Effects of Psilocin and Psilocybin on Human 5-HT4 Serotonin and H2 Histamine Receptors in Perfused Hearts of Transgenic Mice
Abstract
1. Introduction
2. Results
2.1. Force of Contraction
2.2. Protein Phosphorylation
3. Discussion
3.1. Clinical Relevance
3.2. Limitations
4. Materials and Methods
4.1. Transgenic Mice
4.2. Western Blotting
4.3. Langendorff Hearts
4.4. Data Analysis
4.5. Materials
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FOC | Force of contraction |
LSD | Lysergic acid diethylamide |
PIE | Positive inotropic effect |
PKA | Protein kinase A |
WT | Wild type |
References
- Hattori, Y.; Hattori, K.; Matsuda, N. Regulation of the Cardiovascular System by Histamine. Handb. Exp. Pharmacol. 2017, 241, 239–258. [Google Scholar] [CrossRef] [PubMed]
- Kaumann, A.J.; Levy, F.O. 5-hydroxytryptamine receptors in the human cardiovascular system. Pharmacol. Ther. 2006, 111, 674–706. [Google Scholar] [CrossRef] [PubMed]
- Brattelid, T.; Qvigstad, E.; Lynham, J.A.; Molenaar, P.; Aass, H.; Geiran, O.; Skomedal, T.; Osnes, J.-B.; Levy, F.O.; Kaumann, A.J. Functional serotonin 5-HT4 receptors in porcine and human ventricular myocardium with increased 5-HT4 mRNA in heart failure. Naunyn Schmiedeberg’s Arch. Pharmacol. 2004, 370, 157–166. [Google Scholar] [CrossRef]
- Saxena, P.R.; Villalón, C.M. Cardiovascular effects of serotonin agonists and antagonists. J. Cardiovasc. Pharmacol. 1990, 15 (Suppl. S7), S17–S34. [Google Scholar] [CrossRef]
- Kaumann, A.J.; Sanders, L.; Brown, A.M.; Murray, K.J.; Brown, M.J. A 5-HT4-like receptor in human right atrium. Naunyn Schmiedeberg’s Arch. Pharmacol. 1991, 344, 150–159. [Google Scholar] [CrossRef]
- Matsuda, N.; Jesmin, S.; Takahashi, Y.; Hatta, E.; Kobayashi, M.; Matsuyama, K.; Kawakami, N.; Sakuma, I.; Gando, S.; Fukui, H.; et al. Histamine H1 and H2 receptor gene and protein levels are differentially expressed in the hearts of rodents and humans. J. Pharmacol. Exp. Ther. 2004, 309, 786–795. [Google Scholar] [CrossRef]
- Sanders, L.; Kaumann, A.J. A 5-HT4-like receptor in human left atrium. Naunyn Schmiedeberg’s Arch. Pharmacol. 1992, 345, 382–386. [Google Scholar] [CrossRef]
- Sanders, L.; Lynham, J.A.; Kaumann, A.J. Chronic beta 1-adrenoceptor blockade sensitises the H1 and H2 receptor systems in human atrium: Rôle of cyclic nucleotides. Naunyn Schmiedeberg’s Arch. Pharmacol. 1996, 353, 661–670. [Google Scholar] [CrossRef]
- Neumann, J.; Dhein, S.; Kirchhefer, U.; Hofmann, B.; Gergs, U. Effects of hallucinogenic drugs on the human heart. Front. Pharmacol. 2024, 15, 1334218. [Google Scholar] [CrossRef]
- Gergs, U.; Baumann, M.; Böckler, A.; Buchwalow, I.B.; Ebelt, H.; Fabritz, L.; Hauptmann, S.; Keller, N.; Kirchhof, P.; Klöckner, U.; et al. Cardiac overexpression of the human 5-HT4 receptor in mice. Am. J. Physiol. Heart Circ. Physiol. 2010, 299, H788–H798. [Google Scholar] [CrossRef]
