachidonic acid (21.34%), suggesting that these traits are predominantly under the control of additive gene action, and hence these characters can be improved by selection. Additionally, heterosis exhibited diverse patterns across traits. Based on the evaluated combining ability, heritability, and heterosis, the inbred lines CSR181 and 20111149 were recommended for castor crossbreeding due to their potential to yield progeny with optimal oil-related traits. This research contributes valuable knowledge to the field of castor breeding, providing a foundation for developing superior castor cultivars. Full article
(This article belongs to the Special Issue Advances in Crop Molecular Breeding and Genetics)
16 pages, 2240 KiB  
Article
Diallel Analysis of Wheat Resistance to Fusarium Head Blight and Mycotoxin Accumulation under Conditions of Artificial Inoculation and Natural Infection
by Marko Maričević, Valentina Španić, Miroslav Bukan, Bruno Rajković and Hrvoje Šarčević
Plants 2024, 13(7), 1022; https://doi.org/10.3390/plants13071022 - 3 Apr 2024
Cited by 4 | Viewed by 1636
Abstract
Breeding resistant wheat cultivars to Fusarium head blight (FHB), caused by Fusarium spp., is the best method for controlling the disease. The aim of this study was to estimate general combining ability (GCA) and specific combining ability (SCA) for FHB resistance in a [...] Read more.
Breeding resistant wheat cultivars to Fusarium head blight (FHB), caused by Fusarium spp., is the best method for controlling the disease. The aim of this study was to estimate general combining ability (GCA) and specific combining ability (SCA) for FHB resistance in a set of eight genetically diverse winter wheat cultivars to identify potential donors of FHB resistance for crossing. FHB resistance of parents and F1 crosses produced by the half diallel scheme was evaluated under the conditions of artificial inoculation with F. graminearum and natural infection. Four FHB related traits were assessed: visual rating index (VRI), Fusarium damaged kernels (FDK), and deoxynivalenol and zearalenone content in the harvested grain samples. Significant GCA effects for FHB resistance were observed for the parental cultivars with high FHB resistance for all studied FHB resistance related traits. The significant SCA and mid-parent heterosis effects for FHB resistance were rare under both artificial inoculation and natural infection conditions and involved crosses between parents with low FHB resistance. A significant negative correlation between grain yield under natural conditions and VRI (r = −0.43) and FDK (r = −0.47) under conditions of artificial inoculation was observed in the set of the studied F1 crosses. Some crosses showed high yield and high FHB resistance, indicating that breeding of FHB resistant genotypes could be performed without yield penalty. These crosses involved resistant cultivars with significant GCA effects for FHB resistance indicating that that they could be used as good donors of FHB resistance. Full article
(This article belongs to the Section Crop Physiology and Crop Production)
Show Figures

Figure 1

25 pages, 5223 KiB  
Article
Assessment of Elongation of the Mesocotyl-Coleoptile and Biomass in Parents and Crosses of Corn Seedlings of the High Valleys of Mexico
by Antonio Villalobos González, Ignacio Benítez Riquelme, Fernando Castillo González, Ma. del Carmen Mendoza Castillo and Alejandro Espinosa Calderón
Seeds 2023, 2(4), 449-473; https://doi.org/10.3390/seeds2040034 - 22 Nov 2023
Cited by 2 | Viewed by 1892
Abstract
The elongation of the mesocotyl and the coleoptile and other seedling traits were analyzed from 16 hybrids of two seed sizes, five varieties and a control. Sowing was conducted in sand beds during the S-F 2020 cycle, where nine genotypes were identified that [...] Read more.
The elongation of the mesocotyl and the coleoptile and other seedling traits were analyzed from 16 hybrids of two seed sizes, five varieties and a control. Sowing was conducted in sand beds during the S-F 2020 cycle, where nine genotypes were identified that differed in the elongation of the mesocotyl: long (H-48, HS-2 and Promesa); medium (H-44-H-52 and H-70); and short (H-49 AE, H-40 and H-32). A total of 36 possible crosses were obtained between these nine parents, which were established in the S-S 2021 cycle, and on sand beds. Results show that seed size affected (p< 0.05) the speed and percentage of emergence, the elongation of mesocotyl–coleoptile, the biomass and the heterosis in parents and their crosses. The H-48 hybrid presented greater speed and percentage of emergence and elongation of the mesocotyl and the coleoptile with both seed sizes. The highest dry weight of mesocotyl, coleoptile, roots, and leaves was found in the hybrids Promesa and H-48. The crosses between parents with contrasting mesocotyl presented superior elongation and dry weight (p ≤ 0.05) compared to their parents, with the long × long (1 × 2, 1 × 3 and 2 × 3) crosses standing out for all the traits measured. A strong positive association was obtained (p ≤ 0.01) between the elongation of the mesocotyl–coleoptile, the percentage of emergence, and the production of total dry matter in parents and their crosses. Full article
Show Figures

