Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = constitutive HSC70

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4336 KiB  
Article
Humanized scFv Molecule Specific to an Extracellular Epitope of P2X4R as Therapy for Chronic Pain Management
by Adinarayana Kunamneni and Karin N. Westlund
Cells 2025, 14(13), 953; https://doi.org/10.3390/cells14130953 - 22 Jun 2025
Viewed by 525
Abstract
Chronic pain affects a significant portion of the population, with fewer than 30% achieving adequate relief from existing treatments. This study describes the humanization methodology and characterization of an effective non-opioid single-chain fragment variable (scFv) biologic that reverses pain-related behaviors, in this case [...] Read more.
Chronic pain affects a significant portion of the population, with fewer than 30% achieving adequate relief from existing treatments. This study describes the humanization methodology and characterization of an effective non-opioid single-chain fragment variable (scFv) biologic that reverses pain-related behaviors, in this case by targeting P2X4. After nerve injury, ATP release activates/upregulates P2X4 receptors (P2X4R) sequestered in late endosomes, triggering a cascade of chronic pain-related events. Nine humanized scFv (hscFv) variants targeting a specific extracellular 13-amino-acid peptide fragment of human P2X4R were generated via CDR grafting. ELISA analysis revealed nanomolar binding affinities, with most humanized molecules exhibiting comparable or superior affinity compared to the original murine antibody. Octet measurements confirmed that the lead, HC3-LC3, exhibited nanomolar binding kinetics (KD = 2.5 × 10−9 M). In vivo functional validation with P2X4R hscFv reversed nerve injury-induced chronic pain-related behaviors with a single dose (0.4 mg/kg, intraperitoneal) within two weeks. The return to naïve baseline remained durably reduced > 100 days. In independent confirmation, the spared nerve injury (SNI) model was similarly reduced. This constitutes an original method whereby durable reversals of chronic nerve injury pain, anxiety and depression measures are accomplished. Full article
(This article belongs to the Special Issue Mechanisms and Therapies in Chronic Pain)
Show Figures

Figure 1

20 pages, 4516 KiB  
Article
Notch1 siRNA and AMD3100 Ameliorate Metabolic Dysfunction-Associated Steatotic Liver Disease
by Chunli Zhu, Yiheng Cheng, Lei Yang, Yifu Lyu, Jingjing Li, Pengbo Zhao, Ying Zhu, Xiaofei Xin and Lifang Yin
Biomedicines 2025, 13(2), 486; https://doi.org/10.3390/biomedicines13020486 - 16 Feb 2025
Viewed by 1209
Abstract
Background and Objectives: As a key mechanism of metabolic dysfunction-associated steatotic liver disease (MASLD) pathogenesis, inflammation triggered by chronic liver injury and immune cells with macrophages enables MASLD to progress to an advanced stage with irreversible processes such as fibrosis, cell necrosis, [...] Read more.
Background and Objectives: As a key mechanism of metabolic dysfunction-associated steatotic liver disease (MASLD) pathogenesis, inflammation triggered by chronic liver injury and immune cells with macrophages enables MASLD to progress to an advanced stage with irreversible processes such as fibrosis, cell necrosis, and cancer in the liver. The complexity of MASLD, including crosstalk between multiple organs and the liver, makes developing a new drug for MASLD challenging, especially in single-drug therapy. It was reported that upregulation of Notch1 is closely associated with the function of pro-inflammatory macrophages. To leverage this signaling pathway in treating MASLD, we developed a combination therapy. Materials and Methods: We chose Notch1 siRNA (siNotch1) to block the Notch pathway so that phenotypic regulation and functional recovery can be achieved in macrophages, combining with small molecule drug AMD3100. AMD3100 can cut off the migration of inflammatory cells to the liver to impede the development of inflammation and inhibit the CXCL12/CXCR4 biological axis in liver fibrosis to protect against the activation of HSCs. Then, we investigated the efficacy of the combination therapy on resolving inflammation and MASLD. Results: We demonstrated that in liver cells, siNotch1 combined with AMD3100 not only directly modulated macrophages by downregulating multiple pathways downstream of Notch, exerting anti-inflammatory, anti-migration, and switch of macrophage phenotype, but also modulated macrophage phenotypes through inhibiting NET release. The restored macrophages further regulate HSC and neutrophils. In in vivo pharmacodynamic studies, combination therapy exhibits a superior therapeutical effect over monotherapy in MASLD models. Conclusions: These results constitute an siRNA therapeutical approach combined with a small molecule drug against inflammation and liver injury in MASLD, offering a promising therapeutic intervention for MASLD. Full article
(This article belongs to the Special Issue NASH and Hepatocellular Carcinoma (HCC))
Show Figures