- Zerkowski, H.R.; Broede, A.; Kunde, K.; Hillemann, S.; Schäfer, E.; Vogelsang, M.; Michel, M.C.; Brodde, O.E. Comparison of the positive inotropic effects of serotonin, histamine, angiotensin II, endothelin and isoprenaline in the isolated human right atrium. Naunyn Schmiedeberg’s Arch. Pharmacol. 1993, 347, 347–352. [Google Scholar] [CrossRef] [PubMed]
- Gergs, U.; Bernhardt, G.; Buchwalow, I.B.; Edler, H.; Fröba, J.; Keller, M.; Kirchhefer, U.; Köhler, F.; Mißlinger, N.; Wache, H.; et al. Initial Characterization of Transgenic Mice Overexpressing Human Histamine H2 Receptors. J. Pharmacol. Exp. Ther. 2019, 369, 129–141. [Google Scholar] [CrossRef] [PubMed]
- Dodd, S.; Norman, T.R.; Eyre, H.A.; Stahl, S.M.; Phillips, A.; Carvalho, A.F.; Berk, M. Psilocybin in neuropsychiatry: A review of its pharmacology, safety, and efficacy. CNS Spectr. 2023, 28, 416–426. [Google Scholar] [CrossRef] [PubMed]
- Ross, S.; Bossis, A.; Guss, J.; Agin-Liebes, G.; Malone, T.; Cohen, B.; Mennenga, S.E.; Belser, A.; Kalliontzi, K.; Babb, J.; et al. Rapid and sustained symptom reduction following psilocybin treatment for anxiety and depression in patients with life-threatening cancer: A randomized controlled trial. J. Psychopharmacol. 2016, 30, 1165–1180. [Google Scholar] [CrossRef]
- Dino, F. A Modern Overview of the Potential Therapeutic Effects of Psilocybin in the Treatment of Depressive Disorders, Treatment-Resistant Depression, and End-of-Life Distress. Cureus 2025, 17, e80707. [Google Scholar] [CrossRef]
- Kim, S.-H.; Yang, S.; Jung, J.; Choi, J.; Kang, M.; Joo, J.-Y. Psychedelic Drugs in Mental Disorders: Current Clinical Scope and Deep Learning-Based Advanced Perspectives. Adv. Sci. 2025, 12, e2413786. [Google Scholar] [CrossRef]
- Johnston, C.B.; Mangini, M.; Grob, C.; Anderson, B. The Safety and Efficacy of Psychedelic-Assisted Therapies for Older Adults: Knowns and Unknowns. Am. J. Geriatr. Psychiatry 2023, 31, 44–53. [Google Scholar] [CrossRef]
- Ghaznavi, S.; Richter, S.G. Classic Psychedelics for the Treatment of Depression: Potential Benefits and Challenges. Drugs 2025, 85, 609–626. [Google Scholar] [CrossRef]
- Modzelewski, S.; Stankiewicz, A.; Waszkiewicz, N.; Łukasiewicz, K. Side effects of microdosing lysergic acid diethylamide and psilocybin: A systematic review of potential physiological and psychiatric outcomes. Neuropharmacology 2025, 271, 110402. [Google Scholar] [CrossRef]
- Meshkat, S.; Malik, G.; Zeifman, R.J.; Swainson, J.; Balachandra, K.; Reichelt, A.C.; Zhang, Y.; Burback, L.; Winkler, O.; Greenshaw, A.; et al. Efficacy and safety of psilocybin for the treatment of substance use disorders: A systematic review. Neurosci. Biobehav. Rev. 2025, 173, 106163. [Google Scholar] [CrossRef]
- Lowe, H.; Toyang, N.; Steele, B.; Valentine, H.; Grant, J.; Ali, A.; Ngwa, W.; Gordon, L. The Therapeutic Potential of Psilocybin. Molecules 2021, 26, 2948. [Google Scholar] [CrossRef] [PubMed]
- Wsół, A. Cardiovascular safety of psychedelic medicine: Current status and future directions. Pharmacol. Rep. 2023, 75, 1362–1380. [Google Scholar] [CrossRef] [PubMed]
