Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (375)

Search Parameters:
Keywords = contract–relax

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 475 KiB  
Article
Pelvic Floor Health and Urinary Incontinence in Female Soccer Players: A Comparative Analysis Between Professionals and Physically Active Women: A Cross-Sectional Descriptive Protocol
by Julia M. Sebastian-Rico, María Jesús Muñoz-Fernández, Luis Manuel Martínez-Aranda, África Calvo-Lluch and Manuel Ortega-Becerra
Diagnostics 2025, 15(15), 1881; https://doi.org/10.3390/diagnostics15151881 - 26 Jul 2025
Viewed by 281
Abstract
Background/Objectives: Urinary incontinence (UI), defined as the involuntary loss of urine, is common among female athletes. As more women engage in competitive sports, numerous studies have explored UI in young, nulliparous, and physically active women. The objectives of this study were (i) to [...] Read more.
Background/Objectives: Urinary incontinence (UI), defined as the involuntary loss of urine, is common among female athletes. As more women engage in competitive sports, numerous studies have explored UI in young, nulliparous, and physically active women. The objectives of this study were (i) to analyze the prevalence, severity, and characteristics of UI in professional nulliparous female soccer players and (ii) to compare the status of the pelvic floor muscles (PFMs) between professional soccer players and physically active young women. Methods: This descriptive cross-sectional study included professional soccer players (n = 18) and physically active women (n = 14). UI was assessed using the ICIQ-SF questionnaire, and PFM function was evaluated through intracavitary examination using the PERFECT method. Additional data were collected on body composition and on urinary, bowel, and sexual health. Results: UI affected 35.7% of physically active women and 50% of professional soccer players. Stress urinary incontinence (SUI) was the most common type, present in 100% of affected soccer players and 60% of affected active women. The severity of UI was mostly mild, with no significant differences between groups. PFM assessment revealed deficiencies in control, relaxation, endurance, and rapid contractions, as well as difficulties performing an effective perineal locking (PL) maneuver during increased intra-abdominal pressure. Conclusions: These findings highlight the need for targeted programs focused on strengthening and educating athletes about their PFMs, aiming to prevent UI and improve both performance and quality of life. The study reinforces the importance of preventive strategies for pelvic floor health in sports. Full article
(This article belongs to the Special Issue Diagnosis and Management of Sports Medicine)
Show Figures

Figure 1

17 pages, 1906 KiB  
Article
Effects of Psilocin and Psilocybin on Human 5-HT4 Serotonin and H2 Histamine Receptors in Perfused Hearts of Transgenic Mice
by Pauline Braekow, Joachim Neumann, Uwe Kirchhefer and Ulrich Gergs
Pharmaceuticals 2025, 18(7), 1009; https://doi.org/10.3390/ph18071009 - 6 Jul 2025
Viewed by 383
Abstract
Background/Objectives: Hallucinogenic substances such as psilocybin, psilocin, ergometrine, ergotamine, and lysergic acid diethylamide (LSD) have been demonstrated to enhance the force of contraction (FOC), in part due to the phosphorylation of phospholamban in human atrial preparations via 5-HT4 serotonin receptors and/or [...] Read more.
Background/Objectives: Hallucinogenic substances such as psilocybin, psilocin, ergometrine, ergotamine, and lysergic acid diethylamide (LSD) have been demonstrated to enhance the force of contraction (FOC), in part due to the phosphorylation of phospholamban in human atrial preparations via 5-HT4 serotonin receptors and/or H2 histamine receptors. However, whether psilocybin or psilocin acts at isolated mammalian ventricular preparations and whether they increase protein phosphorylation in the mammalian ventricle remains to be elucidated. Methods: To this end, the FOC and phospholamban phosphorylation in isolated perfused hearts from transgenic mice with cardiomyocyte-specific overexpression of either human 5-HT4 receptors (5-HT4-TG) or human H2 receptors (H2-TG) and their wild-type littermates (WT) were examined. Furthermore, the ergot alkaloids ergometrine, ergotamine, and LSD were used as references. Results: Psilocybin and psilocin enhanced the FOC to 137% and to 152%, respectively, and elevated the phospholamban phosphorylation in isolated perfused hearts from 5-HT4-TG. In H2-TG hearts, psilocybin and psilocin increased the FOC to a much lesser extent but had no effect on the phospholamban phosphorylation. In contrast, LSD increased the FOC and phosphorylation state of phospholamban in isolated hearts of both 5-HT4-TG and H2-TG. On the other hand, ergometrine and ergotamine increased the FOC only in H2-TG. Ergometrine increased the phosphorylation state of phospholamban in perfused hearts from H2-TG, but not from 5-HT4-TG. Ergotamine failed to increase the phospholamban phosphorylation in both H2-TG and 5-HT4-TG. Psilocybin, psilocin, ergotamine, ergometrine, and LSD were unable to increase FOC and phospholamban phosphorylation in perfused hearts from WT. Conclusions: The increase in the phosphorylation state of phospholamban could provide a partial explanation for the positive inotropic effects and the relaxant effects of not only psilocybin and psilocin but also ergometrine and LSD in the isolated hearts of the animals used in this study. Full article
(This article belongs to the Special Issue Psychedelics: A New Drug Candidate for Treating Mental Illness)
Show Figures

