Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = confined space inspection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 5266 KiB  
Article
Continuously Variable Geometry Quadrotor: Robust Control via PSO-Optimized Sliding Mode Control
by Foad Hamzeh, Siavash Fathollahi Dehkordi, Alireza Naeimifard and Afshin Abyaz
Actuators 2025, 14(7), 308; https://doi.org/10.3390/act14070308 - 23 Jun 2025
Cited by 1 | Viewed by 371
Abstract
This paper tackles the challenge of achieving robust and precise control for a novel quadrotor featuring continuously variable arm lengths (15 cm to 19 cm), enabling enhanced adaptability in complex environments. Unlike conventional fixed-geometry or discretely morphing unmanned aerial vehicles, this design’s continuous [...] Read more.
This paper tackles the challenge of achieving robust and precise control for a novel quadrotor featuring continuously variable arm lengths (15 cm to 19 cm), enabling enhanced adaptability in complex environments. Unlike conventional fixed-geometry or discretely morphing unmanned aerial vehicles, this design’s continuous structural changes introduce significant complexities in modeling its time-varying moment of inertia. To address this, we propose a control strategy that decouples dynamic motion from the evolving geometry, allowing for the development of a robust control model. A sliding mode control algorithm, optimized using particle swarm optimization, is implemented to ensure stability and high performance in the presence of uncertainties and noise. Extensive MATLAB 2016 simulations validate the proposed approach, demonstrating superior tracking accuracy in both fixed and variable arm-length configurations, achieving root mean square error values of 0.05 m (fixed arms), 0.06 m (variable arms, path 1), and 0.03 m (variable arms, path 2). Notably, the PSO-tuned SMC controller reduces tracking error by 30% (0.07 m vs. 0.10 m for PID) and achieves a 40% faster settling time during structural transitions. This improvement is attributed to the PSO-optimized SMC parameters that effectively adapt to the continuously changing inertia, concurrently minimizing chattering by 10%. This research advances the field of morphing UAVs by integrating continuous geometric adaptability with precise and robust control, offering significant potential for energy-efficient flight and navigation in confined spaces, as well as applications in autonomous navigation and industrial inspection. Full article
(This article belongs to the Section Aerospace Actuators)
Show Figures

Figure 1

19 pages, 6883 KiB  
Article
Autonomous, Collaborative, and Confined Infrastructure Assessment with Purpose-Built Mega-Joey Robots
by Hitesh Bhardwaj, Nabil Shaukat, Andrew Barber, Andy Blight, George Jackson-Mills, Andrew Pickering, Manman Yang, Muhammad Azam Mohd Sharif, Linyan Han, Songyan Xin and Robert Richardson
Robotics 2025, 14(6), 80; https://doi.org/10.3390/robotics14060080 - 10 Jun 2025
Viewed by 848
Abstract
The inspection of sewer pipes in the UK is costly, and if not inspected regularly, they are costly and disruptive to repair. This paper presents the Mega-Joey, a novel miniature, tether-less robot platform that is capable of autonomously navigating and assessing confined spaces, [...] Read more.
The inspection of sewer pipes in the UK is costly, and if not inspected regularly, they are costly and disruptive to repair. This paper presents the Mega-Joey, a novel miniature, tether-less robot platform that is capable of autonomously navigating and assessing confined spaces, such as small-diameter underground pipelines. This paper also discusses a novel decentralized event-based-broadcasting autonomous exploration algorithm designed for exploring such pipe networks collaboratively. The designed robot is able to operate in pipes with an inclination of up to 20 degrees in dry and up to 10 degrees in wet conditions. A team of Mega-Joeys was used to explore a test network using the proposed algorithm. The experimental results show that the team of robots was able to explore a 3850 mm long test network within a faster period (36% faster) and in a more energy-efficient manner (approximately 54% more efficient) than a single robot could achieve. Full article
(This article belongs to the Section Intelligent Robots and Mechatronics)
Show Figures