Figure 1

14 pages, 4343 KiB  
Article
Characterization of a Natural Accession of Elymus sibiricus with In Situ Hybridization and Agronomic Evaluation
by Yizhuo Liu, Jiarui Ding, Chunfei Wu, Weiwei Song, Xinyu Zhao, Haibin Zhao, Yunfeng Qu, Hui Jin, Rui Zhang, Mingyao Li, Xinyu Yan, Liangyu Zhu, Yaqi Bao, Dianhao Liu, Xinling Li, Lei Cui, Hongjie Li and Yanming Zhang
Plants 2025, 14(1), 75; https://doi.org/10.3390/plants14010075 - 29 Dec 2024
Viewed by 905
Abstract
Elymus sibiricus, valued for its perennial nature, broad adaptability, strong cold tolerance, and high economic value in forage production, plays a crucial role in combating grassland degradation, desertification, and salinization. Using morphological and cytogenetic methods, this study evaluated the cold tolerance, post-harvest [...] Read more.
Elymus sibiricus, valued for its perennial nature, broad adaptability, strong cold tolerance, and high economic value in forage production, plays a crucial role in combating grassland degradation, desertification, and salinization. Using morphological and cytogenetic methods, this study evaluated the cold tolerance, post-harvest regeneration capacity, and perennial characteristics of the E. sibiricus accession 20HSC-Z9 in the Harbin region of China from 2020 to 2023. This accession exhibited a germination rate of over 90% and a 100% green-up rate, with purple coleoptiles indicating its strong cold tolerance. Over the three growing seasons, 20HSC-Z9 maintained stable green-up and regeneration rates, confirming its perennial nature. Morphologically, 20HSC-Z9 had an average tiller count ranging from 56 to 74, similar to that of the control accession 20HSC-ES, and its plant height was significantly lower than that of 20HSC-IWG. Furthermore, 20HSC-Z9 produced over 100 grains per spike, with a seed setting rate exceeding 90%, and a thousand-grain weight comparable to that of 20HSC-IWG. The grain protein content of 20HSC-Z9 reached a maximum of 21.19%, greater than that of the control accessions (15.6% and 18.5%). Chromosome composition analysis, using sequential multicolor genomic in situ hybridization and multicolor fluorescence in situ hybridization, confirmed the StStHH genomic constitution of 20HSC-Z9 and revealed translocations between the St and H subgenome chromosomes. These results suggest that 20HSC-Z9 has significant potential as a new perennial forage grass germplasm for cold regions, suitable for further domestication and breeding efforts. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

18 pages, 2509 KiB  
Article
Elevated Expression of HSP72 in the Prefrontal Cortex and Hippocampus of Rats Subjected to Chronic Mild Stress and Treated with Imipramine
by Adam Bielawski, Agnieszka Zelek-Molik, Katarzyna Rafa-Zabłocka, Marta Kowalska, Piotr Gruca, Mariusz Papp and Irena Nalepa
Int. J. Mol. Sci. 2024, 25(1), 243; https://doi.org/10.3390/ijms25010243 - 23 Dec 2023
Cited by 6 | Viewed by 1818
Abstract
The HSP70 and HSP90 family members belong to molecular chaperones that exhibit protective functions during the cellular response to stressful agents. We investigated whether the exposure of rats to chronic mild stress (CMS), a validated model of depression, affects the expression of HSP70 [...] Read more.
The HSP70 and HSP90 family members belong to molecular chaperones that exhibit protective functions during the cellular response to stressful agents. We investigated whether the exposure of rats to chronic mild stress (CMS), a validated model of depression, affects the expression of HSP70 and HSP90 in the prefrontal cortex (PFC), hippocampus (HIP) and thalamus (Thal). Male Wistar rats were exposed to CMS for 3 or 8 weeks. The antidepressant imipramine (IMI, 10 mg/kg, i.p., daily) was introduced in the last five weeks of the long-term CMS procedure. Depressive-like behavior was verified by the sucrose consumption test. The expression of mRNA and protein was quantified by real-time PCR and Western blot, respectively. In the 8-week CMS model, stress alone elevated HSP72 and HSP90B mRNA expression in the HIP. HSP72 mRNA was increased in the PFC and HIP of rats not responding to IMI treatment vs. IMI responders. The CMS exposure increased HSP72 protein expression in the cytosolic fraction of the PFC and HIP, and this effect was diminished by IMI treatment. Our results suggest that elevated levels of HSP72 may serve as an important indicator of neuronal stress reactions accompanying depression pathology and could be a potential target for antidepressant strategy. Full article
Show Figures

