Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,194)

Search Parameters:
Keywords = control and management framework

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 534 KiB  
Review
Local AI Governance: Addressing Model Safety and Policy Challenges Posed by Decentralized AI
by Bahrad A. Sokhansanj
AI 2025, 6(7), 159; https://doi.org/10.3390/ai6070159 (registering DOI) - 17 Jul 2025
Abstract
Policies and technical safeguards for artificial intelligence (AI) governance have implicitly assumed that AI systems will continue to operate via massive power-hungry data centers operated by large companies like Google and OpenAI. However, the present cloud-based AI paradigm is being challenged by rapidly [...] Read more.
Policies and technical safeguards for artificial intelligence (AI) governance have implicitly assumed that AI systems will continue to operate via massive power-hungry data centers operated by large companies like Google and OpenAI. However, the present cloud-based AI paradigm is being challenged by rapidly advancing software and hardware technologies. Open-source AI models now run on personal computers and devices, invisible to regulators and stripped of safety constraints. The capabilities of local-scale AI models now lag just months behind those of state-of-the-art proprietary models. Wider adoption of local AI promises significant benefits, such as ensuring privacy and autonomy. However, adopting local AI also threatens to undermine the current approach to AI safety. In this paper, we review how technical safeguards fail when users control the code, and regulatory frameworks cannot address decentralized systems as deployment becomes invisible. We further propose ways to harness local AI’s democratizing potential while managing its risks, aimed at guiding responsible technical development and informing community-led policy: (1) adapting technical safeguards for local AI, including content provenance tracking, configurable safe computing environments, and distributed open-source oversight; and (2) shaping AI policy for a decentralized ecosystem, including polycentric governance mechanisms, integrating community participation, and tailored safe harbors for liability. Full article
(This article belongs to the Section AI Systems: Theory and Applications)
Show Figures

Figure 1

20 pages, 2707 KiB  
Article
Quantifying Multifactorial Drivers of Groundwater–Climate Interactions in an Arid Basin Based on Remote Sensing Data
by Zheng Lu, Chunying Shen, Cun Zhan, Honglei Tang, Chenhao Luo, Shasha Meng, Yongkai An, Heng Wang and Xiaokang Kou
Remote Sens. 2025, 17(14), 2472; https://doi.org/10.3390/rs17142472 - 16 Jul 2025
Abstract
Groundwater systems are intrinsically linked to climate, with changing conditions significantly altering recharge, storage, and discharge processes, thereby impacting water availability and ecosystem integrity. Critical knowledge gaps persist regarding groundwater equilibrium timescales, water table dynamics, and their governing factors. This study develops a [...] Read more.
Groundwater systems are intrinsically linked to climate, with changing conditions significantly altering recharge, storage, and discharge processes, thereby impacting water availability and ecosystem integrity. Critical knowledge gaps persist regarding groundwater equilibrium timescales, water table dynamics, and their governing factors. This study develops a novel remote sensing framework to quantify factor controls on groundwater–climate interaction characteristics in the Heihe River Basin (HRB). High-resolution (0.005° × 0.005°) maps of groundwater response time (GRT) and water table ratio (WTR) were generated using multi-source geospatial data. Employing Geographical Convergent Cross Mapping (GCCM), we established causal relationships between GRT/WTR and their drivers, identifying key influences on groundwater dynamics. Generalized Additive Models (GAM) further quantified the relative contributions of climatic (precipitation, temperature), topographic (DEM, TWI), geologic (hydraulic conductivity, porosity, vadose zone thickness), and vegetative (NDVI, root depth, soil water) factors to GRT/WTR variability. Results indicate an average GRT of ~6.5 × 108 years, with 7.36% of HRB exhibiting sub-century response times and 85.23% exceeding 1000 years. Recharge control dominates shrublands, wetlands, and croplands (WTR < 1), while topography control prevails in forests and barelands (WTR > 1). Key factors collectively explain 86.7% (GRT) and 75.9% (WTR) of observed variance, with spatial GRT variability driven primarily by hydraulic conductivity (34.3%), vadose zone thickness (13.5%), and precipitation (10.8%), while WTR variation is controlled by vadose zone thickness (19.2%), topographic wetness index (16.0%), and temperature (9.6%). These findings provide a scientifically rigorous basis for prioritizing groundwater conservation zones and designing climate-resilient water management policies in arid endorheic basins, with our high-resolution causal attribution framework offering transferable methodologies for global groundwater vulnerability assessments. Full article
(This article belongs to the Special Issue Remote Sensing for Groundwater Hydrology)
Show Figures