- Dahmane, E.; Hutson, P.R.; Gobburu, J.V.S. Exposure-Response Analysis to Assess the Concentration-QTc Relationship of Psilocybin/Psilocin. Clin. Pharmacol. Drug Dev. 2021, 10, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Hackl, B.; Todt, H.; Kubista, H.; Hilber, K.; Koenig, X. Psilocybin Therapy of Psychiatric Disorders Is Not Hampered by hERG Potassium Channel-Mediated Cardiotoxicity. Int. J. Neuropsychopharmacol. 2022, 25, 280–282. [Google Scholar] [CrossRef]
- Ling, S.; Ceban, F.; Lui, L.M.W.; Lee, Y.; Teopiz, K.M.; Rodrigues, N.B.; Lipsitz, O.; Gill, H.; Subramaniapillai, M.; Mansur, R.B.; et al. Molecular Mechanisms of Psilocybin and Implications for the Treatment of Depression. CNS Drugs 2022, 36, 17–30. [Google Scholar] [CrossRef]
- Nutt, D.J.; Peill, J.M.; Weiss, B.; Godfrey, K.; Carhart-Harris, R.L.; Erritzoe, D. Psilocybin and Other Classic Psychedelics in Depression. Curr. Top. Behav. Neurosci. 2024, 66, 149–174. [Google Scholar] [CrossRef]
- Koehler, P.J.; Boes, C.J. History of migraine. Handb. Clin. Neurol. 2023, 198, 3–21. [Google Scholar] [CrossRef]
- Sueda, S.; Kurokawa, K.; Sakaue, T.; Ikeda, S. What is the meaning of provoked spasm phenotypes by vasoreactivity testing? J. Cardiol. 2024, 83, 1–7. [Google Scholar] [CrossRef]
- Hasler, F.; Bourquin, D.; Brenneisen, R.; Bär, T.; Vollenweider, F.X. Determination of psilocin and 4-hydroxyindole-3-acetic acid in plasma by HPLC-ECD and pharmacokinetic profiles of oral and intravenous psilocybin in man. Pharm. Acta Helv. 1997, 72, 175–184. [Google Scholar] [CrossRef]
- Nichols, D.E. Psilocybin: From ancient magic to modern medicine. J. Antibiot. 2020, 73, 679–686. [Google Scholar] [CrossRef]
- Neumann, J.; Dimov, K.; Azatsian, K.; Hofmann, B.; Gergs, U. Effects of psilocin and psilocybin on human 5-HT4 serotonin receptors in atrial preparations of transgenic mice and humans. Toxicol. Lett. 2024, 398, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Jacob, H.; Braekow, P.; Schwarz, R.; Höhm, C.; Kirchhefer, U.; Hofmann, B.; Neumann, J.; Gergs, U. Ergotamine Stimulates Human 5-HT4-Serotonin Receptors and Human H2-Histamine Receptors in the Heart. Int. J. Mol. Sci. 2023, 24, 4749. [Google Scholar] [CrossRef] [PubMed]
- Gergs, U.; Jacob, H.; Braekow, P.; Hofmann, B.; Pockes, S.; Humphrys, L.J.; Kirchhefer, U.; Fehse, C.; Neumann, J. Lysergic acid diethylamide stimulates cardiac human H2 histamine and cardiac human 5-HT4-serotonin receptors. Naunyn Schmiedeberg’s Arch. Pharmacol. 2024, 397, 221–236. [Google Scholar] [CrossRef] [PubMed]
- Jacob, H.; Braekow, P.; Hofmann, B.; Kirchhefer, U.; Forster, L.; Mönnich, D.; Humphrys, L.J.; Pockes, S.; Neumann, J.; Gergs, U. Ergometrine stimulates histamine H2 receptors in the isolated human atrium. Naunyn Schmiedeberg’s Arch. Pharmacol. 2023, 396, 3809–3822. [Google Scholar] [CrossRef]