Figure 1

24 pages, 8506 KiB  
Article
Unbonded Pre-Tensioned CF-Laminates Mechanically Anchored to HSC Beams as a Sustainable Repair Solution for Detachment of Bonded CF-Laminates
by Mohamed A. El Zareef, Sabiha Barour, Mosbeh R. Kaloop and Waleed E. El-Demerdash
Buildings 2023, 13(10), 2528; https://doi.org/10.3390/buildings13102528 - 6 Oct 2023
Viewed by 1252
Abstract
The present article outlines a Finite Element Model (FEM) that was created and validated by comparing it to prior experimental investigations to estimate the flexural performance of HSC beams strengthened with exterior bonded, unbonded, and unbonded pre-tensioned Carbon Fibre Reinforced Polymer (CFRP) sheets [...] Read more.
The present article outlines a Finite Element Model (FEM) that was created and validated by comparing it to prior experimental investigations to estimate the flexural performance of HSC beams strengthened with exterior bonded, unbonded, and unbonded pre-tensioned Carbon Fibre Reinforced Polymer (CFRP) sheets in several patterns. Nonlinear analysis was performed on three-point-loaded beams using ANSYS software, incorporating the constitutive characteristics of various components (concrete, CFRP, and steel). The comparison of FE-models and experimental data, namely for load-deflection curves, crack patterns, and failure modes, revealed that the developed numerical FE-models and experimental outcomes are in good accord. There has been numerous prior research on the behavior of beams strengthened with externally bonded CFRP sheets, but few on those reinforced with externally unbonded CFRP laminates, and even fewer on HSC beams reinforced with externally unbonded pre-tensioned CFRP laminates. Therefore, the major contribution of this article is to investigate the flexural behavior of HSC beams strengthened utilizing externally unbonded pre-tensioned CFRP laminates. The analysis revealed that the bending performance of RC-beams strengthened using external unbonded pre-tensioned CFRP-laminates is quite similar to that of bonded CFRP-strengthened beams, indicating a high potential for tackling the durability issues caused by detachment of bonded CFRP-strips in such structural elements. The existence of a fully wrapped CF sheet forced the beam to develop diagonal shear cracks in the region between the wrapped CF sheet and beam supports while also enhancing the flexural cracked zone at mid-span to change from smeared to discrete fractures. The flexural fractures spread over a deeper and wider area of the beam as a result of the incorporation of a half-wrap CF laminate. Externally unbonded CFRP-sheets pre-tensioned with 45% of the CFRP ultimate strength utilizing various patterns (straight and U-wrap) performed similarly to bonded CFRP-sheets, with a slight boost in load capacity of around 4.5% and notable reduces in deflection ranging from 9.7% to 16.24%. Using exterior unbonded CFRP laminates to strengthen RC-beams resulted in a flexural capacity increase ranging from 22.3% for NC beams to 71.6% for HSC beams. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