Figure 1

30 pages, 368 KiB  
Article
Mining Work Health, Safety Laws and Serious Industrial Crimes in Australia: Down the Shaft of Jurisdictional Inconsistency
by Trajce Cvetkovski and Neville Weston
Laws 2025, 14(4), 49; https://doi.org/10.3390/laws14040049 - 16 Jul 2025
Abstract
This article examines the level of inconsistency in work, health and safety (WHS) laws across Australia’s mining sector. Despite general efforts towards national harmonisation through model WHS legislation, significant inconsistencies persist because individual states and territories retain primary regulatory control. A critical analysis [...] Read more.
This article examines the level of inconsistency in work, health and safety (WHS) laws across Australia’s mining sector. Despite general efforts towards national harmonisation through model WHS legislation, significant inconsistencies persist because individual states and territories retain primary regulatory control. A critical analysis of each jurisdiction’s legislative framework reveals a fragmented legal landscape. Queensland, especially, exhibits notable divergence. Key findings highlight a considerable variation in legislative approaches to risk management principles and specific obligations. In particular, a disjointed and incremental approach to serious offences such as industrial manslaughter and provisions concerning imputed conduct are evident. These inconsistencies suggest that corporations operating in multiple Australian mining regions must develop a nuanced understanding of the varying WHS requirements in each jurisdiction. This study underscores the need for caution when assessing risk management strategies aimed at preventing serious incidents because the presumption of a harmonised system can be misleading, especially concerning mining-specific legislation. Full article
14 pages, 2100 KiB  
Article
Response of Han River Estuary Discharge to Hydrological Process Changes in the Tributary–Mainstem Confluence Zone
by Shuo Ouyang, Changjiang Xu, Weifeng Xu, Junhong Zhang, Weiya Huang, Cuiping Yang and Yao Yue
Sustainability 2025, 17(14), 6507; https://doi.org/10.3390/su17146507 - 16 Jul 2025
Abstract
This study investigates the dynamic response mechanisms of discharge capacity in the Han River Estuary to hydrological process changes at the Yangtze–Han River confluence. By constructing a one-dimensional hydrodynamic model for the 265 km Xinglong–Hankou reach, we quantitatively decouple the synergistic effects of [...] Read more.
This study investigates the dynamic response mechanisms of discharge capacity in the Han River Estuary to hydrological process changes at the Yangtze–Han River confluence. By constructing a one-dimensional hydrodynamic model for the 265 km Xinglong–Hankou reach, we quantitatively decouple the synergistic effects of riverbed scouring (mean annual incision rate: 0.12 m) and Three Gorges Dam (TGD) operation through four orthogonal scenarios. Key findings reveal: (1) Riverbed incision dominates discharge variation (annual mean contribution >84%), enhancing flood conveyance efficiency with a peak flow increase of 21.3 m3/s during July–September; (2) TGD regulation exhibits spatiotemporal intermittency, contributing 25–36% during impoundment periods (September–October) by reducing Yangtze backwater effects; (3) Nonlinear interactions between drivers reconfigure flow paths—antagonism occurs at low confluence ratios (R < 0.15, e.g., Cd increases to 45 under TGD but decreases to 8 under incision), while synergy at high ratios (R > 0.25) reduces Hanchuan Station flow by 13.84 m3/s; (4) The 180–265 km confluence-proximal zone is identified as a sensitive area, where coupled drivers amplify water surface gradients to −1.41 × 10−3 m/km (2.3× upstream) and velocity increments to 0.0027 m/s. The proposed “Natural/Anthropogenic Dual-Stressor Framework” elucidates estuary discharge mechanisms under intensive human interference, providing critical insights for flood control and trans-basin water resource management in tide-free estuaries globally. Full article
(This article belongs to the Special Issue Sediment Movement, Sustainable Water Conservancy and Water Transport)
Show Figures