- Hamstra, S.I.; Whitley, K.C.; Baranowski, R.W.; Kurgan, N.; Braun, J.L.; Messner, H.N.; Fajardo, V.A. The role of phospholamban and GSK3 in regulating rodent cardiac SERCA function. Am. J. Physiol. Cell Physiol. 2020, 319, C694–C699. [Google Scholar] [CrossRef]
- Tada, M.; Kirchberger, M.A.; Katz, A.M. Regulation of calcium transport in cardiac sarcoplasmic reticulum by cyclic AMP-dependent protein kinase. Recent Adv. Stud. Cardiac Struct. Metab. 1976, 9, 225–239. [Google Scholar]
- Ginsburg, R.; Bristow, M.R.; Stinson, E.B.; Harrison, D.C. Histamine receptors in the human heart. Life Sci. 1980, 26, 2245–2249. [Google Scholar] [CrossRef]
- Du, X.Y.; Schoemaker, R.G.; Bos, E.; Saxena, P.R. Different pharmacological responses of atrium and ventricle: Studies with human cardiac tissue. Eur. J. Pharmacol. 1994, 259, 173–180. [Google Scholar] [CrossRef]
- Baumann, G.; Felix, S.B.; Schrader, J.; Heidecke, C.D.; Riess, G.; Erhardt, W.D.; Ludwig, L.; Loher, U.; Sebening, F.; Blömer, H. Cardiac contractile and metabolic effects mediated via the myocardial H2-receptor adenylate cyclase system. Characterization of two new specific H2-receptor agonists, impromidine and dimaprit, in the guinea pig and human myocardium. Res. Exp. Med. 1981, 179, 81–98. [Google Scholar] [CrossRef]
- Bristow, M.R.; Cubicciotti, R.; Ginsburg, R.; Stinson, E.B.; Johnson, C. Histamine-mediated adenylate cyclase stimulation in human myocardium. Mol. Pharmacol. 1982, 21, 671–679. [Google Scholar] [CrossRef]
- Du, X.Y.; Schoemaker, R.G.; Bax, W.A.; Bos, E.; Saxena, P.R. Effects of histamine on porcine isolated myocardium: Differentiation from effects on human tissue. J. Cardiovasc. Pharmacol. 1993, 22, 468–473. [Google Scholar] [CrossRef] [PubMed]
- Brattelid, T.; Qvigstad, E.; Moltzau, L.R.; Bekkevold, S.V.S.; Sandnes, D.L.; Birkeland, J.A.K.; Skomedal, T.; Osnes, J.-B.; Sjaastad, I.; Levy, F.O. The cardiac ventricular 5-HT4 receptor is functional in late foetal development and is reactivated in heart failure. PLoS ONE 2012, 7, e45489. [Google Scholar] [CrossRef] [PubMed]
- Hersey, M.; Reneaux, M.; Berger, S.N.; Mena, S.; Buchanan, A.M.; Ou, Y.; Tavakoli, N.; Reagan, L.P.; Clopath, C.; Hashemi, P. A tale of two transmitters: Serotonin and histamine as in vivo biomarkers of chronic stress in mice. J. Neuroinflam. 2022, 19, 167. [Google Scholar] [CrossRef] [PubMed]
- Neumann, J.; Hofmann, B.; Dhein, S.; Gergs, U. Cardiac Roles of Serotonin (5-HT) and 5-HT-Receptors in Health and Disease. Int. J. Mol. Sci. 2023, 24, 4765. [Google Scholar] [CrossRef]
- Langendorff, O. Untersuchungen am überlebenden Säugethierherzen. Pflügers Arch. 1895, 61, 291–332. [Google Scholar] [CrossRef]
- Zimmer, H.-G. The Isolated Perfused Heart and Its Pioneers. News Physiol. Sci. 1998, 13, 203–210. [Google Scholar] [CrossRef]
- Neumann, J.; Kirchhefer, U.; Dhein, S.; Hofmann, B.; Gergs, U. The Roles of Cardiovascular H2-Histamine Receptors Under Normal and Pathophysiological Conditions. Front. Pharmacol. 2021, 12, 732842. [Google Scholar] [CrossRef]