11 pages, 2055 KiB  
Article
Occurrence of L1M Elements in Chromosomal Rearrangements Associated to Chronic Myeloid Leukemia (CML): Insights from Patient-Specific Breakpoints Characterization
by Alberto L’Abbate, Vittoria Moretti, Ester Pungolino, Giovanni Micheloni, Roberto Valli, Annalisa Frattini, Matteo Barcella, Francesco Acquati, Rolland A Reinbold, Lucy Costantino, Fulvio Ferrara, Alessandra Trojani, Mario Ventura, Giovanni Porta and Roberto Cairoli
Genes 2023, 14(7), 1351; https://doi.org/10.3390/genes14071351 - 27 Jun 2023
Cited by 1 | Viewed by 2418
Abstract
Chronic myeloid leukemia (CML) is a rare myeloproliferative disorder caused by the reciprocal translocation t(9;22)(q34;q11) in hematopoietic stem cells (HSCs). This chromosomal translocation results in the formation of an extra-short chromosome 22, called a Philadelphia chromosome (Ph), containing the BCR-ABL1 fusion gene responsible [...] Read more.
Chronic myeloid leukemia (CML) is a rare myeloproliferative disorder caused by the reciprocal translocation t(9;22)(q34;q11) in hematopoietic stem cells (HSCs). This chromosomal translocation results in the formation of an extra-short chromosome 22, called a Philadelphia chromosome (Ph), containing the BCR-ABL1 fusion gene responsible for the expression of a constitutively active tyrosine kinase that causes uncontrolled growth and replication of leukemic cells. Mechanisms behind the formation of this chromosomal rearrangement are not well known, even if, as observed in tumors, repetitive DNA may be involved as core elements in chromosomal rearrangements. We have participated in the explorative investigations of the PhilosoPhi34 study to evaluate residual Ph+ cells in patients with negative FISH analysis on CD34+/lin- cells with gDNA qPCR. Using targeted next-generation deep sequencing strategies, we analyzed the genomic region around the t(9;22) translocations of 82 CML patients and one CML cell line and assessed the relevance of interspersed repeat elements at breakpoints (BP). We found a statistically higher presence of LINE elements, in particular belonging to the subfamily L1M, in BP cluster regions of both chromosome 22 and 9 compared to the whole human genome. These data suggest that L1M elements could be potential drivers of t(9;22) translocation leading to the generation of the BCR-ABL1 chimeric gene and the expression of the active BCR-ABL1-controlled tyrosine kinase chimeric protein responsible for CML. Full article
(This article belongs to the Special Issue Genetics of Blood Disorders)
Show Figures

Figure 1

10 pages, 753 KiB  
Article
Impact of Global Warming on Kryal Fauna: Thermal Tolerance Response of Diamesa steinboecki (Goetghebuer, 1933; Chironomidae)
by Ana-Belén Muñiz-González, José-Luis Martínez-Guitarte and Valeria Lencioni
Diversity 2023, 15(6), 708; https://doi.org/10.3390/d15060708 - 26 May 2023
Cited by 6 | Viewed by 1845
Abstract
The ice fly Diamesa steinboecki Goetghebuer, 1933 (Diptera: Chironomidae: Diamesinae) is exclusive to glacier-fed streams in the East Palaearctic region and is threatened by extinction due to global warming and glacier retreat. To date, no data are available on its thermal tolerance or [...] Read more.
The ice fly Diamesa steinboecki Goetghebuer, 1933 (Diptera: Chironomidae: Diamesinae) is exclusive to glacier-fed streams in the East Palaearctic region and is threatened by extinction due to global warming and glacier retreat. To date, no data are available on its thermal tolerance or ability to develop a heat shock response (HSR) or involve other biomarkers when exposed to higher-than-natural temperatures (i.e., >4–6 °C). Our study aimed to investigate the warmth resistance of IV-instar larvae of D. steinboecki in terms of (1) ability to survive heat shock and (2) gene expression of four genes known to be involved in the detoxification/stress response (cytochrome p450 (Cyp450), heat shock protein 70 (hsp70), hsp70 with intron and heat shock protein cognate 70 (hsc70)). Larvae were exposed to short-term shocks for 1 h at increasing temperatures (26, 28, 30, 32, 34, 36, 38, and 40 °C) to estimate the lethal temperature, obtaining high values (LT10 = 38.1 °C, LT50 = 39.2 °C, LT99 = 40.3 °C), suggesting a strong heat resistance up to 38 °C and a very rapid decline in survival thereafter. Moreover, gene expression analysis by real-time PCR was performed on larvae from the control (at 2 °C) and larvae found alive after the previous treatment at 26, 28, 30, 32, 34, 36, and 38 °C. Modulation of the expression was observed only for hsc70 and hsp70 genes. Specifically, hsc70 resulted in constitutive overexpression, even at 26 °C when all larvae were found alive without evidence of suffering. By contrast, hsp70 showed up and downregulation according to the specific temperature, suggesting the activation of an HSR at 28 °C, when some larvae were found alive but suffering (almost paralyzed). The results suggest that, based on LTs, D. steinboecki is more thermally tolerant than other Diamesa species (e.g., D. tonsa) from cold freshwaters, but, as in these, hsp70 and hsc70 are involved in surviving short-term heat shock. This makes the ice fly from the Alps different from Belgica antarctica and other cold-adapted organisms living in extremely cold habitats that, constantly exposed to cold, have lost the ability to develop an HSR. Further research is needed to investigate the response to prolonged exposure to temperatures higher that the natural one, giving new insights into the biological response to climate change of alpine species threatened by extinction. Full article
Show Figures