Figure 1

11 pages, 779 KiB  
Article
Effects of Ellagic Acid on Myocardial Contractility in Isolated and Perfused Rat Hearts
by Giada Benedetti, Leonardo Carbonetti, Vincenzo Calderone and Lara Testai
Biomedicines 2025, 13(7), 1645; https://doi.org/10.3390/biomedicines13071645 - 4 Jul 2025
Viewed by 302
Abstract
Background/Objectives: Ellagic acid (EA) is a polyphenol found in several fruits and vegetables, including pomegranate, nuts and berries. It exhibits significant health benefits, mainly cardio- and vaso-protective; indeed, EA protects the myocardium against infarction and inhibits cardiac fibrosis. These beneficial effects may [...] Read more.
Background/Objectives: Ellagic acid (EA) is a polyphenol found in several fruits and vegetables, including pomegranate, nuts and berries. It exhibits significant health benefits, mainly cardio- and vaso-protective; indeed, EA protects the myocardium against infarction and inhibits cardiac fibrosis. These beneficial effects may be, at least in part, promoted by calcium release from and uptake by the sarcoplasmic reticulum, which are crucial events for cardiac relaxation and contraction. Regardless, the exact mechanism is currently unclear. Methods: A deeper investigation of the role of EA in cardiac contractility and the underlying mechanism has been carried out by using an ex vivo model of isolated and perfused rat heart. Results and Discussion: EA perfusion (100 nM–10 µM) did not influence the coronary flow (CF), suggesting the absence of a vasoactivity, but significantly increased contractility parameters (LVDP and dP/dt). Interestingly, a more marked effect of EA on LVDP and dP/dt values was observed when it was perfused in the presence of AngII. Cyclopiazonic acid (CA) and red ruthenium (RR), specific antagonists of SERCA and RyRs, respectively, were used to explore the contribution of EA when the intracellular calcium handling was altered. In the presence of CA, EA, perfused at increasing concentrations, showed a very modest positive inotropism (significant only at 1 µM). Instead, RR, which significantly compromised all functional parameters, completely masked the effects of EA; furthermore, a marked reduction in CF and a dramatic impact on the positive inotropism occurred. Conclusions: These results demonstrate the positive inotropism of EA on isolated and perfused hearts and suggest that the RyRs may be a main target through which EA plays its effects, since inhibition with RR almost completely blocks the positive inotropism. Full article
Show Figures