Figure 1

33 pages, 16534 KiB  
Article
Design of 3D Scanning Technology Using a Method with No External Reference Elements and Without Repositioning of the Device Relative to the Object
by Adrián Vodilka, Marek Kočiško, Martin Pollák, Jakub Kaščak and Jozef Török
Appl. Sci. 2025, 15(8), 4533; https://doi.org/10.3390/app15084533 - 19 Apr 2025
Viewed by 672
Abstract
The use of 3D scanning technologies for surface scanning of objects is limited by environmental conditions and technology requirements based on their characteristics. Among the emerging fields is technical diagnostics in areas of hard-to-reach places with varying surface characteristics of objects of different [...] Read more.
The use of 3D scanning technologies for surface scanning of objects is limited by environmental conditions and technology requirements based on their characteristics. Among the emerging fields is technical diagnostics in areas of hard-to-reach places with varying surface characteristics of objects of different materials, where the use of commercially available 3D scanning technologies is limited by space. Furthermore, in these areas it is not convenient to use external reference elements or to move the equipment during the digitization process. This paper presents a novel markerless 3D scanning system capable of digitizing objects in confined spaces without requiring external reference elements or repositioning the device relative to the object and aims to address this challenge by designing a 3D scanning technology using the Active Shape from Stereo technique utilizing laser vertical line projection. For this purpose, a testing and prototype design and a software solution using a unique method of calculating 3D surface coordinates have been proposed. In addition to hard-to-reach places, this solution can be used as a desktop 3D scanner and for other 3D digitizing applications for objects of different materials and surface characteristics. Furthermore, the device is well suited to inspecting 3D printed objects, enabling quick, markerless checks of surface geometry and dimensions during the process of 3D printing to ensure printing accuracy and quality. Full article
Show Figures

Figure 1

21 pages, 12826 KiB  
Article
HeSARIC: A Heterogeneous Cyber–Physical Robotic Swarm Framework for Structural Health Monitoring with Augmented Reality Representation
by Alireza Fath, Christoph Sauter, Yi Liu, Brandon Gamble, Dylan Burns, Evan Trombley, Sai Krishna Reddy Sathi, Tian Xia and Dryver Huston
Micromachines 2025, 16(4), 460; https://doi.org/10.3390/mi16040460 - 13 Apr 2025
Cited by 1 | Viewed by 774
Abstract
This study proposes a cyber–physical framework for the integration of a heterogeneous swarm of robots, sensors, microrobots, and AR for structural health monitoring and confined space inspection based on the application’s unique challenges. The structural issues investigated are cracks in the walls, deformation [...] Read more.
This study proposes a cyber–physical framework for the integration of a heterogeneous swarm of robots, sensors, microrobots, and AR for structural health monitoring and confined space inspection based on the application’s unique challenges. The structural issues investigated are cracks in the walls, deformation of the structures, and damage to the culverts and devices commonly used in buildings. The PC and augmented reality interfaces are incorporated for human–robot collaboration to provide the necessary information to the human user while teleoperating the robots. The proposed interfaces use edge computing and machine learning to enhance operator interactions and to improve damage detection in confined spaces and challenging environments. The proposed swarm inspection framework is called HeSARIC. Full article
Show Figures

Figure 1

16 pages, 8058 KiB  
Article
Design of a Prototype of an Innovative 3D Scanning Technology for Use in the Digitization of Hard-to-Reach Places
by Adrián Vodilka, Marek Kočiško and Jakub Kaščak
Appl. Sci. 2025, 15(5), 2817; https://doi.org/10.3390/app15052817 - 5 Mar 2025
Cited by 1 | Viewed by 930
Abstract
This research addresses the challenge of digitizing the surface of objects in hard-to-reach areas and focuses on the integration of reverse engineering techniques with innovative digitization approaches. Conventional non-destructive testing techniques, such as industrial videoscope inspection, lack the ability to capture accurate geometric [...] Read more.
This research addresses the challenge of digitizing the surface of objects in hard-to-reach areas and focuses on the integration of reverse engineering techniques with innovative digitization approaches. Conventional non-destructive testing techniques, such as industrial videoscope inspection, lack the ability to capture accurate geometric and surface information without the need for disassembly of the components. To overcome these limitations, this research proposes a 3D digitizing prototype that integrates structured light, laser scanning, and active stereo techniques. The device utilizes ESP32-CAM modules and compact mechanical components designed for portability and usability in confined spaces. Experimental validation involved scanning complex and reflective surfaces, including printer components and the engine compartment of an automobile, demonstrating the device’s ability to produce detailed point clouds in challenging environments. Key innovations include a unique approach for utilizing 3D scanning techniques of active stereovision using a folding mechanism. The findings highlight the device’s potential for applications in technical diagnostics, industrial inspection, and environments where traditional digitizing technologies could not be utilized. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