Figure 1

14 pages, 2495 KiB  
Article
Co-Transplantation of Barcoded Lymphoid-Primed Multipotent (LMPP) and Common Lymphocyte (CLP) Progenitors Reveals a Major Contribution of LMPP to the Lymphoid Lineage
by Victoria Michaels, Smahane Chalabi, Agnes Legrand, Julie Renard, Emmanuel Tejerina, Marina Daouya, Sylvie Fabrega, Jérôme Megret, Robert Olaso, Anne Boland, Jean-François Deleuze, Christophe Battail, Diana Tronik-Le Roux and Sophie Ezine
Int. J. Mol. Sci. 2023, 24(5), 4368; https://doi.org/10.3390/ijms24054368 - 22 Feb 2023
Viewed by 2887
Abstract
T cells have the potential to maintain immunological memory and self-tolerance by recognizing antigens from pathogens or tumors. In pathological situations, failure to generate de novo T cells causes immunodeficiency resulting in acute infections and complications. Hematopoietic stem cells (HSC) transplantation constitutes a [...] Read more.
T cells have the potential to maintain immunological memory and self-tolerance by recognizing antigens from pathogens or tumors. In pathological situations, failure to generate de novo T cells causes immunodeficiency resulting in acute infections and complications. Hematopoietic stem cells (HSC) transplantation constitutes a valuable option to restore proper immune function. However, delayed T cell reconstitution is observed compared to other lineages. To overcome this difficulty, we developed a new approach to identify populations with efficient lymphoid reconstitution properties. To this end, we use a DNA barcoding strategy based on the insertion into a cell chromosome of a lentivirus (LV) carrying a non-coding DNA fragment named barcode (BC). These will segregate through cell divisions and be present in cells’ progeny. The remarkable characteristic of the method is that different cell types can be tracked simultaneously in the same mouse. Thus, we in vivo barcoded LMPP and CLP progenitors to test their ability to reconstitute the lymphoid lineage. Barcoded progenitors were co-grafted in immuno-compromised mice and their fate analyzed by evaluating the BC composition in transplanted mice. The results highlight the predominant role of LMPP progenitors for lymphoid generation and reveal valuable novel insights to be reconsidered in clinical transplantation assays. Full article
(This article belongs to the Collection Feature Papers in Molecular Immunology)
Show Figures

Figure 1

19 pages, 2439 KiB  
Article
Roles of Macrophages in Advanced Liver Fibrosis, Identified Using a Newly Established Mouse Model of Diet-Induced Non-Alcoholic Steatohepatitis
by Yuki Tada, Kaichi Kasai, Nana Makiuchi, Naoya Igarashi, Koudai Kani, Shun Takano, Hiroe Honda, Tsutomu Yanagibashi, Yasuharu Watanabe, Fumitake Usui-Kawanishi, Yukihiro Furusawa, Mayuko Ichimura-Shimizu, Yoshiaki Tabuchi, Kiyoshi Takatsu, Koichi Tsuneyama and Yoshinori Nagai
Int. J. Mol. Sci. 2022, 23(21), 13251; https://doi.org/10.3390/ijms232113251 - 31 Oct 2022
Cited by 12 | Viewed by 4778
Abstract
Macrophages play critical roles in the pathogenesis of non-alcoholic steatohepatitis (NASH). However, it is unclear which macrophage subsets are critically involved in the development of inflammation and fibrosis in NASH. In TSNO mice fed a high-fat/cholesterol/cholate-based diet, which exhibit advanced liver fibrosis that [...] Read more.
Macrophages play critical roles in the pathogenesis of non-alcoholic steatohepatitis (NASH). However, it is unclear which macrophage subsets are critically involved in the development of inflammation and fibrosis in NASH. In TSNO mice fed a high-fat/cholesterol/cholate-based diet, which exhibit advanced liver fibrosis that mimics human NASH, we found that Kupffer cells (KCs) were less abundant and recruited macrophages were more abundant, forming hepatic crown-like structures (hCLS) in the liver. The recruited macrophages comprised two subsets: CD11c+/Ly6C and CD11c/Ly6C+ cells. CD11c+ cells were present in a mesh-like pattern around the lipid droplets, constituting the hCLS. In addition, CD11c+ cells colocalized with collagen fibers, suggesting that this subset of recruited macrophages might promote advanced liver fibrosis. In contrast, Ly6C+ cells were present in doughnut-like inflammatory lesions, with a lipid droplet in the center. Finally, RNA sequence analysis indicates that CD11c+/Ly6C cells promote liver fibrosis and hepatic stellate cell (HSC) activation, whereas CD11c/Ly6C+ cells are a macrophage subset that play an anti-inflammatory role and promote tissue repair in NASH. Taken together, our data revealed changes in liver macrophage subsets during the development of NASH and shed light on the roles of the recruited macrophages in the pathogenesis of advanced fibrosis in NASH. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