Figure 1

17 pages, 1576 KiB  
Article
Manifestation of Triploid Heterosis in the Root System after Crossing Diploid and Autotetraploid Energy Willow Plants
by Dénes Dudits, András Cseri, Katalin Török, Radomira Vankova, Petre I. Dobrev, László Sass, Gábor Steinbach, Ildikó Kelemen-Valkony, Zoltán Zombori, Györgyi Ferenc and Ferhan Ayaydin
Genes 2023, 14(10), 1929; https://doi.org/10.3390/genes14101929 - 12 Oct 2023
Cited by 6 | Viewed by 1835
Abstract
Successful use of woody species in reducing climatic and environmental risks of energy shortage and spreading pollution requires deeper understanding of the physiological functions controlling biomass productivity and phytoremediation efficiency. Targets in the breeding of energy willow include the size and the functionality [...] Read more.
Successful use of woody species in reducing climatic and environmental risks of energy shortage and spreading pollution requires deeper understanding of the physiological functions controlling biomass productivity and phytoremediation efficiency. Targets in the breeding of energy willow include the size and the functionality of the root system. For the combination of polyploidy and heterosis, we have generated triploid hybrids (THs) of energy willow by crossing autotetraploid willow plants with leading cultivars (Tordis and Inger). These novel Salix genotypes (TH3/12, TH17/17, TH21/2) have provided a unique experimental material for characterization of Mid-Parent Heterosis (MPH) in various root traits. Using a root phenotyping platform, we detected heterosis (TH3/12: MPH 43.99%; TH21/2: MPH 26.93%) in the size of the root system in soil. Triploid heterosis was also recorded in the fresh root weights, but it was less pronounced (MPH%: 9.63–19.31). In agreement with root growth characteristics in soil, the TH3/12 hybrids showed considerable heterosis (MPH: 70.08%) under in vitro conditions. Confocal microscopy-based imaging and quantitative analysis of root parenchyma cells at the division–elongation transition zone showed increased average cell diameter as a sign of cellular heterosis in plants from TH17/17 and TH21/2 triploid lines. Analysis of the hormonal background revealed that the auxin level was seven times higher than the total cytokinin contents in root tips of parental Tordis plants. In triploid hybrids, the auxin–cytokinin ratios were considerably reduced in TH3/12 and TH17/17 roots. In particular, the contents of cytokinin precursor, such as isopentenyl adenosine monophosphate, were elevated in all three triploid hybrids. Heterosis was also recorded in the amounts of active gibberellin precursor, GA19, in roots of TH3/12 plants. The presented experimental findings highlight the physiological basics of triploid heterosis in energy willow roots. Full article
(This article belongs to the Special Issue Genetics and Breeding of Polyploid Plants)
Show Figures

Figure 1

15 pages, 4853 KiB  
Article
Flavonoid Biosynthesis Pathway May Indirectly Affect Outcrossing Rate of Cytoplasmic Male–Sterile Lines of Soybean
by Chunjing Lin, Yuetong Duan, Rong Li, Pengnian Wang, Yanyan Sun, Xiaoyang Ding, Jingyong Zhang, Hao Yan, Wei Zhang, Bao Peng, Limei Zhao and Chunbao Zhang
Plants 2023, 12(19), 3461; https://doi.org/10.3390/plants12193461 - 1 Oct 2023
Cited by 2 | Viewed by 2485
Abstract
(1) Background: Cytoplasmic male sterility (CMS) is important for exploiting heterosis. Soybean (Glycine max L.) has a low outcrossing rate that is detrimental for breeding sterile lines and producing hybrid seeds. Therefore, the molecular mechanism controlling the outcrossing rate should be elucidated [...] Read more.
(1) Background: Cytoplasmic male sterility (CMS) is important for exploiting heterosis. Soybean (Glycine max L.) has a low outcrossing rate that is detrimental for breeding sterile lines and producing hybrid seeds. Therefore, the molecular mechanism controlling the outcrossing rate should be elucidated to increase the outcrossing rate of soybean CMS lines; (2) Methods: The male–sterile soybean lines JLCMS313A (with a high outcrossing rate; HL) and JLCMS226A (with a low outcrossing rate; LL) were used for a combined analysis of the transcriptome (RNA–seq) and the targeted phenol metabolome; (3) Results: The comparison between HL and LL detected 5946 differentially expressed genes (DEGs) and 81 phenolic metabolites. The analysis of the DEGs and differentially abundant phenolic metabolites identified only one common KEGG pathway related to flavonoid biosynthesis. The qRT–PCR expression for eight DEGs was almost consistent with the transcriptome data. The comparison of the cloned coding sequence (CDS) regions of the SUS, FLS, UGT, and F3H genes between HL and LL revealed seven single nucleotide polymorphisms (SNPs) only in the F3H CDS. Moreover, five significant differentially abundant phenolic metabolites between HL and LL were associated with flavonoid metabolic pathways. Finally, on the basis of the SNPs in the F3H CDS, one derived cleaved amplified polymorphic sequence (dCAPS) marker was developed to distinguish between HL and LL soybean lines; (4) Conclusions: The flavonoid biosynthesis pathway may indirectly affect the outcrossing rate of CMS sterile lines in soybean. Full article
(This article belongs to the Special Issue Crop Breeding: Molecular Genetics and Genomics)
Show Figures

Figure 1

Back to TopTop