Figure 1

21 pages, 1627 KiB  
Article
Estimation of Cylinder Grasping Contraction Force of Forearm Muscle in Home-Based Rehabilitation Using a Stretch-Sensor Glove
by Adhe Rahmatullah Sugiharto Suwito P, Ayumi Ohnishi, Tsutomu Terada and Masahiko Tsukamoto
Appl. Sci. 2025, 15(13), 7534; https://doi.org/10.3390/app15137534 - 4 Jul 2025
Viewed by 269
Abstract
Monitoring forearm muscle contraction force in home-based rehabilitation remains challenging. Electromyography (EMG), as a standard technique, is considered impractical and complex for independent use by patients at home, which poses a risk of device misattachment and inaccurate recorded data. Considering the muscle-related modality, [...] Read more.
Monitoring forearm muscle contraction force in home-based rehabilitation remains challenging. Electromyography (EMG), as a standard technique, is considered impractical and complex for independent use by patients at home, which poses a risk of device misattachment and inaccurate recorded data. Considering the muscle-related modality, several studies have demonstrated an excellent correlation between stretch sensors and EMG, which provides significant potential for addressing the monitoring issue at home. Additionally, due to its flexible nature, it can be attached to the finger, which facilitates the logging of the kinematic mechanisms of a finger. This study proposes a method for estimating forearm muscle contraction in a cylinder grasping environment during home-based rehabilitation using a stretch-sensor glove. This study employed support vector machine (SVM), multi-layer perceptron (MLP), and random forest (RF) to construct the estimation model. The root mean square (RMS) of the EMG signal, representing the muscle contraction force, was collected from 10 participants as the target learning for the stretch-sensor glove. This study constructed an experimental design based on a home-based therapy protocol known as the graded repetitive arm supplementary program (GRASP). Six cylinders with varying diameters and weights were employed as the grasping object. The results demonstrated that the RF model achieved the lowest root mean square error (RMSE) score, which differed significantly from the SVM and MLP models. The time series waveform comparison revealed that the RF model yields a similar estimation output to the ground truth, which incorporates the contraction–relaxation phases and the muscle’s contraction force. Additionally, despite the subjectivity of the participants’ grasping power, the RF model could produce similar trends in the muscle contraction forces of several participants. Utilizing a stretch-sensor glove, the proposed method demonstrated great potential as an alternative modality for monitoring forearm muscle contraction force, thereby improving the practicality for patients to self-implement home-based rehabilitation. Full article
(This article belongs to the Special Issue Applications of Emerging Biomedical Devices and Systems)
Show Figures

Figure 1

18 pages, 2992 KiB  
Article
The Influence of Concentration and Type of Salts on the Behaviour of Linear Actuators Based on PVA Hydrogel Activated by AC Power
by Aleksey Maksimkin, Mikhail Zadorozhnyy, Kseniia V. Filippova, Lidiia D. Iudina, Dmitry V. Telyshev and Tarek Dayyoub
Gels 2025, 11(7), 484; https://doi.org/10.3390/gels11070484 - 23 Jun 2025
Viewed by 562
Abstract
The creation of quick-reacting electrically conductive polymers for use as actuators driven by low electrical currents is now seen as an important issue. Enhancing the electrical conductivity of hydrogels through the incorporation of conductive fillers, like salts, can reduce the necessary actuating voltage. [...] Read more.
The creation of quick-reacting electrically conductive polymers for use as actuators driven by low electrical currents is now seen as an important issue. Enhancing the electrical conductivity of hydrogels through the incorporation of conductive fillers, like salts, can reduce the necessary actuating voltage. However, several important questions arise about how the type of salt chosen and its concentration will affect not only the activation efficiency of the actuators but also the structure of the hydrogels utilized. In this study, to enhance the electrical conductivity of the hydrogel and lower the necessary activation voltage of the hydrogel actuators, lithium chloride (LiCl) and sodium chloride (NaCl) were incorporated as conductive fillers into the polyvinyl alcohol (PVA) polymer matrix. To determine the deformation of actuators, as well as the activation and relaxation times and efficiencies during activation, linear actuators capable of being activated through extension/contraction (swelling/shrinking) cycles were developed and examined based on the LiCl/NaCl content, applied voltage, and frequency. The main finding is that the required actuating voltage was lowered by up to 20 V by adding an equal mass of salt in relation to the PVA mass content. With a load of around 20 kPa, it was observed that the extension deformation for PVA/NaCl-based actuators can achieve 75%, while in contraction deformation, can reach 17%. Additionally, for the PVA/LiCl-based actuators, the extension deformation can reach 87%, while during contraction deformation, it can reach 22%. The degree of swelling in the PVA/NaCl hydrogels was generally less than that in the PVA/LiCl hydrogels, which was associated with the finding that the actuators prepared from PVA/NaCl hydrogels delivered an output that was 10–15% lower than those made from PVA/LiCl hydrogels across different testing cycles. Furthermore, adding salt increases the degree of crosslinking, which can explain why increased crosslinking leads to reduced deformation when exposed to AC voltage. These actuators can find extensive use in soft robotics, artificial muscles, medical applications, and aerospace industries. Full article
Show Figures