Psilocin | ||||||
---|---|---|---|---|---|---|
WT | H2-TG | 5-HT4-TG | ||||
Basal | After Psilocin | Basal | After Psilocin | Basal | After Psilocin | |
N | 5 | 5 | 5 | |||
Force (mN) | 16.1 ± 2.3 | 17.8 ± 2.7 | 10.6 ± 0.7 | 12.0 ± 0.8 * | 12.1 ± 2.2 | 18.4 ± 1.7 * |
Rate of relaxation (mN/s) | −254.0 ± 28.2 | −231.4 ± 28.1 | −219.6 ± 12.8 | −229.6 ± 11.3 | −230.1 ± 35.8 | −381.5 ± 38.7 * |
Rate of tension development (mN/s) | 395.7 ± 40.0 | 423.8 ± 40.6 | 315.2 ± 22.1 | 325.5 ± 21.1 | 323.3 ± 46.0 | 536.8 ± 58.5 * |
Beating rate (bpm) | 257.3 ± 32.9 | 231.4 ± 28.1 | 384.7 ± 24.6 | 347.8 ± 25.0 | 332.9 ± 31.5 | 275.0 ± 39.8 * |
Time to peak tension (ms) | 40.1 ± 2.2 | 42.5 ± 2.2 | 33.7 ± 0.9 | 37.6 ± 1.4 | 35.1 ± 2.7 | 35.8 ± 3.4 |
Time of relaxation (ms) | 65.3 ± 5.2 | 70.9 ± 5.5 | 48.7 ± 2.4 | 52.0 ± 2.8 | 51.9 ± 2.4 | 52.7 ± 6.9 |
Psilocybin | ||||||
---|---|---|---|---|---|---|
WT | H2-TG | 5-HT4-TG | ||||
Basal | After Psilocybin | Basal | After Psilocybin | Basal | After Psilocybin | |
N | 5 | 5 | 5 | |||
Force (mN) | 15.5 ± 2.2 | 19.6 ± 3.1 | 13.2 ± 1.6 | 14.7 ± 1.7* | 12.2 ± 1.2 | 16.7 ± 1.6 * |
Rate of relaxation (mN/s) | −269.1 ± 48.8 | −354.2 ± 65.0 | −281.9 ± 35.0 | −298.9 ± 39.9 | −263.4 ± 38.1 | −393.3 ± 52.2 * |
Rate of tension development (mN/s) | 399.4 ± 49.1 | 515.9 ± 78.3 | 431.3 ± 43.9 | 432.7 ± 49.8 | 375.8 ± 41.3 | 521.7 ± 53.4 * |
Beating rate (bpm) | 253.8 ± 17.7 | 246.1 ± 13.3 | 364.5 ± 37.0 | 333.2 ± 44.9 | 332.6 ± 36.9 | 312.9 ± 36.7 |
Time to peak tension (ms) | 38.1 ± 1.9 | 38.5 ± 1.5 | 32.8 ± 1.7 | 36.8 ± 2.0 | 32.9 ± 0.4 | 32.7 ± 1.2 |
Time of relaxation (ms) | 65.0 ± 6.4 | 60.3 ± 0.9 | 48.5 ± 4.2 | 51.5 ± 5.7 | 49.2 ± 4.3 | 45.8 ± 4.0 |
LSD | ||||||
---|---|---|---|---|---|---|
WT | H2-TG | 5-HT4-TG | ||||
Basal | After LSD | Basal | After LSD | Basal | After LSD | |
N | 5 | 6 | 5 | |||
Force (mN) | 12.6 ± 2.7 | 14.9 ± 3.1 | 8.8 ± 1.5 | 15.1 ± 2.0 * | 13.6 ± 2.5 | 16.3 ± 2.7 * |
Rate of relaxation (mN/s) | −176.2 ± 38.7 | −186.3 ± 38.5 | −259.5 ± 60.2 | −363.5 ± 82.9 * | −243.3 ± 49.4 | −325.1 ± 74.8 |
Rate of tension development (mN/s) | 298.8 ± 64.0 | 330.6 ± 66.2 | 381.9 ± 26.2 | 252.0 ± 104.1 * | 360.1 ± 60.9 | 475.9 ± 94.4 * |
Beating rate (bpm) | 219.6 ± 20.8 | 193.1 ± 9.5 | 318.6 ± 26.2 | 293.7 ± 17.8 | 297.7 ± 29.1 | 275.6 ± 22.7 * |
Time to peak tension (ms) | 41.9 ± 1.8 | 43.8 ± 1.9 | 32.1 ± 1.2 | 29.7 ± 0.5 * | 36.3 ± 1.6 | 35.3 ± 2.3 |
Time of relaxation (ms) | 78.1 ± 4.1 | 85.0 ± 1.6 | 61.7 ± 5.3 | 47.7 ± 3.3 | 59.4 ± 3.1 | 66.1 ± 11.3 |
Ergometrine | ||||||
---|---|---|---|---|---|---|
WT | H2-TG | 5-HT4-TG | ||||
Basal | After Ergometrine | Basal | After Ergometrine | Basal | After Ergometrine | |
N | 5 | 6 | 5 | |||
Force (mN) | 12.9 ± 1.4 | 13.2 ± 1.4 | 7.9 ± 1.6 | 14.6 ± 2.8 * | 10.1 ± 2.9 | 11.6 ± 3.2 |
Rate of relaxation (mN/s) | −201.4 ± 22.4 | −205.0 ± 21.2 | −133.5 ± 20.8 | −310.7 ± 45.0 * | −167.7 ± 45.5 | −192.7 ± 55.0 |