16 pages, 1910 KiB  
Article
Physical Interaction between Embryonic Stem Cell-Expressed Ras (ERas) and Arginase-1 in Quiescent Hepatic Stellate Cells
by Silke Pudewell, Jana Lissy, Hossein Nakhaeizadeh, Mohamed S. Taha, Mohammad Akbarzadeh, Soheila Rezaei Adariani, Saeideh Nakhaei-Rad, Junjie Li, Claus Kordes, Dieter Häussinger, Roland P. Piekorz, Miriam M. Cortese-Krott and Mohammad Reza Ahmadian
Cells 2022, 11(3), 508; https://doi.org/10.3390/cells11030508 - 1 Feb 2022
Cited by 4 | Viewed by 3547
Abstract
Embryonic stem cell-expressed Ras (ERas) is an atypical constitutively active member of the Ras family and controls distinct signaling pathways, which are critical, for instance, for the maintenance of quiescent hepatic stellate cells (HSCs). Unlike classical Ras paralogs, ERas has a unique N-terminal [...] Read more.
Embryonic stem cell-expressed Ras (ERas) is an atypical constitutively active member of the Ras family and controls distinct signaling pathways, which are critical, for instance, for the maintenance of quiescent hepatic stellate cells (HSCs). Unlike classical Ras paralogs, ERas has a unique N-terminal extension (Nex) with as yet unknown function. In this study, we employed affinity pull-down and quantitative liquid chromatography-tandem mass spectrometry (LC–MS/MS) analyses and identified 76 novel binding proteins for human and rat ERas Nex peptides, localized in different subcellular compartments and involved in various cellular processes. One of the identified Nex-binding proteins is the nonmitochondrial, cytosolic arginase 1 (ARG1), a key enzyme of the urea cycle and involved in the de novo synthesis of polyamines, such as spermidine and spermine. Here, we show, for the first time, a high-affinity interaction between ERas Nex and purified ARG1 as well as their subcellular colocalization. The inhibition of ARG1 activity strikingly accelerates the activation of HSCs ex vivo, suggesting a central role of ARG1 activity in the maintenance of HSC quiescence. Full article
Show Figures

Graphical abstract

19 pages, 3813 KiB  
Article
Macrophages Modulate Hepatic Injury Involving NLRP3 Inflammasome: The Example of Efavirenz
by Fernando Alegre, Alberto Martí-Rodrigo, Miriam Polo, Dolores Ortiz-Masiá, Celia Bañuls, Marcello Pinti, Ángeles Álvarez, Nadezda Apostolova, Juan V. Esplugues and Ana Blas-García
Biomedicines 2022, 10(1), 109; https://doi.org/10.3390/biomedicines10010109 - 5 Jan 2022
Cited by 5 | Viewed by 3079
Abstract
Drug-induced liver injury (DILI) constitutes a clinical challenge due to the incomplete characterization of the mechanisms involved and potential risk factors. Efavirenz, an anti-HIV drug, induces deleterious actions in hepatocytes that could underlie induction of the NLRP3 inflammasome, an important regulator of inflammatory [...] Read more.
Drug-induced liver injury (DILI) constitutes a clinical challenge due to the incomplete characterization of the mechanisms involved and potential risk factors. Efavirenz, an anti-HIV drug, induces deleterious actions in hepatocytes that could underlie induction of the NLRP3 inflammasome, an important regulator of inflammatory responses during liver injury. We assessed the potential of efavirenz to modulate the inflammatory and fibrogenic responses of major liver cell types involved in DILI. The effects of efavirenz were evaluated both in vitro and in vivo. Efavirenz triggered inflammation in hepatocytes, in a process that involved NF-κB and the NLRP3 inflammasome, and activated hepatic stellate cells (HSCs), thereby enhancing expression of inflammatory and fibrogenic markers. The NLRP3 inflammasome was not altered in efavirenz-treated macrophages, but these cells polarized towards the anti-inflammatory M2 phenotype and displayed upregulated anti-inflammatory mediators. Conversely, no evidence of damage was observed in efavirenz-treated animals, except when macrophages were depleted, which resulted in the in vivo manifestation of the deleterious effects detected in hepatocytes and HSCs. Efavirenz elicits a cell-specific activation of the NLRP3 inflammasome in hepatocytes and HSCs, but macrophages appear to counteract efavirenz-induced liver injury. Our results highlight the dynamic nature of the interaction among liver cell populations and emphasize the potential of targeting macrophage polarization as a strategy to treat NLRP3 inflammasome-induced liver injury. Full article
Show Figures

