Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (475)

Search Parameters:
Keywords = construction and medical applications

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2440 KiB  
Article
An Ultra-Robust, Highly Compressible Silk/Silver Nanowire Sponge-Based Wearable Pressure Sensor for Health Monitoring
by Zijie Li, Ning Yu, Martin C. Hartel, Reihaneh Haghniaz, Sam Emaminejad and Yangzhi Zhu
Biosensors 2025, 15(8), 498; https://doi.org/10.3390/bios15080498 - 1 Aug 2025
Viewed by 92
Abstract
Wearable pressure sensors have emerged as vital tools in personalized monitoring, promising transformative advances in patient care and diagnostics. Nevertheless, conventional devices frequently suffer from limited sensitivity, inadequate flexibility, and concerns regarding biocompatibility. Herein, we introduce silk fibroin, a naturally occurring protein extracted [...] Read more.
Wearable pressure sensors have emerged as vital tools in personalized monitoring, promising transformative advances in patient care and diagnostics. Nevertheless, conventional devices frequently suffer from limited sensitivity, inadequate flexibility, and concerns regarding biocompatibility. Herein, we introduce silk fibroin, a naturally occurring protein extracted from silkworm cocoons, as a promising material platform for next-generation wearable sensors. Owing to its remarkable biocompatibility, mechanical robustness, and structural tunability, silk fibroin serves as an ideal substrate for constructing capacitive pressure sensors tailored to medical applications. We engineered silk-derived capacitive architecture and evaluated its performance in real-time human motion and physiological signal detection. The resulting sensor exhibits a high sensitivity of 18.68 kPa−1 over a broad operational range of 0 to 2.4 kPa, enabling accurate tracking of subtle pressures associated with pulse, respiration, and joint articulation. Under extreme loading conditions, our silk fibroin sensor demonstrated superior stability and accuracy compared to a commercial resistive counterpart (FlexiForce™ A401). These findings establish silk fibroin as a versatile, practical candidate for wearable pressure sensing and pave the way for advanced biocompatible devices in healthcare monitoring. Full article
(This article belongs to the Special Issue Wearable Biosensors and Health Monitoring)
Show Figures