23 pages, 15527 KiB  
Article
Foundations for Teleoperation and Motion Planning Towards Robot-Assisted Aircraft Fuel Tank Inspection
by Adrián Ricárdez Ortigosa, Marc Bestmann, Florian Heilemann, Johannes Halbe, Lewe Christiansen, Rebecca Rodeck and Gerko Wende
Aerospace 2025, 12(2), 156; https://doi.org/10.3390/aerospace12020156 - 18 Feb 2025
Cited by 2 | Viewed by 1315
Abstract
The aviation industry relies on continuous inspections to ensure infrastructure safety, particularly in confined spaces like aircraft fuel tanks, where human inspections are labor-intensive, risky, and expose workers to hazardous exposures. Robotic systems present a promising alternative to these manual processes but face [...] Read more.
The aviation industry relies on continuous inspections to ensure infrastructure safety, particularly in confined spaces like aircraft fuel tanks, where human inspections are labor-intensive, risky, and expose workers to hazardous exposures. Robotic systems present a promising alternative to these manual processes but face significant technical and operational challenges, including technological limitations, retraining requirements, and economic constraints. Additionally, existing prototypes often lack open-source documentation, which restricts researchers and developers from replicating setups and building on existing work. This study addresses some of these challenges by proposing a modular, open-source framework for robotic inspection systems that prioritizes simplicity and scalability. The design incorporates a robotic arm and an end-effector equipped with three RGB-D cameras to enhance the inspection process. The primary contribution lies in the development of decentralized software modules that facilitate integration and future advancements, including interfaces for teleoperation and motion planning. Preliminary results indicate that the system offers an intuitive user experience, while also enabling effective 3D reconstruction for visualization. However, improvements in incremental obstacle avoidance and path planning inside the tank interior are still necessary. Nonetheless, the proposed robotic system promises to streamline development efforts, potentially reducing both time and resources for future robotic inspection systems. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

15 pages, 3650 KiB  
Article
Development of a Tendon-Driven Continuum Robot for Medical Applications
by N. Yaswanth Siva Sai, Prajakta Koratkar, Indrajit Desai, Rajkumar Bhimgonda Patil and Sandip Mane
Eng 2025, 6(2), 29; https://doi.org/10.3390/eng6020029 - 6 Feb 2025
Cited by 1 | Viewed by 1586
Abstract
This paper presents the design, kinematics, and development of a tendon-driven continuum robot for surgical applications. The continuum robot has a flexible and adaptable construction that imitates the movements of natural organisms. The robot’s unique structure comprises disk members, springs, and a continuum [...] Read more.
This paper presents the design, kinematics, and development of a tendon-driven continuum robot for surgical applications. The continuum robot has a flexible and adaptable construction that imitates the movements of natural organisms. The robot’s unique structure comprises disk members, springs, and a continuum backbone member, enabling it to bend, contract, and deform in complex ways. The robot is operated by pulling tendons, giving it the agility and flexibility necessary to bend in confined spaces. This study discusses the main design considerations and challenges in creating a tendon-driven continuum robot, including the kinematics of the four-tendon mechanism. The developed tendon-driven continuum robot is categorized into two modules: the distal end and the proximal end. The distal end consists of the continuum robot structure, whereas the proximal module consists of the actuating unit that actuates the distal end. The experimental results demonstrate the continuum robot’s ability to be used in medical fields and pipe inspections because of the miniaturized design of the distal end, which allows it to enter confined spaces. This paper provides valuable insights into the design, kinematics, and appropriate materials to build a tendon-driven continuum robot; its bending and deformation capabilities can be used in many fields, especially surgical applications and confined space explorations. Full article
(This article belongs to the Section Electrical and Electronic Engineering)
Show Figures

Figure 1

19 pages, 10571 KiB  
Article
Efficient Urban Soil Improvement Using Soil Squeezing Technology for Constrained Environments
by Shinya Inazumi, Kuo Chieh Chao, Tetsuo Iida and Takeshi Yamada
Sustainability 2025, 17(1), 317; https://doi.org/10.3390/su17010317 - 3 Jan 2025
Viewed by 1070
Abstract
This study introduces soil squeezing technology (SST) as an innovative approach to soil improvement that addresses the limitations of conventional methods in urban geotechnical projects. Unlike traditional in situ mixing, SST uses displacement, compaction, and controlled solidification to effectively increase soil cohesion and [...] Read more.
This study introduces soil squeezing technology (SST) as an innovative approach to soil improvement that addresses the limitations of conventional methods in urban geotechnical projects. Unlike traditional in situ mixing, SST uses displacement, compaction, and controlled solidification to effectively increase soil cohesion and strength while reducing voids. By minimizing reliance on large mixing plants and bulky machinery, SST offers significant advantages in confined urban spaces, providing accessibility and operational efficiency. This paper describes the mechanism of SST, field application procedures, and adaptability to different soil types including humus and organic-rich soils. The compaction-driven approach ensures the consistent formation of dense, high-strength columnar soil structures, even in challenging geotechnical environments. Field studies demonstrate SST’s superior bearing capacity, uniformity, and reduced site disturbance compared to conventional methods, making it suitable for modern infrastructure. Quality control through real-time inspection further highlights the operational reliability of SST. This research underscores SST’s potential as a cost-effective, scalable solution that meets the stringent demands of urban development while minimizing environmental impact and optimizing resource use. Full article
Show Figures