Figure 1

16 pages, 2089 KiB  
Review
Unzipping the Secrets of Amyloid Disassembly by the Human Disaggregase
by Aitor Franco, Lorea Velasco-Carneros, Naiara Alvarez, Natalia Orozco, Fernando Moro, Adelina Prado and Arturo Muga
Cells 2021, 10(10), 2745; https://doi.org/10.3390/cells10102745 - 14 Oct 2021
Cited by 8 | Viewed by 3732
Abstract
Neurodegenerative diseases (NDs) are increasingly positioned as leading causes of global deaths. The accelerated aging of the population and its strong relationship with neurodegeneration forecast these pathologies as a huge global health problem in the upcoming years. In this scenario, there is an [...] Read more.
Neurodegenerative diseases (NDs) are increasingly positioned as leading causes of global deaths. The accelerated aging of the population and its strong relationship with neurodegeneration forecast these pathologies as a huge global health problem in the upcoming years. In this scenario, there is an urgent need for understanding the basic molecular mechanisms associated with such diseases. A major molecular hallmark of most NDs is the accumulation of insoluble and toxic protein aggregates, known as amyloids, in extracellular or intracellular deposits. Here, we review the current knowledge on how molecular chaperones, and more specifically a ternary protein complex referred to as the human disaggregase, deals with amyloids. This machinery, composed of the constitutive Hsp70 (Hsc70), the class B J-protein DnaJB1 and the nucleotide exchange factor Apg2 (Hsp110), disassembles amyloids of α-synuclein implicated in Parkinson’s disease as well as of other disease-associated proteins such as tau and huntingtin. We highlight recent studies that have led to the dissection of the mechanism used by this chaperone system to perform its disaggregase activity. We also discuss whether this chaperone-mediated disassembly mechanism could be used to solubilize other amyloidogenic substrates. Finally, we evaluate the implications of the chaperone system in amyloid clearance and associated toxicity, which could be critical for the development of new therapies. Full article
Show Figures

Figure 1

13 pages, 8010 KiB  
Article
Heat Shock Protein 70 Family in Response to Multiple Abiotic Stresses in the Silkworm
by Shou-Min Fang, Qian Zhang, Yu-Li Zhang, Gui-Zheng Zhang, Ze Zhang and Quan-You Yu
Insects 2021, 12(10), 928; https://doi.org/10.3390/insects12100928 - 12 Oct 2021
Cited by 29 | Viewed by 3651
Abstract
The 70 kDa heat shock proteins play important roles in protecting organisms against environmental stresses, which are divided into stress-inducible forms (HSP70s) and heat shock cognates (HSC70s). In this study, heat shock protein 70 family was identified in the whole genome of the [...] Read more.
The 70 kDa heat shock proteins play important roles in protecting organisms against environmental stresses, which are divided into stress-inducible forms (HSP70s) and heat shock cognates (HSC70s). In this study, heat shock protein 70 family was identified in the whole genome of the silkworm. Based on the known nomenclature and phylogenetic analysis, four HSP70s and five HSC70s were classified. Relatively, heat shock cognates were more conservative and were constitutively expressed in various tissues of the silkworm larvae. Under thermal (37 °C and 42 °C) and cold (2 °C) stresses, the expressions of HSP70–1, HSP70–2, and HSP70–3 were up-regulated, and the highest induction reached 4147.3, 607.1, and 1987.3 times, respectively. Interestingly, HSC70–1, HSC70–4, and HSC70–5 also showed slight induced expressions in the fat body and/or midgut under thermal stresses. In addition, the expression of HSP70–1 was induced by dichlorvos and phoxim insecticides, while most HSC70 genes were inhibited. The results suggested that stress-inducible forms play more important roles in adaptation to various stresses than HSC70s. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Figure 1