Figure 1

34 pages, 5133 KiB  
Article
New Scalable Electrosynthesis of Distinct High Purity Graphene Nanoallotropes from CO2 Enabled by Transition Metal Nucleation
by Kyle Hofstetter, Gad Licht and Stuart Licht
Crystals 2025, 15(8), 680; https://doi.org/10.3390/cryst15080680 - 25 Jul 2025
Viewed by 176
Abstract
The electrochemical conversion of CO2 into high-purity Graphene NanoCarbon (GNC) materials provides a compelling path to address climate change while producing economically valuable nanomaterials. This work presents the progress and prospects of new large-scale syntheses of GNC allotropes via the C2CNT (CO [...] Read more.
The electrochemical conversion of CO2 into high-purity Graphene NanoCarbon (GNC) materials provides a compelling path to address climate change while producing economically valuable nanomaterials. This work presents the progress and prospects of new large-scale syntheses of GNC allotropes via the C2CNT (CO2 to Carbon Nano Technology) process. The C2CNT molten carbonate electrolysis technique enables the formation of Carbon NanoTubes (CNTs), Magnetic CNTs (MCNTs), Carbon Nano-Onions (CNOs), Carbon Nano-Scaffolds (CNSs), and Helical CNTs (HCNTs) directly from atmospheric or industrial CO2. We discuss the morphology control enabled through variations in electrolyte composition, temperature, current density, and nucleation additives. We present results from scaled operations reaching up to 1000 tons/year CO2 conversion and propose design approaches to reach megaton scales to support climate mitigation and GNC mass production. The products demonstrate high crystallinity, as evidenced by Raman, XRD, SEM, and TGA analyses, and offer promising applications in electronics, construction, catalysis, and medical sectors. Full article
(This article belongs to the Special Issue Exploring New Materials for the Transition to Sustainable Energy)
16 pages, 589 KiB  
Article
CT-Based Radiomics Enhance Respiratory Function Analysis for Lung SBRT
by Alice Porazzi, Mattia Zaffaroni, Vanessa Eleonora Pierini, Maria Giulia Vincini, Aurora Gaeta, Sara Raimondi, Lucrezia Berton, Lars Johannes Isaksson, Federico Mastroleo, Sara Gandini, Monica Casiraghi, Gaia Piperno, Lorenzo Spaggiari, Juliana Guarize, Stefano Maria Donghi, Łukasz Kuncman, Roberto Orecchia, Stefania Volpe and Barbara Alicja Jereczek-Fossa
Bioengineering 2025, 12(8), 800; https://doi.org/10.3390/bioengineering12080800 - 25 Jul 2025
Viewed by 429
Abstract
Introduction: Radiomics is the extraction of non-invasive and reproducible quantitative imaging features, which may yield mineable information for clinical practice implementation. Quantification of lung function through radiomics could play a role in the management of patients with pulmonary lesions. The aim of this [...] Read more.
Introduction: Radiomics is the extraction of non-invasive and reproducible quantitative imaging features, which may yield mineable information for clinical practice implementation. Quantification of lung function through radiomics could play a role in the management of patients with pulmonary lesions. The aim of this study is to test the capability of radiomic features to predict pulmonary function parameters, focusing on the diffusing capacity of lungs to carbon monoxide (DLCO). Methods: Retrospective data were retrieved from electronical medical records of patients treated with Stereotactic Body Radiation Therapy (SBRT) at a single institution. Inclusion criteria were as follows: (1) SBRT treatment performed for primary early-stage non-small cell lung cancer (ES-NSCLC) or oligometastatic lung nodules, (2) availability of simulation four-dimensional computed tomography (4DCT) scan, (3) baseline spirometry data availability, (4) availability of baseline clinical data, and (5) written informed consent for the anonymized use of data. The gross tumor volume (GTV) was segmented on 4DCT reconstructed phases representing the moment of maximum inhalation and maximum exhalation (Phase 0 and Phase 50, respectively), and radiomic features were extracted from the lung parenchyma subtracting the lesion/s. An iterative algorithm was clustered based on correlation, while keeping only those most associated with baseline and post-treatment DLCO. Three models were built to predict DLCO abnormality: the clinical model—containing clinical information; the radiomic model—containing the radiomic score; the clinical-radiomic model—containing clinical information and the radiomic score. For the models just described, the following were constructed: Model 1 based on the features in Phase 0; Model 2 based on the features in Phase 50; Model 3 based on the difference between the two phases. The AUC was used to compare their performances. Results: A total of 98 patients met the inclusion criteria. The Charlson Comorbidity Index (CCI) scored as the clinical variable most associated with baseline DLCO (p = 0.014), while the most associated features were mainly texture features and similar among the two phases. Clinical-radiomic models were the best at predicting both baseline and post-treatment abnormal DLCO. In particular, the performances for the three clinical-radiomic models at predicting baseline abnormal DLCO were AUC1 = 0.72, AUC2 = 0.72, and AUC3 = 0.75, for Model 1, Model 2, and Model 3, respectively. Regarding the prediction of post-treatment abnormal DLCO, the performances of the three clinical-radiomic models were AUC1 = 0.91, AUC2 = 0.91, and AUC3 = 0.95, for Model 1, Model 2, and Model 3, respectively. Conclusions: This study demonstrates that radiomic features extracted from healthy lung parenchyma on a 4DCT scan are associated with baseline pulmonary function parameters, showing that radiomics can add a layer of information in surrogate models for lung function assessment. Preliminary results suggest the potential applicability of these models for predicting post-SBRT lung function, warranting validation in larger, prospective cohorts. Full article
(This article belongs to the Special Issue Engineering the Future of Radiotherapy: Innovations and Challenges)
Show Figures