Figure 1

25 pages, 7954 KiB  
Article
Comprehensive GC-MS Profiling and Multi-Modal Pharmacological Evaluations of Haloxylon griffithii: In Vitro and In Vivo Approaches
by Iram Iqbal, Mohamed A. M. Ali, Fatima Saqib, Kinza Alamgir, Mohammad S. Mubarak, Anis Ahmad Chaudhary, Mohamed El-Shazly and Heba A. S. El-Nashar
Pharmaceuticals 2025, 18(6), 770; https://doi.org/10.3390/ph18060770 - 22 May 2025
Viewed by 710
Abstract
Background/Objectives: Haloxylon griffithii is a medicinal plant possessing therapeutic effects in disorders associated with the gastrointestinal (GIT) system. This research aims to study the pharmacological activity of Haloxylon griffithii in a multidimensional manner, involving phytochemistry screening and in vitro and in vivo [...] Read more.
Background/Objectives: Haloxylon griffithii is a medicinal plant possessing therapeutic effects in disorders associated with the gastrointestinal (GIT) system. This research aims to study the pharmacological activity of Haloxylon griffithii in a multidimensional manner, involving phytochemistry screening and in vitro and in vivo experiments. Methods: The whole dried plant was extracted with 80% methanol and further fractionation using solvents of increasing polarity. GC-MS analysis was performed on the crude extract to discover volatile compounds. The spasmolytic/spasmogenic effect was assessed in isolated rabbit jejunum using spontaneous and K⁺-induced contractions, as well as contractions induced by increasing concentrations of calcium ions in depolarized tissue. Antidiarrheal activity was evaluated in Swiss albino rats/mice (n = 6/group) using castor oil-induced diarrhea and peristaltic index models. In silico ADMET screening was conducted via SwissADME and pkCSM. Results: The GC-MS profiling of H. griffithii revealed the presence of 59 phytochemicals and a rare azulene derivative and constituents, including α-santonin and hexadecanoic acid esters, with favorable pharmacokinetic profiles, as predicted using SwissADME and pkCSM computational tools. The in vitro and in vivo experiments revealed the significant calcium channel blocking activity in non-polar fractions (n-hexane and ethyl acetate), while the polar extracts (ethanolic, aqueous) exhibited cholinergic effects, indicating a dual mode of action. Conclusions: This was a first-time demonstration of both antidiarrheal and smooth muscle-relaxant activity in H. griffithii, supported by GC-MS profiling and pharmacological assay. The findings lend scientific credibility to the traditional use of the plant in community healthcare, while also reinforcing the need for further pharmacological and clinical studies to explore its potential in drug development. Full article
(This article belongs to the Special Issue Promising Natural Products in New Drug Design and Therapy)
Show Figures

Figure 1

15 pages, 1559 KiB  
Article
Effect of Retinoic Acid on the Cerebral Vasculature: Analysis of the Vasoactive Response of Smooth Muscle Cells in Normal and Ischemic Contexts
by Manuel R. Pouso, Emanuel Farinha, Henrique E. Costa, Margarida Lorigo, Graça Baltazar and Elisa Cairrao
J. Xenobiot. 2025, 15(3), 69; https://doi.org/10.3390/jox15030069 - 10 May 2025
Viewed by 468
Abstract
Retinoic acid (RA), a vitamin A derivative, has been shown to prevent the development of neurological disorders by ensuring the integrity of the physiological structure of the neurovascular unit and regulating the physiological cell’s function. After an ischemia event, RA reduces the effects [...] Read more.
Retinoic acid (RA), a vitamin A derivative, has been shown to prevent the development of neurological disorders by ensuring the integrity of the physiological structure of the neurovascular unit and regulating the physiological cell’s function. After an ischemia event, RA reduces the effects of blood–brain barrier disruption by blocking the apoptotic signaling pathway. However, the effect of RA on smooth muscle cells (SMCs), which are crucial to maintaining blood perfusion, has never been investigated. This study aimed to evaluate the effect of RA on the vasoactive response of middle cerebral artery SMCs in normal and ischemic contexts (O2 and glucose deprivation, OGD). For this purpose, SMCs cultures were incubated with RA, and the vasoactive response was evaluated in both conditions (OGD and non-OGD). To simulate OGD, co-cultures of neurons and astrocytes were made and incubated with RA to analyze the effect of the secretome released by these cells on SMCs contractility. In non-OGD conditions, RA induced rapid relaxation of SMCs and, in the long term (24 h), promoted cell contraction. In OGD conditions, SMCs contractility patterns were different when pre-incubated with RA. In these conditions, NA loses its contractility effect, and SNP seems to revert its relaxant effect. However, SMCs pre-incubated with 5 uM RA show the vasorelaxant pattern typical of SNP, despite the OGD condition. These effects demonstrate an effect of RA on the vasoactive profile of SMCs, with therapeutic potential in OGD conditions. Full article
(This article belongs to the Topic Environmental Toxicology and Human Health—2nd Edition)
Show Figures