Figure 1

18 pages, 3899 KiB  
Article
Multi-Agent-Based Estimation and Control of Energy Consumption in Residential Buildings
by Otilia Elena Dragomir and Florin Dragomir
Processes 2025, 13(7), 2261; https://doi.org/10.3390/pr13072261 - 15 Jul 2025
Viewed by 55
Abstract
Despite notable advancements in smart home technologies, residential energy management continues to face critical challenges. These include the complex integration of intermittent renewable energy sources, issues related to data latency, interoperability, and standardization across diverse systems, the inflexibility of centralized control architectures in [...] Read more.
Despite notable advancements in smart home technologies, residential energy management continues to face critical challenges. These include the complex integration of intermittent renewable energy sources, issues related to data latency, interoperability, and standardization across diverse systems, the inflexibility of centralized control architectures in dynamic environments, and the difficulty of accurately modeling and influencing occupant behavior. To address these challenges, this study proposes an intelligent multi-agent system designed to accurately estimate and control energy consumption in residential buildings, with the overarching objective of optimizing energy usage while maintaining occupant comfort and satisfaction. The methodological approach employed is a hybrid framework, integrating multi-agent system architecture with system dynamics modeling and agent-based modeling. This integration enables decentralized and intelligent control while simultaneously simulating physical processes such as heat exchange, insulation performance, and energy consumption, alongside behavioral interactions and real-time adaptive responses. The system is tested under varying conditions, including changes in building insulation quality and external temperature profiles, to assess its capability for accurate control and estimation of energy use. The proposed tool offers significant added value by supporting real-time responsiveness, behavioral adaptability, and decentralized coordination. It serves as a risk-free simulation platform to test energy-saving strategies, evaluate cost-effective insulation configurations, and fine-tune thermostat settings without incurring additional cost or real-world disruption. The high fidelity and predictive accuracy of the system have important implications for policymakers, building designers, and homeowners, offering a practical foundation for informed decision making and the promotion of sustainable residential energy practices. Full article
(This article belongs to the Special Issue Sustainable Development of Energy and Environment in Buildings)
Show Figures

Figure 1

26 pages, 7975 KiB  
Article
Soil Moisture Prediction Using the VIC Model Coupled with LSTMseq2seq
by Xiuping Zhang, Xiufeng He, Rencai Lin, Xiaohua Xu, Yanping Shi and Zhenning Hu
Remote Sens. 2025, 17(14), 2453; https://doi.org/10.3390/rs17142453 - 15 Jul 2025
Viewed by 124
Abstract
Soil moisture (SM) is a key variable in agricultural ecosystems and is crucial for drought prevention and control management. However, SM is influenced by underlying surface and meteorological conditions, and it changes rapidly in time and space. To capture the changes in SM [...] Read more.
Soil moisture (SM) is a key variable in agricultural ecosystems and is crucial for drought prevention and control management. However, SM is influenced by underlying surface and meteorological conditions, and it changes rapidly in time and space. To capture the changes in SM and improve the accuracy of short-term and medium-to-long-term predictions on a daily scale, an LSTMseq2seq model driven by both observational data and mechanism models was constructed. This framework combines historical meteorological elements and SM, as well as the SM change characteristics output by the VIC model, to predict SM over a 90-day period. The model was validated using SMAP SM. The proposed model can accurately predict the spatiotemporal variations in SM in Jiangxi Province. Compared with classical machine learning (ML) models, traditional LSTM models, and advanced transformer models, the LSTMseq2seq model achieved R2 values of 0.949, 0.9322, 0.8839, 0.8042, and 0.7451 for the prediction of surface SM over 3 days, 7 days, 30 days, 60 days, and 90 days, respectively. The mean absolute error (MAE) ranged from 0.0118 m3/m3 to 0.0285 m3/m3. This study also analyzed the contributions of meteorological features and simulated future SM state changes to SM prediction from two perspectives: time importance and feature importance. The results indicated that meteorological and SM changes within a certain time range prior to the prediction have an impact on SM prediction. The dual-driven LSTMseq2seq model has unique advantages in predicting SM and is conducive to the integration of physical mechanism models with data-driven models for handling input features of different lengths, providing support for daily-scale SM time series prediction and drought dynamics prediction. Full article
Show Figures