Figure 1

22 pages, 17290 KiB  
Article
Testing Concrete Sewer Maintenance Holes Using an Angular Modulated Penetrometer
by Sampath Thamel, Robert Ross, Alex Stumpf, Fernando Galetto and Jason Cotton
Materials 2024, 17(24), 6187; https://doi.org/10.3390/ma17246187 - 18 Dec 2024
Viewed by 749
Abstract
Around the world, a significant proportion of sewers and sewer maintenance holes are constructed from concrete. Unfortunately, one major problem with concrete sewer infrastructure is corrosion caused by biogenic hydrogen sulphide, which causes major issues for concrete structural integrity. Furthermore, concrete may be [...] Read more.
Around the world, a significant proportion of sewers and sewer maintenance holes are constructed from concrete. Unfortunately, one major problem with concrete sewer infrastructure is corrosion caused by biogenic hydrogen sulphide, which causes major issues for concrete structural integrity. Furthermore, concrete may be significantly corroded and softened but still pass a visual inspection. The novel system presented in this paper uses a penetrometer mounted on a robotic platform to measure the depth of penetration through a corroded concrete surface. An angular mechanism is used to rotate the penetrometer to new positions as striking aggregate may result in false readings. Based on laboratory analysis, this design is capable of providing consistent and precise multiple observations for both smooth and rough surfaces, as well as for flat and curved surfaces, with 0.1 mm accuracy. The use of a remote robotic platform eliminates the hazards of confined space entry whilst providing a repeatable analysis platform. Full article
Show Figures

Figure 1

17 pages, 3340 KiB  
Article
GMS-YOLO: An Algorithm for Multi-Scale Object Detection in Complex Environments in Confined Compartments
by Qixiang Ding, Weichao Li, Chengcheng Xu, Mingyuan Zhang, Changchong Sheng, Min He and Nanliang Shan
Sensors 2024, 24(17), 5789; https://doi.org/10.3390/s24175789 - 5 Sep 2024
Cited by 2 | Viewed by 2148
Abstract
Many compartments are prone to pose safety hazards such as loose fasteners or object intrusion due to their confined space, making manual inspection challenging. To address the challenges of complex inspection environments, diverse target categories, and variable scales in confined compartments, this paper [...] Read more.
Many compartments are prone to pose safety hazards such as loose fasteners or object intrusion due to their confined space, making manual inspection challenging. To address the challenges of complex inspection environments, diverse target categories, and variable scales in confined compartments, this paper proposes a novel GMS-YOLO network, based on the improved YOLOv8 framework. In addition to the lightweight design, this network accurately detects targets by leveraging more precise high-level and low-level feature representations obtained from GhostHGNetv2, which enhances feature-extraction capabilities. To handle the issue of complex environments, the backbone employs GhostHGNetv2 to capture more accurate high-level and low-level feature representations, facilitating better distinction between background and targets. In addition, this network significantly reduces both network parameter size and computational complexity. To address the issue of varying target scales, the first layer of the feature fusion module introduces Multi-Scale Convolutional Attention (MSCA) to capture multi-scale contextual information and guide the feature fusion process. A new lightweight detection head, Shared Convolutional Detection Head (SCDH), is designed to enable the model to achieve higher accuracy while being lighter. To evaluate the performance of this algorithm, a dataset for object detection in this scenario was constructed. The experiment results indicate that compared to the original model, the parameter number of the improved model decreased by 37.8%, the GFLOPs decreased by 27.7%, and the average accuracy increased from 82.7% to 85.0%. This validates the accuracy and applicability of the proposed GMS-YOLO network. Full article
(This article belongs to the Special Issue Compressed Sensing and Imaging Processing—2nd Edition)
Show Figures