Graphical abstract

17 pages, 2142 KiB  
Article
Assessing the Effects of TMS Intensities and Muscle Conditions on the Evoked Responses of the First Dorsal Interosseous Muscle Using Statistical Methods and InterCriteria Analysis
by Kapka Mancheva, Maria Angelova, Andon Kossev and Silvija Angelova
Appl. Sci. 2025, 15(10), 5236; https://doi.org/10.3390/app15105236 - 8 May 2025
Viewed by 495
Abstract
This study aims to apply standard statistics and InterCriteria analysis (ICrA) for assessing the effects of different transcranial magnetic stimulation (TMS) intensities and three muscle conditions on the evoked responses of the first dorsal interosseous muscle (FDIM). Surface electromyograms from the right FDIM [...] Read more.
This study aims to apply standard statistics and InterCriteria analysis (ICrA) for assessing the effects of different transcranial magnetic stimulation (TMS) intensities and three muscle conditions on the evoked responses of the first dorsal interosseous muscle (FDIM). Surface electromyograms from the right FDIM of ten right-handed healthy volunteers were recorded, and amplitudes of motor evoked potentials (MEPs), latencies of MEPs, and silent periods were obtained. ICrA was used for the first time as a supplementary tool along with the applied statistical methods. Three case studies were processed by the ICrA approach for a wide examination of neuromuscular excitability in humans. As a result, the relations between increasing TMS intensities, MEP amplitudes, MEP latencies, and silent periods were established at relaxed muscle condition, isometric index finger abduction condition, and co-contraction of antagonist muscles condition. Also, the dependencies between MEP amplitudes, MEP latencies, and silent periods themselves, and for different TMS intensities, were outlined. The results confirmed relations known from the literature and showed new ones. Full article
Show Figures

Figure 1

15 pages, 2356 KiB  
Article
New Lead Schiff Bases Predominantly Mediate Vasorelaxant Activity Through α1 Receptor Blocking Activity
by Zakia Subhan, Niaz Ali, Abid Ullah, Wajid Ali, Muhammad Nabi and Syed Wadood Ali Shah
Biomolecules 2025, 15(5), 611; https://doi.org/10.3390/biom15050611 - 23 Apr 2025
Viewed by 513
Abstract
Schiff bases synthesized in our laboratory have demonstrated pain-relieving effects through both peripheral and central nervous system pathways. Considering that centrally acting analgesics often affect the muscle tone of the gastrointestinal tract (GIT) and related deep internal organs, this study was conducted to [...] Read more.
Schiff bases synthesized in our laboratory have demonstrated pain-relieving effects through both peripheral and central nervous system pathways. Considering that centrally acting analgesics often affect the muscle tone of the gastrointestinal tract (GIT) and related deep internal organs, this study was conducted to examine potential relaxant effects on blood vessels and GIT smooth muscles. The possible relaxant effects of Schiff bases (SB1 and SB2) on isolated rabbit aortic strips were evaluated. The experiments involved assessing their impact on contractions induced by 80 mM potassium chloride (KCL) and 1 µM norepinephrine (NE). Norepinephrine concentration response curves (N. ECRCs) were constructed in the absence and presence of three different concentrations of SB1 and SB2, using N. ECRCs as a negative control. Terazosin served as a standard α1 receptor blocker. Docking studies were employed to validate the mechanism of action for SB1 and SB2. The study outcomes suggest that SB1 is more potent than SB2, demonstrating lower EC50 values for NE-induced contractions in intact (5.50 × 10−5 ± 2.23 M) and denuded (5.81 × 10−5 ± 3.80 M) aortae. For NE-induced contractions, SB1 showed percent relaxation values of 48% and 41% in intact and denuded aortae, respectively. In comparison, SB2 exhibited values of 82.5% and 74%, showing that SB1 is more efficacious than SB2. The rightward shift of N. ECRCs for both SB1 and SB2 confirms their inhibition of α1 receptors. Additive effects of SB1 and SB2 were seen in the presence of verapamil (p < 0.0001). Docking analysis revealed that the compounds can properly bind to the target receptor Gq 1D (P25100). Findings show that both Schiff base SB1 and SB2 produce significant (p < 0.05) vasorelaxation via the α1 receptor blocking mechanism. Full article
(This article belongs to the Section Chemical Biology)
Show Figures