Figure 1

35 pages, 6467 KiB  
Article
Predictive Sinusoidal Modeling of Sedimentation Patterns in Irrigation Channels via Image Analysis
by Holger Manuel Benavides-Muñoz
Water 2025, 17(14), 2109; https://doi.org/10.3390/w17142109 - 15 Jul 2025
Viewed by 46
Abstract
Sediment accumulation in irrigation channels poses a significant challenge to water resource management, impacting hydraulic efficiency and agricultural sustainability. This study introduces an innovative multidisciplinary framework that integrates advanced image analysis (FIJI/ImageJ 1.54p), statistical validation (RStudio), and vector field modeling with a novel [...] Read more.
Sediment accumulation in irrigation channels poses a significant challenge to water resource management, impacting hydraulic efficiency and agricultural sustainability. This study introduces an innovative multidisciplinary framework that integrates advanced image analysis (FIJI/ImageJ 1.54p), statistical validation (RStudio), and vector field modeling with a novel Sinusoidal Morphodynamic Bedload Transport Equation (SMBTE) to predict sediment deposition patterns with high precision. Conducted along the Malacatos River in La Tebaida Linear Park, Loja, Ecuador, the research captured a natural sediment transport event under controlled flow conditions, transitioning from pressurized pipe flow to free-surface flow. Observed sediment deposition reduced the hydraulic cross-section by approximately 5 cm, notably altering flow dynamics and water distribution. The final SMBTE model (Model 8) demonstrated exceptional predictive accuracy, achieving RMSE: 0.0108, R2: 0.8689, NSE: 0.8689, MAE: 0.0093, and a correlation coefficient exceeding 0.93. Complementary analyses, including heatmaps, histograms, and vector fields, revealed spatial heterogeneity, local gradients, and oscillatory trends in sediment distribution. These tools identified high-concentration sediment zones and quantified variability, providing actionable insights for optimizing canal design, maintenance schedules, and sediment control strategies. By leveraging open-source software and real-world validation, this methodology offers a scalable, replicable framework applicable to diverse water conveyance systems. The study advances understanding of sediment dynamics under subcritical (Fr ≈ 0.07) and turbulent flow conditions (Re ≈ 41,000), contributing to improved irrigation efficiency, system resilience, and sustainable water management. This research establishes a robust foundation for future advancements in sediment transport modeling and hydrological engineering, addressing critical challenges in agricultural water systems. Full article
(This article belongs to the Section Water Erosion and Sediment Transport)
Show Figures