Figure 1

14 pages, 2935 KiB  
Article
Deep Learning-Based Differentiation of Vertebral Body Lesions on Magnetic Resonance Imaging
by Hüseyin Er, Murat Tören, Berkutay Asan, Esat Kaba and Mehmet Beyazal
Diagnostics 2025, 15(15), 1862; https://doi.org/10.3390/diagnostics15151862 - 24 Jul 2025
Viewed by 357
Abstract
Objectives: Spinal diseases are commonly encountered health problems with a wide spectrum. In addition to degenerative changes, other common spinal pathologies include metastases and compression fractures. Benign tumors like hemangiomas and infections such as spondylodiscitis are also frequently observed. Although magnetic resonance imaging [...] Read more.
Objectives: Spinal diseases are commonly encountered health problems with a wide spectrum. In addition to degenerative changes, other common spinal pathologies include metastases and compression fractures. Benign tumors like hemangiomas and infections such as spondylodiscitis are also frequently observed. Although magnetic resonance imaging (MRI) is considered the gold standard in diagnostic imaging, the morphological similarities of lesions can pose significant challenges in differential diagnoses. In recent years, the use of artificial intelligence applications in medical imaging has become increasingly widespread. In this study, we aim to detect and classify vertebral body lesions using the YOLO-v8 (You Only Look Once, version 8) deep learning architecture. Materials and Methods: This study included MRI data from 235 patients with vertebral body lesions. The dataset comprised sagittal T1- and T2-weighted sequences. The diagnostic categories consisted of acute compression fractures, metastases, hemangiomas, atypical hemangiomas, and spondylodiscitis. For automated detection and classification of vertebral lesions, the YOLOv8 deep learning model was employed. Following image standardization and data augmentation, a total of 4179 images were generated. The dataset was randomly split into training (80%) and validation (20%) subsets. Additionally, an independent test set was constructed using MRI images from 54 patients who were not included in the training or validation phases to evaluate the model’s performance. Results: In the test, the YOLOv8 model achieved classification accuracies of 0.84 and 0.85 for T1- and T2-weighted MRI sequences, respectively. Among the diagnostic categories, spondylodiscitis had the highest accuracy in the T1 dataset (0.94), while acute compression fractures were most accurately detected in the T2 dataset (0.93). Hemangiomas exhibited the lowest classification accuracy in both modalities (0.73). The F1 scores were calculated as 0.83 for T1-weighted and 0.82 for T2-weighted sequences at optimal confidence thresholds. The model’s mean average precision (mAP) 0.5 values were 0.82 for T1 and 0.86 for T2 datasets, indicating high precision in lesion detection. Conclusions: The YOLO-v8 deep learning model we used demonstrates effective performance in distinguishing vertebral body metastases from different groups of benign pathologies. Full article
Show Figures

Figure 1

35 pages, 5195 KiB  
Article
A Multimodal AI Framework for Automated Multiclass Lung Disease Diagnosis from Respiratory Sounds with Simulated Biomarker Fusion and Personalized Medication Recommendation
by Abdullah, Zulaikha Fatima, Jawad Abdullah, José Luis Oropeza Rodríguez and Grigori Sidorov
Int. J. Mol. Sci. 2025, 26(15), 7135; https://doi.org/10.3390/ijms26157135 - 24 Jul 2025
Viewed by 430
Abstract
Respiratory diseases represent a persistent global health challenge, underscoring the need for intelligent, accurate, and personalized diagnostic and therapeutic systems. Existing methods frequently suffer from limitations in diagnostic precision, lack of individualized treatment, and constrained adaptability to complex clinical scenarios. To address these [...] Read more.
Respiratory diseases represent a persistent global health challenge, underscoring the need for intelligent, accurate, and personalized diagnostic and therapeutic systems. Existing methods frequently suffer from limitations in diagnostic precision, lack of individualized treatment, and constrained adaptability to complex clinical scenarios. To address these challenges, our study introduces a modular AI-powered framework that integrates an audio-based disease classification model with simulated molecular biomarker profiles to evaluate the feasibility of future multimodal diagnostic extensions, alongside a synthetic-data-driven prescription recommendation engine. The disease classification model analyzes respiratory sound recordings and accurately distinguishes among eight clinical classes: bronchiectasis, pneumonia, upper respiratory tract infection (URTI), lower respiratory tract infection (LRTI), asthma, chronic obstructive pulmonary disease (COPD), bronchiolitis, and healthy respiratory state. The proposed model achieved a classification accuracy of 99.99% on a holdout test set, including 94.2% accuracy on pediatric samples. In parallel, the prescription module provides individualized treatment recommendations comprising drug, dosage, and frequency trained on a carefully constructed synthetic dataset designed to emulate real-world prescribing logic.The model achieved over 99% accuracy in medication prediction tasks, outperforming baseline models such as those discussed in research. Minimal misclassification in the confusion matrix and strong clinician agreement on 200 prescriptions (Cohen’s κ = 0.91 [0.87–0.94] for drug selection, 0.78 [0.74–0.81] for dosage, 0.96 [0.93–0.98] for frequency) further affirm the system’s reliability. Adjusted clinician disagreement rates were 2.7% (drug), 6.4% (dosage), and 1.5% (frequency). SHAP analysis identified age and smoking as key predictors, enhancing model explainability. Dosage accuracy was 91.3%, and most disagreements occurred in renal-impaired and pediatric cases. However, our study is presented strictly as a proof-of-concept. The use of synthetic data and the absence of access to real patient records constitute key limitations. A trialed clinical deployment was conducted under a controlled environment with a positive rate of satisfaction from experts and users, but the proposed system must undergo extensive validation with de-identified electronic medical records (EMRs) and regulatory scrutiny before it can be considered for practical application. Nonetheless, the findings offer a promising foundation for the future development of clinically viable AI-assisted respiratory care tools. Full article
Show Figures