Figure 1

12 pages, 1410 KiB  
Article
Mutation-Specific Cardiomyocyte Lines from Patients with Fabry Disease: A Sustainable In Vitro Model to Investigate Structure, Function, and Disease Mechanisms
by Kathleen Nicholls, Andrea Wise, David Elliot, Menno ter Huurne, Maria Fuller and Sharon Ricardo
Int. J. Transl. Med. 2025, 5(2), 15; https://doi.org/10.3390/ijtm5020015 - 15 Apr 2025
Viewed by 929
Abstract
Background: Fabry disease (FD) results from pathogenic GLA variants, causing lysosomal α-galactosidase A (α-GalA) deficiency and sphingolipid ceramide trihexoside (Gb3 or THC) accumulation. Disease phenotype varies widely but cardiomyopathy is commonly life-limiting. As a multisystemic disorder, FD initiates at the cellular level; however, [...] Read more.
Background: Fabry disease (FD) results from pathogenic GLA variants, causing lysosomal α-galactosidase A (α-GalA) deficiency and sphingolipid ceramide trihexoside (Gb3 or THC) accumulation. Disease phenotype varies widely but cardiomyopathy is commonly life-limiting. As a multisystemic disorder, FD initiates at the cellular level; however, the mechanism/s underlying Gb3-induced cell dysfunction remains largely unknown. This study established an in vitro mutation-specific model of Fabry cardiomyopathy using human-induced pluripotent stem cell (iPSC)-derived cardiomyocytes to explore underlying cell pathology. Methods: Skin biopsies from consenting Fabry patients and normal control subjects were reprogrammed to iPSCs then differentiated into cardiomyocytes. The GLA mutations in Fabry cell lines were corrected using CRISP-Cas9. Phenotypic characteristics, α-Gal A activity, Gb3 accumulation, functional status, and lipid analysis were assessed. Cardiomyocytes derived from two patients with severe clinical phenotype and genotypes, GLAc.851T>C, GLAc.1193_1196del, and their respective corrected lines, GLAcorr c.851T>C, GLAcorr c.1193_1196del, were selected for further studies. Results: Cardiomyocytes derived from individuals with FD iPSCs exhibited stable expression of cardiomyocyte markers and spontaneous contraction, morphological features of FD, reduced α-Gal A activity, and accumulation of Gb3. Lipidomic profiling revealed differences in the Gb3 isoform profile between the control and FD patient iPSC-derived cardiomyocytes. Contraction strength was unchanged but relaxation after contraction was delayed, mimicking the diastolic dysfunction typical of Fabry cardiomyopathy. Conclusions: iPSC-derived cardiomyocytes provide a useful model to explore aspects of Fabry cardiomyopathy, including disruptions in sphingolipid pathways, proteomics, and multigene expression that together link genotype to phenotype. The platform potentially offers broad applicability across many genetic diseases and offers the prospect of testing and implementation of individualised therapies. Full article
Show Figures

Figure 1

26 pages, 5528 KiB  
Article
Quality Assurance Framework for Recovered Binders and Aggregates from Asphalt Mixtures Incorporating Recycled Materials
by Eslam Deef-Allah and Magdy Abdelrahman
Recycling 2025, 10(2), 71; https://doi.org/10.3390/recycling10020071 - 13 Apr 2025
Cited by 1 | Viewed by 671
Abstract
This study proposes that a proactive quality assurance (QA) framework for asphalt mixes with recycled materials, i.e., reclaimed asphalt pavement and recycled asphalt shingles, should be developed. Quality control (QC) is generally concerned with the contractor’s obligation to produce mixes which meet the [...] Read more.
This study proposes that a proactive quality assurance (QA) framework for asphalt mixes with recycled materials, i.e., reclaimed asphalt pavement and recycled asphalt shingles, should be developed. Quality control (QC) is generally concerned with the contractor’s obligation to produce mixes which meet the job mix formula (JMF) targets. However, QA considers the variability in fabrication processes and materials and offers monitoring by evaluating the contractor’s performance. Although both aggregate gradations and asphalt contents were within the JMF specifications, the recovered binders revealed significant differences from the contract binders in the JMF. Rheological tests indicated increased stiffness and elasticity but reduced capability to relax thermal stresses in binders recovered from plant–lab- and lab-fabricated mixtures, compared to field mixtures. Thermal-rheological analysis models corroborated these results by demonstrating reduced decomposition areas for more aged binders, enhancing performance prediction—especially for limited binder amounts. The creation of a QA decision matrix facilitated uniform, performance-oriented assessments. The matrix indicated only 23% of the mixtures satisfied JMF criteria and reported QC data—predominantly field mixtures—underscoring the impact of the fabrication mechanisms and the use of soft binders. This matrix integrates statistical analysis and binder performance assessments as a tool for verifying material compliance and tracking contractor efficiency. It reflects a transition from traditional QC toward a more proactive QA framework for sustainable pavements. Full article
(This article belongs to the Special Issue Recycled Materials in Sustainable Pavement Innovation)
Show Figures