Figure 1

24 pages, 1605 KiB  
Article
Quantum-Secure Coherent Optical Networking for Advanced Infrastructures in Industry 4.0
by Ofir Joseph and Itzhak Aviv
Information 2025, 16(7), 609; https://doi.org/10.3390/info16070609 - 15 Jul 2025
Viewed by 129
Abstract
Modern industrial ecosystems, particularly those embracing Industry 4.0, increasingly depend on coherent optical networks operating at 400 Gbps and beyond. These high-capacity infrastructures, coupled with advanced digital signal processing and phase-sensitive detection, enable real-time data exchange for automated manufacturing, robotics, and interconnected factory [...] Read more.
Modern industrial ecosystems, particularly those embracing Industry 4.0, increasingly depend on coherent optical networks operating at 400 Gbps and beyond. These high-capacity infrastructures, coupled with advanced digital signal processing and phase-sensitive detection, enable real-time data exchange for automated manufacturing, robotics, and interconnected factory systems. However, they introduce multilayer security challenges—ranging from hardware synchronization gaps to protocol overhead manipulation. Moreover, the rise of large-scale quantum computing intensifies these threats by potentially breaking classical key exchange protocols and enabling the future decryption of stored ciphertext. In this paper, we present a systematic vulnerability analysis of coherent optical networks that use OTU4 framing, Media Access Control Security (MACsec), and 400G ZR+ transceivers. Guided by established risk assessment methodologies, we uncover critical weaknesses affecting management plane interfaces (e.g., MDIO and I2C) and overhead fields (e.g., Trail Trace Identifier, Bit Interleaved Parity). To mitigate these risks while preserving the robust data throughput and low-latency demands of industrial automation, we propose a post-quantum security framework that merges spectral phase masking with multi-homodyne coherent detection, strengthened by quantum key distribution for key management. This layered approach maintains backward compatibility with existing infrastructure and ensures forward secrecy against quantum-enabled adversaries. The evaluation results show a substantial reduction in exposure to timing-based exploits, overhead field abuses, and cryptographic compromise. By integrating quantum-safe measures at the optical layer, our solution provides a future-proof roadmap for network operators, hardware vendors, and Industry 4.0 stakeholders tasked with safeguarding next-generation manufacturing and engineering processes. Full article
Show Figures

Figure 1

24 pages, 1795 KiB  
Article
An Empirically Validated Framework for Automated and Personalized Residential Energy-Management Integrating Large Language Models and the Internet of Energy
by Vinícius Pereira Gonçalves, Andre Luiz Marques Serrano, Gabriel Arquelau Pimenta Rodrigues, Matheus Noschang de Oliveira, Rodolfo Ipolito Meneguette, Guilherme Dantas Bispo, Maria Gabriela Mendonça Peixoto and Geraldo Pereira Rocha Filho
Energies 2025, 18(14), 3744; https://doi.org/10.3390/en18143744 - 15 Jul 2025
Viewed by 138
Abstract
The growing global demand for energy has resulted in a demand for innovative strategies for residential energy management. This study explores a novel framework—MELISSA (Modern Energy LLM-IoE Smart Solution for Automation)—that integrates Internet of Things (IoT) sensor networks with Large Language Models (LLMs) [...] Read more.
The growing global demand for energy has resulted in a demand for innovative strategies for residential energy management. This study explores a novel framework—MELISSA (Modern Energy LLM-IoE Smart Solution for Automation)—that integrates Internet of Things (IoT) sensor networks with Large Language Models (LLMs) to optimize household energy consumption through intelligent automation and personalized interactions. The system combines real-time monitoring, machine learning algorithms for behavioral analysis, and natural language processing to deliver personalized, actionable recommendations through a conversational interface. A 12-month randomized controlled trial was conducted with 100 households, which were stratified across four socioeconomic quintiles in metropolitan areas. The experimental design included the continuous collection of IoT data. Baseline energy consumption was measured and compared with post-intervention usage to assess system impact. Statistical analyses included k-means clustering, multiple linear regression, and paired t-tests. The system achieved its intended goal, with a statistically significant reduction of 5.66% in energy consumption (95% CI: 5.21–6.11%, p<0.001) relative to baseline, alongside high user satisfaction (mean = 7.81, SD = 1.24). Clustering analysis (k=4, silhouette = 0.68) revealed four distinct energy-consumption profiles. Multiple regression analysis (R2=0.68, p<0.001) identified household size, ambient temperature, and frequency of user engagement as the principal determinants of consumption. This research advances the theoretical understanding of human–AI interaction in energy management and provides robust empirical evidence of the effectiveness of LLM-mediated behavioral interventions. The findings underscore the potential of conversational AI applications in smart homes and have practical implications for optimization of residential energy use. Full article
Show Figures