Figure 1

17 pages, 382 KiB  
Review
Physics-Informed Neural Networks: A Review of Methodological Evolution, Theoretical Foundations, and Interdisciplinary Frontiers Toward Next-Generation Scientific Computing
by Zhiyuan Ren, Shijie Zhou, Dong Liu and Qihe Liu
Appl. Sci. 2025, 15(14), 8092; https://doi.org/10.3390/app15148092 - 21 Jul 2025
Viewed by 882
Abstract
Physics-informed neural networks (PINNs) have emerged as a transformative methodology integrating deep learning with scientific computing. This review establishes a three-dimensional analytical framework to systematically decode PINNs’ development through methodological innovation, theoretical breakthroughs, and cross-disciplinary convergence. The contributions include threefold: First, identifying the [...] Read more.
Physics-informed neural networks (PINNs) have emerged as a transformative methodology integrating deep learning with scientific computing. This review establishes a three-dimensional analytical framework to systematically decode PINNs’ development through methodological innovation, theoretical breakthroughs, and cross-disciplinary convergence. The contributions include threefold: First, identifying the co-evolutionary path of algorithmic architectures from adaptive optimization (neural tangent kernel-guided weighting achieving 230% convergence acceleration in Navier-Stokes solutions) to hybrid numerical-deep learning integration (5× speedup via domain decomposition) and second, constructing bidirectional theory-application mappings where convergence analysis (operator approximation theory) and generalization guarantees (Bayesian-physical hybrid frameworks) directly inform engineering implementations, as validated by 72% cost reduction compared to FEM in high-dimensional spaces (p<0.01,n=15 benchmarks). Third, pioneering cross-domain knowledge transfer through application-specific architectures: TFE-PINN for turbulent flows (5.12±0.87% error in NASA hypersonic tests), ReconPINN for medical imaging (SSIM=+0.18±0.04 on multi-institutional MRI), and SeisPINN for seismic systems (0.52±0.18 km localization accuracy). We further present a technological roadmap highlighting three critical directions for PINN 2.0: neuro-symbolic, federated physics learning, and quantum-accelerated optimization. This work provides methodological guidelines and theoretical foundations for next-generation scientific machine learning systems. Full article
Show Figures

Figure 1

26 pages, 7857 KiB  
Article
Investigation of an Efficient Multi-Class Cotton Leaf Disease Detection Algorithm That Leverages YOLOv11
by Fangyu Hu, Mairheba Abula, Di Wang, Xuan Li, Ning Yan, Qu Xie and Xuedong Zhang
Sensors 2025, 25(14), 4432; https://doi.org/10.3390/s25144432 - 16 Jul 2025
Viewed by 326
Abstract
Cotton leaf diseases can lead to substantial yield losses and economic burdens. Traditional detection methods are challenged by low accuracy and high labor costs. This research presents the ACURS-YOLO network, an advanced cotton leaf disease detection architecture developed on the foundation of YOLOv11. [...] Read more.
Cotton leaf diseases can lead to substantial yield losses and economic burdens. Traditional detection methods are challenged by low accuracy and high labor costs. This research presents the ACURS-YOLO network, an advanced cotton leaf disease detection architecture developed on the foundation of YOLOv11. By integrating a medical image segmentation model, it effectively tackles challenges including complex background interference, the missed detection of small targets, and restricted generalization ability. Specifically, the U-Net v2 module is embedded in the backbone network to boost the multi-scale feature extraction performance in YOLOv11. Meanwhile, the CBAM attention mechanism is integrated to emphasize critical disease-related features. To lower the computational complexity, the SPPF module is substituted with SimSPPF. The C3k2_RCM module is appended for long–range context modeling, and the ARelu activation function is employed to alleviate the vanishing gradient problem. A database comprising 3000 images covering six types of cotton leaf diseases was constructed, and data augmentation techniques were applied. The experimental results show that ACURS-YOLO attains impressive performance indicators, encompassing a mAP_0.5 value of 94.6%, a mAP_0.5:0.95 value of 83.4%, 95.5% accuracy, 89.3% recall, an F1 score of 92.3%, and a frame rate of 148 frames per second. It outperforms YOLOv11 and other conventional models with regard to both detection precision and overall functionality. Ablation tests additionally validate the efficacy of each component, affirming the framework’s advantage in addressing complex detection environments. This framework provides an efficient solution for the automated monitoring of cotton leaf diseases, advancing the development of smart sensors through improved detection accuracy and practical applicability. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