Figure 1

11 pages, 762 KiB  
Article
Acute Effects of Short Static, Dynamic, and Contract–Relax with Antagonist Contraction Stretch Modalities on Vertical Jump Height and Flexibility
by Clément Cheurlin, Carole Cometti, Jihane Mrabet, Jules Opplert and Nicolas Babault
Sports 2025, 13(4), 115; https://doi.org/10.3390/sports13040115 - 10 Apr 2025
Viewed by 798
Abstract
The present study investigated the acute effects of different stretching modalities applied within a warm-up on flexibility and vertical jump height. Thirty-seven young adults participated in four randomized experimental sessions, each corresponding to a different condition: static stretch (SS), dynamic stretch (DS), contract–relax [...] Read more.
The present study investigated the acute effects of different stretching modalities applied within a warm-up on flexibility and vertical jump height. Thirty-seven young adults participated in four randomized experimental sessions, each corresponding to a different condition: static stretch (SS), dynamic stretch (DS), contract–relax with antagonist contraction (CRAC) or a control condition with no stretch (CTRL). Conditions were five min in total duration, including 2 × 15 s stretches for each muscle group (knee flexor, knee extensor, and plantar flexor muscles). Ten min and five min of cycling preceded and followed these procedures, respectively. Hamstring flexibility and a series of countermovement jump (CMJ) measurements were interspersed within this procedure. Except for CTRL, hamstring flexibility significantly increased (p < 0.01) after all experimental procedures (7.5 ± 6.6%, 4.1 ± 4.9%, and 2.7 ± 6.0% for CRA, SS, and DS, respectively). The relative increase was significantly greater for CRAC as compared CTRL (p < 0.001). Vertical jump height significantly decreased (p < 0.05) immediately after SS (−2.3 ± 3.9%), CTRL (−2.3 ± 3.5%), and CRAC (−3.2 ± 3.3%). Jump height was unchanged after DS (0.4 ± 4.5%). Whatever the condition, no additional jump height alteration was obtained after the re-warm-up. The main findings of the present study revealed that DS is more appropriate for maintaining vertical jump height. However, stretching has no major effect when performed within a warm-up. In contrast, if the main objective is to increase flexibility, CRAC is recommended. Full article
(This article belongs to the Special Issue Neuromechanical Adaptations to Exercise and Sports Training)
Show Figures

Figure 1

22 pages, 10948 KiB  
Article
Method of Forearm Muscles 3D Modeling Using Robotic Ultrasound Scanning
by Vladislava Kapravchuk, Albert Ishkildin, Andrey Briko, Anna Borde, Maria Kodenko, Anastasia Nasibullina and Sergey Shchukin
Sensors 2025, 25(7), 2298; https://doi.org/10.3390/s25072298 - 4 Apr 2025
Viewed by 1246
Abstract
The accurate assessment of muscle morphology and function is crucial for medical diagnostics, rehabilitation, and biomechanical research. This study presents a novel methodology for constructing volumetric models of forearm muscles based on three-dimensional ultrasound imaging integrated with a robotic system to ensure precise [...] Read more.
The accurate assessment of muscle morphology and function is crucial for medical diagnostics, rehabilitation, and biomechanical research. This study presents a novel methodology for constructing volumetric models of forearm muscles based on three-dimensional ultrasound imaging integrated with a robotic system to ensure precise probe positioning and controlled pressure application. The proposed ultrasound scanning approach combined with a collaborative six-degrees-of-freedom robotic manipulator enabled reproducible and high-resolution imaging of muscle structures in both relaxed and contracted states. A custom-built phantom, acoustically similar to biological tissues, was developed to validate the method. The cross-sectional area of the muscles and the coordinates of the center of mass of the sections, as well as the volume and center of gravity of each muscle, were calculated for each cross-section of the reconstructed forearm muscle models at contraction. The method’s feasibility was confirmed by comparing the reconstructed volumes with anatomical data and phantom measurements. This study highlights the advantages of robotic-assisted ultrasound imaging for non-invasive muscle assessment and suggests its potential applications in neuromuscular diagnostics, prosthetics design, and rehabilitation monitoring. Full article
(This article belongs to the Special Issue 3D Sensing and Imaging for Biomedical Investigations: Second Edition)
Show Figures