Figure 1

31 pages, 2741 KiB  
Article
Power Flow Simulation and Thermal Performance Analysis of Electric Vehicles Under Standard Driving Cycles
by Jafar Masri, Mohammad Ismail and Abdulrahman Obaid
Energies 2025, 18(14), 3737; https://doi.org/10.3390/en18143737 - 15 Jul 2025
Viewed by 159
Abstract
This paper presents a simulation framework for evaluating power flow, energy efficiency, thermal behavior, and energy consumption in electric vehicles (EVs) under standardized driving conditions. A detailed Simulink model is developed, integrating a lithium-ion battery, inverter, permanent magnet synchronous motor (PMSM), gearbox, and [...] Read more.
This paper presents a simulation framework for evaluating power flow, energy efficiency, thermal behavior, and energy consumption in electric vehicles (EVs) under standardized driving conditions. A detailed Simulink model is developed, integrating a lithium-ion battery, inverter, permanent magnet synchronous motor (PMSM), gearbox, and a field-oriented control strategy with PI-based speed and current regulation. The framework is applied to four standard driving cycles—UDDS, HWFET, WLTP, and NEDC—to assess system performance under varied load conditions. The UDDS cycle imposes the highest thermal loads, with temperature rises of 76.5 °C (motor) and 52.0 °C (inverter). The HWFET cycle yields the highest energy efficiency, with PMSM efficiency reaching 92% and minimal SOC depletion (15%) due to its steady-speed profile. The WLTP cycle shows wide power fluctuations (−30–19.3 kW), and a motor temperature rise of 73.6 °C. The NEDC results indicate a thermal increase of 75.1 °C. Model results show good agreement with published benchmarks, with deviations generally below 5%, validating the framework’s accuracy. These findings underscore the importance of cycle-sensitive analysis in optimizing energy use and thermal management in EV powertrain design. Full article
Show Figures

Figure 1

23 pages, 3101 KiB  
Article
Restructuring the Coupling Coordination Mechanism of the Economy–Energy–Environment (3E) System Under the Dual Carbon Emissions Control Policy—An Exploration Based on the “Triangular Trinity” Theoretical Framework
by Yuan Xu, Wenxiu Wang, Xuwen Yan, Guotian Cai, Liping Chen, Haifeng Cen and Zihan Lin
Energies 2025, 18(14), 3735; https://doi.org/10.3390/en18143735 - 15 Jul 2025
Viewed by 76
Abstract
Against the backdrop of the profound restructuring in global climate governance, China’s energy management system is undergoing a comprehensive transition from dual energy consumption control to dual carbon emissions control. This policy shift fundamentally alters the underlying logic of energy-focused regulation and inevitably [...] Read more.
Against the backdrop of the profound restructuring in global climate governance, China’s energy management system is undergoing a comprehensive transition from dual energy consumption control to dual carbon emissions control. This policy shift fundamentally alters the underlying logic of energy-focused regulation and inevitably impacts the economy–energy–environment (3E) system. This study innovatively constructs a “Triangular Trinity” theoretical framework integrating internal, intermediate, and external triangular couplings, as well as providing a granular analysis of their transmission relationships and feedback mechanisms. Using Guangdong Province as a case study, this study takes the dual control emissions policy within the external triangle as an entry point to research the restructuring logic of dual carbon emissions control for the coupling coordination mechanisms of the 3E system. The key findings are as follows: (1) Policy efficacy evolution: During 2005–2016, dual energy consumption control significantly improved energy conservation and emissions reduction, elevating Guangdong’s 3E coupling coordination. Post 2017, however, its singular focus on total energy consumption revealed limitations, causing a decline in 3E coordination. Dual carbon emissions control demonstrably enhances 3E systemic synergy. (2) Decoupling dynamics: Dual carbon emissions control accelerates economic–carbon emission decoupling, while slowing economic–energy consumption decoupling. This created an elasticity space of 5.092 million tons of standard coal equivalent (sce) and reduced carbon emissions by 26.43 million tons, enabling high-quality economic development. (3) Mechanism reconstruction: By leveraging external triangular elements (energy-saving technologies and market mechanisms) to act on the energy subsystem, dual carbon emissions control leads to optimal solutions to the “Energy Trilemma”. This drives the systematic restructuring of the sustainability triangle, achieving high-order 3E coupling coordination. The Triangular Trinity framework constructed by us in the paper is an innovative attempt in relation to the theory of energy transition, providing a referenceable methodology for resolving the contradictions of the 3E system. The research results can provide theoretical support and practical reference for the low-carbon energy transition of provinces and cities with similar energy structures. Full article
Show Figures