40 pages, 759 KiB  
Systematic Review
Decoding Trust in Artificial Intelligence: A Systematic Review of Quantitative Measures and Related Variables
by Letizia Aquilino, Cinzia Di Dio, Federico Manzi, Davide Massaro, Piercosma Bisconti and Antonella Marchetti
Informatics 2025, 12(3), 70; https://doi.org/10.3390/informatics12030070 - 14 Jul 2025
Viewed by 872
Abstract
As artificial intelligence (AI) becomes ubiquitous across various fields, understanding people’s acceptance and trust in AI systems becomes essential. This review aims to identify quantitative measures used to measure trust in AI and the associated studied elements. Following the PRISMA guidelines, three databases [...] Read more.
As artificial intelligence (AI) becomes ubiquitous across various fields, understanding people’s acceptance and trust in AI systems becomes essential. This review aims to identify quantitative measures used to measure trust in AI and the associated studied elements. Following the PRISMA guidelines, three databases were consulted, selecting articles published before December 2023. Ultimately, 45 articles out of 1283 were selected. Articles were included if they were peer-reviewed journal publications in English reporting empirical studies measuring trust in AI systems with multi-item questionnaires. Studies were analyzed through the lenses of cognitive and affective trust. We investigated trust definitions, questionnaires employed, types of AI systems, and trust-related constructs. Results reveal diverse trust conceptualizations and measurements. In addition, the studies covered a wide range of AI system types, including virtual assistants, content detection tools, chatbots, medical AI, robots, and educational AI. Overall, the studies show compatibility of cognitive or affective trust focus between theorization, items, experimental stimuli, and level of anthropomorphism of the systems. The review underlines the need to adapt measurement of trust in the specific characteristics of human–AI interaction, accounting for both the cognitive and affective sides. Trust definitions and measurement could be chosen depending also on the level of anthropomorphism of the systems and the context of application. Full article
Show Figures

Figure 1

40 pages, 600 KiB  
Article
Advanced Lifetime Modeling Through APSR-X Family with Symmetry Considerations: Applications to Economic, Engineering and Medical Data
by Badr S. Alnssyan, A. A. Bhat, Abdelaziz Alsubie, S. P. Ahmad, Abdulrahman M. A. Aldawsari and Ahlam H. Tolba
Symmetry 2025, 17(7), 1118; https://doi.org/10.3390/sym17071118 - 11 Jul 2025
Viewed by 228
Abstract
This paper introduces a novel and flexible class of continuous probability distributions, termed the Alpha Power Survival Ratio-X (APSR-X) family. Unlike many existing transformation-based families, the APSR-X class integrates an alpha power transformation with a survival ratio structure, offering a new mechanism for [...] Read more.
This paper introduces a novel and flexible class of continuous probability distributions, termed the Alpha Power Survival Ratio-X (APSR-X) family. Unlike many existing transformation-based families, the APSR-X class integrates an alpha power transformation with a survival ratio structure, offering a new mechanism for enhancing shape flexibility while maintaining mathematical tractability. This construction enables fine control over both the tail behavior and the symmetry properties, distinguishing it from traditional alpha power or survival-based extensions. We focus on a key member of this family, the two-parameter Alpha Power Survival Ratio Exponential (APSR-Exp) distribution, deriving essential mathematical properties including moments, quantile functions and hazard rate structures. We estimate the model parameters using eight frequentist methods: the maximum likelihood (MLE), maximum product of spacings (MPSE), least squares (LSE), weighted least squares (WLSE), Anderson–Darling (ADE), right-tailed Anderson–Darling (RADE), Cramér–von Mises (CVME) and percentile (PCE) estimation. Through comprehensive Monte Carlo simulations, we evaluate the estimator performance using bias, mean squared error and mean relative error metrics. The proposed APSR-X framework uniquely enables preservation or controlled modification of the symmetry in probability density and hazard rate functions via its shape parameter. This capability is particularly valuable in reliability and survival analyses, where symmetric patterns represent balanced risk profiles while asymmetric shapes capture skewed failure behaviors. We demonstrate the practical utility of the APSR-Exp model through three real-world applications: economic (tax revenue durations), engineering (mechanical repair times) and medical (infection durations) datasets. In all cases, the proposed model achieves a superior fit over that of the conventional alternatives, supported by goodness-of-fit statistics and visual diagnostics. These findings establish the APSR-X family as a unique, symmetry-aware modeling framework for complex lifetime data. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