18 pages, 1616 KiB  
Review
Hepatic Stellate Cell Activation and Inactivation in NASH-Fibrosis—Roles as Putative Treatment Targets?
by Alexandra Zisser, David H. Ipsen and Pernille Tveden-Nyborg
Biomedicines 2021, 9(4), 365; https://doi.org/10.3390/biomedicines9040365 - 31 Mar 2021
Cited by 78 | Viewed by 15142
Abstract
Hepatic fibrosis is the primary predictor of mortality in patients with non-alcoholic steatohepatitis (NASH). In this process, the activated hepatic stellate cells (HSCs) constitute the principal cells responsible for the deposition of a fibrous extracellular matrix, thereby driving the hepatic scarring. HSC activation, [...] Read more.
Hepatic fibrosis is the primary predictor of mortality in patients with non-alcoholic steatohepatitis (NASH). In this process, the activated hepatic stellate cells (HSCs) constitute the principal cells responsible for the deposition of a fibrous extracellular matrix, thereby driving the hepatic scarring. HSC activation, migration, and proliferation are controlled by a complex signaling network involving growth factors, lipotoxicity, inflammation, and cellular stress. Conversely, the clearance of activated HSCs is a prerequisite for the resolution of the extracellular fibrosis. Hence, pathways regulating the fate of the HSCs may represent attractive therapeutic targets for the treatment and prevention of NASH-associated hepatic fibrosis. However, the development of anti-fibrotic drugs for NASH patients has not yet resulted in clinically approved therapeutics, underscoring the complex biology and challenges involved when targeting the intricate cellular signaling mechanisms. This narrative review investigated the mechanisms of activation and inactivation of HSCs with a focus on NASH-associated hepatic fibrosis. Presenting an updated overview, this review highlights key cellular pathways with potential value for the development of future treatment modalities. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

14 pages, 2224 KiB  
Article
Hepatic Stellate Cells and Hepatocytes as Liver Antigen-Presenting Cells during B. abortus Infection
by Paula Constanza Arriola Benitez, Ayelén Ivana Pesce Viglietti, María Mercedes Elizalde, Guillermo Hernán Giambartolomei, Jorge Fabián Quarleri and María Victoria Delpino
Pathogens 2020, 9(7), 527; https://doi.org/10.3390/pathogens9070527 - 30 Jun 2020
Cited by 5 | Viewed by 3444
Abstract
In Brucellosis, the role of hepatic stellate cells (HSCs) in the induction of liver fibrosis has been elucidated recently. Here, we study how the infection modulates the antigen-presenting capacity of LX-2 cells. Brucella abortus infection induces the upregulation of class II transactivator protein [...] Read more.
In Brucellosis, the role of hepatic stellate cells (HSCs) in the induction of liver fibrosis has been elucidated recently. Here, we study how the infection modulates the antigen-presenting capacity of LX-2 cells. Brucella abortus infection induces the upregulation of class II transactivator protein (CIITA) with concomitant MHC-I and -II expression in LX-2 cells in a manner that is independent from the expression of the type 4 secretion system (T4SS). In concordance, B. abortus infection increases the phagocytic ability of LX-2 cells and induces MHC-II-restricted antigen processing and presentation. In view of the ability of B. abortus-infected LX-2 cells to produce monocyte-attracting factors, we tested the capacity of culture supernatants from B. abortus-infected monocytes on MHC-I and –II expression in LX-2 cells. Culture supernatants from B. abortus-infected monocytes do not induce MHC-I and -II expression. However, these supernatants inhibit MHC-II expression induced by IFN-γ in an IL-10 dependent mechanism. Since hepatocytes constitute the most abundant epithelial cell in the liver, experiments were conducted to determine the contribution of these cells in antigen presentation in the context of B. abortus infection. Our results indicated that B. abortus-infected hepatocytes have an increased MHC-I expression, but MHC-II levels remain at basal levels. Overall, B. abortus infection induces MHC-I and -II expression in LX-2 cells, increasing the antigen presentation. Nevertheless, this response could be modulated by resident or infiltrating monocytes/macrophages. Full article
(This article belongs to the Special Issue Host Immune Responses and Pathogenesis to Brucella spp. Infection)
Show Figures

Figure 1

Back to TopTop