Rate of tension development (mN/s) | 253.5 ± 34.3 | 352.3 ± 34.3 | 219.6 ± 30.2 | 446.7 ± 52.7 * | 271.7 ± 72.9 | 332.4 ± 96.7 |
Beating rate (bpm) | 258.5 ± 19.6 | 271.1 ± 15.0 | 370.3 ± 18.8 | 362.3 ± 27.3 | 294.6 ± 31.7 | 291.2 ± 23.0 |
Time to peak tension (ms) | 38.2 ± 2.0 | 38.9 ± 2.2 | 33.2 ± 2.4 | 30.2 ± 1.3 | 34.6 ± 2.5 | 35.0 ± 2.6 |
Time of relaxation (ms) | 68.0 ± 5.4 | 67.5 ± 6.3 | 56.0 ± 3.6 | 45.8 ± 3.8 * | 61.9 ± 4.8 | 65.3 ± 5.1 |
Ergotamine | ||||||
---|---|---|---|---|---|---|
WT | H2-TG | 5-HT4-TG | ||||
Basal | After Ergotamine | Basal | After Ergotamine | Basal | After Ergotamine | |
N | 5 | 7 | 5 | |||
Force (mN) | 12.8 ± 1.1 | 13.8 ± 1.2 | 10.6 ± 1.5 | 14.7 ± 1.9 * | 12.5 ± 3.2 | 15.5 ± 4.2 |
Rate of relaxation (mN/s) | −243.9 ± 9.0 | −268.5 ± 18.0 | −196.7 ± 26.6 | −292.5 ± 43.9 * | −183.4 ± 40.6 | −233.1 ± 56.0 |
Rate of tension development (mN/s) | 337.6 ± 34.4 | 368.1 ± 39.4 | 329.2 ± 46.4 | 435.0 ± 54.9 * | 298.2 ± 62.3 | 395.6 ± 93.4 |
Beating rate (bpm) | 262.2 ± 11.3 | 254.0 ± 8.7 | 352.7 ± 23.2 | 296.5 ± 41.3 | 279.5 ± 17.0 | 279.2 ± 17.9 |
Time to peak tension (ms) | 44.5 ± 7.3 | 45.2 ± 7.3 | 31.8 ± 1.3 | 34.6 ± 2.0 | 35.5 ± 2.8 | 38.0 ± 2.7 |
Time of relaxation (ms) | 57.2 ± 4.3 | 54.9 ± 6.2 | 53.7 ± 2.5 | 62.6 ± 11.9 | 70.8 ± 5.6 | 68.5 ± 4.5 |
HAP | HVP | WT Atrium | WT Whole Heart | H2-TG Atrium | H2-TG Whole Heart | 5-HT4-TG Atrium | 5-HT4-TG Whole Heart | |
---|---|---|---|---|---|---|---|---|
LSD | ↑ 5 | nd | − 5 | − 3,5 | ↑ 5 | ↑ 3 | ↑ 5 | ↑ 3 |
Ergotamine | ↑ 7 | nd | − 7 | − 3,7 | ↑ 7 | ↑ 3 | + 7 | − 3 |
Ergometrine | ↑ 6 | nd | − 6 | − 3,6 | ↑ 6 | ↑ 3 | − 6 | − 3 |
Psilocin | ↑ 4 | nd | − 4,10 | − 3 | nd | − 3 | ↑ 10 | ↑ 3 |
Psilocybin | ↑ 4 | nd | − 4,10 | − 3 | nd | − 3 | ↑ 10 | ↑ 3 |
5-HT | ↑ 1 | ↑ 1 | − 4,8 | − 3,8 | nd | nd | ↑ 1,8 | ↑ 1,8 |
Histamine | ↑ 2 | ↑ 2 | − 4,9 | − 3,9 | ↑ 2,9 | ↑ 2,9 | nd | nd |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Braekow, P.; Neumann, J.; Kirchhefer, U.; Gergs, U. Effects of Psilocin and Psilocybin on Human 5-HT4 Serotonin and H2 Histamine Receptors in Perfused Hearts of Transgenic Mice. Pharmaceuticals 2025, 18, 1009. https://doi.org/10.3390/ph18071009
Braekow P, Neumann J, Kirchhefer U, Gergs U. Effects of Psilocin and Psilocybin on Human 5-HT4 Serotonin and H2 Histamine Receptors in Perfused Hearts of Transgenic Mice. Pharmaceuticals. 2025; 18(7):1009. https://doi.org/10.3390/ph18071009
Chicago/Turabian StyleBraekow, Pauline, Joachim Neumann, Uwe Kirchhefer, and Ulrich Gergs. 2025. "Effects of Psilocin and Psilocybin on Human 5-HT4 Serotonin and H2 Histamine Receptors in Perfused Hearts of Transgenic Mice" Pharmaceuticals 18, no. 7: 1009. https://doi.org/10.3390/ph18071009
APA StyleBraekow, P., Neumann, J., Kirchhefer, U., & Gergs, U. (2025). Effects of Psilocin and Psilocybin on Human 5-HT4 Serotonin and H2 Histamine Receptors in Perfused Hearts of Transgenic Mice. Pharmaceuticals, 18(7), 1009. https://doi.org/10.3390/ph18071009