21 pages, 5069 KiB  
Article
A Patent-Based Technology Roadmap for AI-Powered Manipulators: An Evolutionary Analysis of the B25J Classification
by Yujia Zhai, Zehao Liu, Rui Zhao, Xin Zhang and Gengfeng Zheng
Informatics 2025, 12(3), 69; https://doi.org/10.3390/informatics12030069 - 11 Jul 2025
Viewed by 543
Abstract
Technology roadmapping is conducted by systematic mapping of technological evolution through patent analytics to inform innovation strategies. This study proposes an integrated framework combining hierarchical Latent Dirichlet Allocation (LDA) modeling with multiphase technology lifecycle theory, analyzing 113,449 Derwent patent abstracts (2008–2022) across three [...] Read more.
Technology roadmapping is conducted by systematic mapping of technological evolution through patent analytics to inform innovation strategies. This study proposes an integrated framework combining hierarchical Latent Dirichlet Allocation (LDA) modeling with multiphase technology lifecycle theory, analyzing 113,449 Derwent patent abstracts (2008–2022) across three dimensions: technological novelty, functional applications, and competitive advantages. By segmenting innovation stages via logistic growth curve modeling and optimizing topic extraction through perplexity validation, we constructed dynamic technology roadmaps to decode latent evolutionary patterns in AI-powered programmable manipulators (B25J classification) within an innovation trajectory. Key findings revealed: (1) a progressive transition from electromechanical actuation to sensor-integrated architectures, evidenced by 58% compound annual growth in embedded sensing patents; (2) application expansion from industrial automation (72% early stage patents) to precision medical operations, with surgical robotics growing 34% annually since 2018; and (3) continuous advancements in adaptive control algorithms, showing 2.7× growth in reinforcement learning implementations. The methodology integrates quantitative topic modeling (via pyLDAvis visualization and cosine similarity analysis) with qualitative lifecycle theory, addressing the limitations of conventional technology analysis methods by reconciling semantic granularity with temporal dynamics. The results identify core innovation trajectories—precision control, intelligent detection, and medical robotics—while highlighting emerging opportunities in autonomous navigation and human–robot collaboration. This framework provides empirically grounded strategic intelligence for R&D prioritization, cross-industry investment, and policy formulation in Industry 4.0. Full article
Show Figures

Figure 1

17 pages, 1653 KiB  
Article
Establishing a Highly Accurate Circulating Tumor Cell Image Recognition System for Human Lung Cancer by Pre-Training on Lung Cancer Cell Lines
by Hiroki Matsumiya, Kenji Terabayashi, Yusuke Kishi, Yuki Yoshino, Masataka Mori, Masatoshi Kanayama, Rintaro Oyama, Yukiko Nemoto, Natsumasa Nishizawa, Yohei Honda, Taiji Kuwata, Masaru Takenaka, Yasuhiro Chikaishi, Kazue Yoneda, Koji Kuroda, Takashi Ohnaga, Tohru Sasaki and Fumihiro Tanaka
Cancers 2025, 17(14), 2289; https://doi.org/10.3390/cancers17142289 - 9 Jul 2025
Viewed by 401
Abstract
Background/Objectives: Circulating tumor cells (CTCs) are important biomarkers for predicting prognosis and evaluating treatment efficacy in cancer. We developed the “CTC-Chip” system based on microfluidics, enabling highly sensitive CTC detection and prognostic assessment in lung cancer and malignant pleural mesothelioma. However, the final [...] Read more.
Background/Objectives: Circulating tumor cells (CTCs) are important biomarkers for predicting prognosis and evaluating treatment efficacy in cancer. We developed the “CTC-Chip” system based on microfluidics, enabling highly sensitive CTC detection and prognostic assessment in lung cancer and malignant pleural mesothelioma. However, the final identification and enumeration of CTCs require manual intervention, which is time-consuming, prone to human error, and necessitates the involvement of experienced medical professionals. Medical image recognition using machine learning can reduce workload and improve automation. However, CTCs are rare in clinical samples, limiting the training data available to construct a robust CTC image recognition system. In this study, we established a highly accurate artificial intelligence-based CTC recognition system by pre-training convolutional neural networks using images from lung cancer cell lines. Methods: We performed transfer learning of convolutional neural networks. Initially, the models were pre-trained using images obtained from lung cancer cell lines. The model’s accuracy was improved by training with a limited number of clinical CTC images. Results: Transfer learning significantly improved the CTC classification accuracy to an average of 99.51%, compared to 96.96% for a model trained solely on pre-trained cell lines (p < 0.05). This approach showed notable efficacy when clinical training images were limited, achieving statistically significant accuracy improvements with as few as 17 clinical CTC images (p < 0.05). Conclusions: Overall, our findings demonstrate that pre-training with cancer cell lines enables rapid and highly accurate automated CTC recognition even with limited clinical data, significantly enhancing clinical applicability and potential utility across diverse cancer diagnostic workflows. Full article
(This article belongs to the Section Cancer Biomarkers)
Show Figures