Figure 1

26 pages, 891 KiB  
Article
Modeling the Interactions Between Smart Urban Logistics and Urban Access Management: A System Dynamics Perspective
by Gaetana Rubino, Domenico Gattuso and Manfred Gronalt
Appl. Sci. 2025, 15(14), 7882; https://doi.org/10.3390/app15147882 - 15 Jul 2025
Viewed by 94
Abstract
In response to the challenges of urbanization, digitalization, and the e-commerce surge intensified by the COVID-19 pandemic, Smart Urban Logistics (SUL) has become a key framework for addressing last-mile delivery issues, congestion, and environmental impacts. This study introduces a System Dynamics (SD)-based approach [...] Read more.
In response to the challenges of urbanization, digitalization, and the e-commerce surge intensified by the COVID-19 pandemic, Smart Urban Logistics (SUL) has become a key framework for addressing last-mile delivery issues, congestion, and environmental impacts. This study introduces a System Dynamics (SD)-based approach to investigate how urban logistics and access management policies may interact. At the center, there is a Causal Loop Diagram (CLD) that illustrates dynamic interdependencies among fleet composition, access regulations, logistics productivity, and environmental externalities. The CLD is a conceptual basis for future stock-and-flow simulations to support data-driven decision-making. The approach highlights the importance of route optimization, dynamic access control, and smart parking management systems as strategic tools, increasingly enabled by Industry 4.0 technologies, such as IoT, big data analytics, AI, and cyber-physical systems, which support real-time monitoring and adaptive planning. In alignment with the Industry 5.0 paradigm, this technological integration is paired with social and environmental sustainability goals. The study also emphasizes public–private collaboration in designing access policies and promoting alternative fuel vehicle adoption, supported by specific incentives. These coordinated efforts contribute to achieving the objectives of the 2030 Agenda, fostering a cleaner, more efficient, and inclusive urban logistics ecosystem. Full article
Show Figures

Figure 1

27 pages, 3720 KiB  
Article
Thermal Management in Multi-Stage Hot Forging: Computational Advances in Contact and Spray-Cooling Modelling
by Gonzalo Veiga-Piñeiro, Elena Martin-Ortega and Salvador Pérez-Betanzos
Materials 2025, 18(14), 3318; https://doi.org/10.3390/ma18143318 - 15 Jul 2025
Viewed by 235
Abstract
Innovative approaches in hot forging, such as the use of floating dies, which aim to minimise burr formation by controlling material flow, require precise management of die geometry distortions. These distortions, primarily caused by thermal gradients, must be tightly controlled to prevent malfunctions [...] Read more.
Innovative approaches in hot forging, such as the use of floating dies, which aim to minimise burr formation by controlling material flow, require precise management of die geometry distortions. These distortions, primarily caused by thermal gradients, must be tightly controlled to prevent malfunctions during production. This study introduces a comprehensive thermal analysis framework that captures the complete forging cycle—from billet transfer and die closure to forging, spray-cooling, and lubrication. Two advanced heat transfer models were developed: a pressure- and lubrication-dependent contact heat transfer model and a spray-cooling model that simulates fluid dispersion over die surfaces. These models were implemented within the finite element software FORGE-NxT to evaluate the thermal behaviour of dies under realistic operating conditions. These two new models, contact and spray-cooling, implemented within a full-cycle thermal simulation and validated with industrial thermal imaging data, represent a novel contribution. The simulation results showed an average temperature deviation of just 5.8%, demonstrating the predictive reliability of this approach. This validated framework enables accurate estimation of thermal fields in the dies, and offers a practical tool for optimising process parameters, reducing burr formation, and extending die life. Moreover, its structure and methodology can be adapted to various hot forging applications where thermal control is critical to ensuring part quality and process efficiency. Full article
(This article belongs to the Special Issue Advanced Computational Methods in Manufacturing Processes)
Show Figures