Figure 1

23 pages, 4287 KiB  
Article
Optimization of MIMU Mounting Position on Shank in Posture Estimation Considering Muscle Protuberance
by Shun Kanega and Yoshihiro Muraoka
Sensors 2025, 25(7), 2273; https://doi.org/10.3390/s25072273 - 3 Apr 2025
Viewed by 534
Abstract
The influence of the mounting position of a magnetic-inertial measurement unit (MIMU) on the accuracy of posture estimation for a shank has not been extensively studied and remains unknown. In this study, we conducted comparative experiments using three MIMU positions: the lateral and [...] Read more.
The influence of the mounting position of a magnetic-inertial measurement unit (MIMU) on the accuracy of posture estimation for a shank has not been extensively studied and remains unknown. In this study, we conducted comparative experiments using three MIMU positions: the lateral and frontal positions, which are commonly used, and the medial tibial position, which is less affected by muscle protuberance, considering the anatomical structure of the body. To determine the optimal MIMU mounting position on the shank, we repeatedly performed plantar–dorsiflexion and relaxation of the ankle joint in a chair-sitting position and examined the effect of muscle contraction on the posture of the MIMU (Experiment 1). We also performed posture estimation during gait and compared the three-dimensional shank posture measured by the MIMU and optical motion capture to evaluate the estimation accuracy for each mounting position (Experiment 2). In Experiment 1, the orientation change at the medial tibia was significantly smaller than that at the other positions, showing an 80% reduction compared with the anterior tibia during dorsiflexion. In Experiment 2, the medial tibia achieved the highest estimation accuracy, showing a 13% lower RMSE than that of the anterior position. The results of these two experiments suggest that the medial tibia is the optimal position on the shank, as the posture estimation accuracy was the highest when the MIMU was mounted on the medial tibia, where there was no muscle under the mounting surface. Moreover, the posture estimation accuracy was less affected by muscle protuberance under these conditions. Full article
(This article belongs to the Section Wearables)
Show Figures

Graphical abstract

23 pages, 6918 KiB  
Article
Preventive and Therapeutic Effects of Sericin-Derived Oligopeptides (SDOs) from Yellow Silk Cocoons on Blood Pressure Lowering in L-NAME-Induced Hypertensive Rats
by Chainarong Tocharus and Manote Sutheerawattananonda
Foods 2025, 14(7), 1256; https://doi.org/10.3390/foods14071256 - 3 Apr 2025
Viewed by 490
Abstract
Our previous research has shown that SDOs derived from yellow silk cocoons have hypotensive effects on rats in chronic toxicity testing. This study investigated the potential preventative and therapeutic benefits of SDOs on hypertensive rats induced by L-NAME. The experiment involved nine rat [...] Read more.
Our previous research has shown that SDOs derived from yellow silk cocoons have hypotensive effects on rats in chronic toxicity testing. This study investigated the potential preventative and therapeutic benefits of SDOs on hypertensive rats induced by L-NAME. The experiment involved nine rat groups: (1) normal control, (2) normal + 200 mg kg1 BW SDOs, (3) hypertensive (HT) control, (4) HT + 50 mg kg1 BW SDOs, (5) HT + 100 mg kg1 BW SDOs, (6) HT + 200 mg kg1 BW SDOs, (7) HT + enalapril (Ena), (8) HT + soy protein isolate (SPI), and (9) HT + bovine serum albumin (BSA). In the preventative approach, rats received 40 mg kg1 of L-NAME with the studied substances during the four-week investigation. SDOs given at doses of 100 and 200 mg kg1 BW demonstrated a significant decrease in systolic blood pressure (SBP) without affecting heart rate (HR). In therapeutic studies, 40 mg kg1 BW of L-NAME increased SBP in the experimental groups over the first four weeks, resulting in mean SBP values above 150 mmHg. Administering 100 and 200 mg kg1 BW SDOs and 100 mg kg1 BW SPI significantly reduced SBP. However, SDOs at 200 mg kg1 BW exhibited SBP closer to the enalapril group. In functional vascular tests, rats given SDOs at a dose of 200 mg kg1 BW had the highest relaxation and lowest contraction percentages, like the normal control groups. The research found that SDOs may inhibit and manage hypertension in both healthy and hypertensive rats by safeguarding endothelial cells. Full article
Show Figures

Figure 1

Back to TopTop