Figure 1

20 pages, 3406 KiB  
Article
Single-Image Super-Resolution via Cascaded Non-Local Mean Network and Dual-Path Multi-Branch Fusion
by Yu Xu and Yi Wang
Sensors 2025, 25(13), 4044; https://doi.org/10.3390/s25134044 - 28 Jun 2025
Viewed by 562
Abstract
Image super-resolution (SR) aims to reconstruct high-resolution (HR) images from low-resolution (LR) inputs. It plays a crucial role in applications such as medical imaging, surveillance, and remote sensing. However, due to the ill-posed nature of the task and the inherent limitations of imaging [...] Read more.
Image super-resolution (SR) aims to reconstruct high-resolution (HR) images from low-resolution (LR) inputs. It plays a crucial role in applications such as medical imaging, surveillance, and remote sensing. However, due to the ill-posed nature of the task and the inherent limitations of imaging sensors, obtaining accurate HR images remains challenging. While numerous methods have been proposed, the traditional approaches suffer from oversmoothing and limited generalization; CNN-based models lack the ability to capture long-range dependencies; and Transformer-based solutions, although effective in modeling global context, are computationally intensive and prone to texture loss. To address these issues, we propose a hybrid CNN–Transformer architecture that cascades a pixel-wise self-attention non-local means module (PSNLM) and an adaptive dual-path multi-scale fusion block (ADMFB). The PSNLM is inspired by the non-local means (NLM) algorithm. We use weighted patches to estimate the similarity between pixels centered at each patch while limiting the search region and constructing a communication mechanism across ranges. The ADMFB enhances texture reconstruction by adaptively aggregating multi-scale features through dual attention paths. The experimental results demonstrate that our method achieves superior performance on multiple benchmarks. For instance, in challenging ×4 super-resolution, our method outperforms the second-best method by 0.0201 regarding the Structural Similarity Index (SSIM) on the BSD100 dataset. On the texture-rich Urban100 dataset, our method achieves a 26.56 dB Peak Signal-to-Noise Ratio (PSNR) and 0.8133 SSIM. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

21 pages, 2339 KiB  
Article
Crowdsourcing and Digital Information: Looking for a Future Research Agenda
by Fernando J. Garrigos-Simon and Yeamduan Narangajavana-Kaosiri
Information 2025, 16(7), 536; https://doi.org/10.3390/info16070536 - 25 Jun 2025
Viewed by 432
Abstract
Crowdsourcing has become increasingly relevant in academic research due to its role in the evolving digital landscape, where information is a key driver of organizational performance. In a context dominated by emerging technologies and digital platforms, organizations are turning to external sources for [...] Read more.
Crowdsourcing has become increasingly relevant in academic research due to its role in the evolving digital landscape, where information is a key driver of organizational performance. In a context dominated by emerging technologies and digital platforms, organizations are turning to external sources for data and idea generation. This paper offers a comprehensive review of the literature on crowdsourcing and digital information, using bibliometric techniques and qualitative analysis to identify major trends. The findings reveal several shifts in focus: from conceptual frameworks to practical applications; from customer participation to broader stakeholder involvement; and from general technological and managerial approaches to specific technologies and emerging perspectives in entrepreneurship and finance. The primary contributing disciplines are Computer Science, Engineering, and Information Science. Recent research (post 2023) emphasizes constructs such as “crowdfunding”, “digital platforms”, and “machine learning”, moving beyond earlier focuses like “citizen science” and “social media.” This review also reveals growing interest in managerial, medical, and cultural heritage applications, alongside a decline in research related to geography and crisis management over the past two years. This study enhances our understanding of current research directions and practical implications in crowdsourcing and digital information, offering valuable insights for both academics and practitioners. Full article
(This article belongs to the Special Issue New Information Communication Technologies in the Digital Era)
Show Figures