Figure 1

34 pages, 910 KiB  
Article
The Integration of Sustainable Standards in Production Planning and Control: A GRI-Based Framework Proposal
by Valentina De Simone, Paola Farina, Valeria Fasulo and Valentina Di Pasquale
Sustainability 2025, 17(14), 6446; https://doi.org/10.3390/su17146446 - 14 Jul 2025
Viewed by 225
Abstract
Sustainable manufacturing is gaining attention in the scientific literature. However, it remains unclear how to effectively incorporate it within Production Planning and Control (PPC) tasks. All the choices taken in terms of PPC impact sustainability, and sustainability managers and planners or managers involved [...] Read more.
Sustainable manufacturing is gaining attention in the scientific literature. However, it remains unclear how to effectively incorporate it within Production Planning and Control (PPC) tasks. All the choices taken in terms of PPC impact sustainability, and sustainability managers and planners or managers involved in tasks, such as scheduling or inventory management, are not conscious of what this means or implies, above all, in terms of the sustainable performance indicators on which their actions can act. While several studies have addressed both PPC and sustainability, there is still limited guidance or structured frameworks specifically aimed at systematically linking PPC tasks with sustainability indicators in a practical and operational industrial context, despite the development of numerous sustainability standards in recent years. For this reason, this research aimed to develop a first detailed framework, specifically based on the Global Reporting Initiative (GRI) standard, that associates the most relevant indicators with the PPC phases, highlighting the type of impact (direct or indirect) of each phase on them. This could help with strategic decisions and promote more informed choices. The overall framework revealed the prevalence of environmental aspects involved in PPC phases (as expected) and a challenge related to the measurability of indicators (above all, the social ones). Furthermore, the Material Requirements Planning (MRP), identified as the most significant phase in terms of its impact on sustainability, was deeply analyzed, providing details related to the decision-making processes of this phase that affect sustainable performance. Full article
Show Figures

Figure 1

25 pages, 693 KiB  
Article
Distributed Interference-Aware Power Optimization for Multi-Task Over-the-Air Federated Learning
by Chao Tang, Dashun He and Jianping Yao
Telecom 2025, 6(3), 51; https://doi.org/10.3390/telecom6030051 - 14 Jul 2025
Viewed by 68
Abstract
Over-the-air federated learning (Air-FL) has emerged as a promising paradigm that integrates communication and learning, which offers significant potential to enhance model training efficiency and optimize communication resource utilization. This paper addresses the challenge of interference management in multi-cell Air-FL systems, focusing on [...] Read more.
Over-the-air federated learning (Air-FL) has emerged as a promising paradigm that integrates communication and learning, which offers significant potential to enhance model training efficiency and optimize communication resource utilization. This paper addresses the challenge of interference management in multi-cell Air-FL systems, focusing on parallel multi-task scenarios where each cell independently executes distinct training tasks. We begin by analyzing the impact of aggregation errors on local model performance within each cell, aiming to minimize the cumulative optimality gap across all cells. To this end, we formulate an optimization framework that jointly optimizes device transmit power and denoising factors. Leveraging the Pareto boundary theory, we design a centralized optimization scheme that characterizes the trade-offs in system performance. Building upon this, we propose a distributed power control optimization scheme based on interference temperature (IT). This approach decomposes the globally coupled problem into locally solvable subproblems, thereby enabling each cell to adjust its transmit power independently using only local channel state information (CSI). To tackle the non-convexity inherent in these subproblems, we first transform them into convex problems and then develop an analytical solution framework grounded in Lagrangian duality theory. Coupled with a dynamic IT update mechanism, our method iteratively approximates the Pareto optimal boundary. The simulation results demonstrate that the proposed scheme outperforms baseline methods in terms of training convergence speed, cross-cell performance balance, and test accuracy. Moreover, it achieves stable convergence within a limited number of iterations, which validates its practicality and effectiveness in multi-task edge intelligence systems. Full article
Show Figures

Figure 1

Back to TopTop