Figure 1

17 pages, 5666 KiB  
Article
Mechatronic and Robotic Systems Utilizing Pneumatic Artificial Muscles as Actuators
by Željko Šitum, Juraj Benić and Mihael Cipek
Inventions 2025, 10(4), 44; https://doi.org/10.3390/inventions10040044 - 23 Jun 2025
Viewed by 405
Abstract
This article presents a series of innovative systems developed through student laboratory projects, comprising two autonomous vehicles, a quadrupedal walking robot, an active ankle-foot orthosis, a ball-on-beam balancing mechanism, a ball-on-plate system, and a manipulator arm, all actuated by pneumatic artificial muscles (PAMs). [...] Read more.
This article presents a series of innovative systems developed through student laboratory projects, comprising two autonomous vehicles, a quadrupedal walking robot, an active ankle-foot orthosis, a ball-on-beam balancing mechanism, a ball-on-plate system, and a manipulator arm, all actuated by pneumatic artificial muscles (PAMs). Due to their flexibility, low weight, and compliance, fluidic muscles demonstrate substantial potential for integration into various mechatronic systems, robotic platforms, and manipulators. Their capacity to generate smooth and adaptive motion is particularly advantageous in applications requiring natural and human-like movements, such as rehabilitation technologies and assistive devices. Despite the inherent challenges associated with nonlinear behavior in PAM-actuated control systems, their biologically inspired design remains promising for a wide range of future applications. Potential domains include industrial automation, the automotive and aerospace sectors, as well as sports equipment, medical assistive devices, entertainment systems, and animatronics. The integration of self-constructed laboratory systems powered by PAMs into control systems education provides a comprehensive pedagogical framework that merges theoretical instruction with practical implementation. This methodology enhances the skillset of future engineers by deepening their understanding of core technical principles and equipping them to address emerging challenges in engineering practice. Full article
(This article belongs to the Section Inventions and Innovation in Advanced Manufacturing)
Show Figures

Figure 1

23 pages, 558 KiB  
Systematic Review
Factors Associated with Psychological Flexibility in Higher Education Students: A Systematic Review
by Goshgar Mursalzade, Sara Escriche-Martínez, Sonsoles Valdivia-Salas, Teresa I. Jiménez and Ginesa López-Crespo
Sustainability 2025, 17(12), 5557; https://doi.org/10.3390/su17125557 - 17 Jun 2025
Cited by 1 | Viewed by 632
Abstract
Background: This systematic review examined factors associated with psychological flexibility in higher education students. Objectives: This study aims to provide a comprehensive understanding of factors associated with psychological flexibility among higher education students. Methods: Following the Preferred Reporting Items for Systematic Reviews and [...] Read more.
Background: This systematic review examined factors associated with psychological flexibility in higher education students. Objectives: This study aims to provide a comprehensive understanding of factors associated with psychological flexibility among higher education students. Methods: Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology, a systematic search was conducted in the Web of Science and Scopus databases. Several inclusion criteria were employed in the study, such as sample characteristics and study design. As a synthesis method, the qualitative narrative synthesis method was used. Results: Thirty-one studies were included in the review for detailed analysis. Our findings indicated positive associations between psychological flexibility and numerous variables that enhance the mental health and academic success of university students. In addition, individuals characterized by high psychological flexibility demonstrated better adjustment to university life and experienced higher levels of well-being. In the meantime, some studies found negative associations between psychological flexibility and several variables that hinder student success and negatively impact their mental health. Among them, the screened studies reported COVID-19 burnout, disordered eating cognitions, severity of posttraumatic stress symptoms, anxiety and depressive symptoms, and others. Discussion: Examining psychological flexibility in such a broad review provides insights into this construct and its potential applications in enhancing student success and contributing to economic and social sustainability by reducing dropout rates, lowering the costs of psychological and medical care, and fostering a more resilient human capital. The main limitations in the reviewed articles were the absence of studies employing longitudinal designs, small sample sizes, and the limited investigation of relationships in online and hybrid learning models. Full article
Show Figures

Figure 1

Back to TopTop