Figure 1

14 pages, 2438 KiB  
Article
Comparative Analysis of Endodontic ISO Size 06, 08, and 10 Stainless Steel K-Files Used for Glide Path Procedures
by Abayomi Omokeji Baruwa, Filipa Chasqueira, Sofia Arantes-Oliveira, João Caramês, Duarte Marques, Jaime Portugal and Jorge N. R. Martins
Dent. J. 2024, 12(4), 98; https://doi.org/10.3390/dj12040098 - 10 Apr 2024
Viewed by 2582
Abstract
Small-sized stainless steel hand files are conventionally employed in root canal treatment procedures for canal scouting and for glide path establishment, owing to their superior flexibility and proficiency in navigating confined spaces. Given the diversity of brands available in the market, there exists [...] Read more.
Small-sized stainless steel hand files are conventionally employed in root canal treatment procedures for canal scouting and for glide path establishment, owing to their superior flexibility and proficiency in navigating confined spaces. Given the diversity of brands available in the market, there exists potential variability in their physical characteristics, thereby influencing clinical performance. Consequently, this study aims to conduct a comparative analysis of the design, metallurgy, and mechanical characteristics among seven stainless steel hand file brands across ISO sizes 06, 08, and 10. A total of 315 new 25 mm length stainless steel hand files with apical sizes of 0.06, 0.08, and 0.10 from seven distinct brands were included in the study. A meticulous inspection of all instruments was undertaken to identify any structural deformations that might render them ineligible for the study. The design inspection involved the random selection of instruments from each group, which were examined under various microscopes, including a dental operating microscope, optical microscope, and scanning electron microscope. Furthermore, two instruments from each group underwent energy-dispersive X-ray spectroscopy analysis for elemental composition documentation. Mechanical tests were conducted to evaluate the instruments’ resistance to lateral deformation (buckling) and their microhardness. Statistical analysis was executed using the nonparametric Mood’s median test, with a predetermined significance level of 0.05. Regarding the instruments design, all files exhibited an active blade length ranging from 16 to 17 mm. However, variations were observed in the number of spirals, tip designs, and sizes, with the API K-File notably larger in sizes 0.06 and 0.08 compared to the other instruments. Despite uniform elements composition, differences in geometric features and mechanical properties were evident. Concerning buckling strength, the API K-File demonstrated superior performance across all tested sizes, while the Dentsply ReadySteel, SybronEndo, and Mani K-Files exhibited lower results (p < 0.05). In microhardness assessments, both the API and Oro K-Files displayed the lowest outcomes, with medians of 531 HVN and 532 HVN, respectively, whereas the SybronEndo K-File exhibited the highest microhardness (657 HVN). Despite similar metallurgical composition, the observed distinctions in geometric features and mechanical properties underscore the impact of the manufacturing process on the characteristics of glide path stainless steel endodontic files. These disparities may ultimately influence their clinical performance. Full article
Show Figures

Figure 1

23 pages, 41214 KiB  
Article
A Deep Learning Approach for Surface Crack Classification and Segmentation in Unmanned Aerial Vehicle Assisted Infrastructure Inspections
by Shamendra Egodawela, Amirali Khodadadian Gostar, H. A. D. Samith Buddika, A. J. Dammika, Nalin Harischandra, Satheeskumar Navaratnam and Mojtaba Mahmoodian
Sensors 2024, 24(6), 1936; https://doi.org/10.3390/s24061936 - 18 Mar 2024
Cited by 9 | Viewed by 3812
Abstract
Surface crack detection is an integral part of infrastructure health surveys. This work presents a transformative shift towards rapid and reliable data collection capabilities, dramatically reducing the time spent on inspecting infrastructures. Two unmanned aerial vehicles (UAVs) were deployed, enabling the capturing of [...] Read more.
Surface crack detection is an integral part of infrastructure health surveys. This work presents a transformative shift towards rapid and reliable data collection capabilities, dramatically reducing the time spent on inspecting infrastructures. Two unmanned aerial vehicles (UAVs) were deployed, enabling the capturing of images simultaneously for efficient coverage of the structure. The suggested drone hardware is especially suitable for the inspection of infrastructure with confined spaces that UAVs with a broader footprint are incapable of accessing due to a lack of safe access or positioning data. The collected image data were analyzed using a binary classification convolutional neural network (CNN), effectively filtering out images containing cracks. A comparison of state-of-the-art CNN architectures against a novel CNN layout “CrackClassCNN” was investigated to obtain the optimal layout for classification. A Segment Anything Model (SAM) was employed to segment defect areas, and its performance was benchmarked against manually annotated images. The suggested “CrackClassCNN” achieved an accuracy rate of 95.02%, and the SAM segmentation process yielded a mean Intersection over Union (IoU) score of 0.778 and an F1 score of 0.735. It was concluded that the selected UAV platform, the communication network, and the suggested processing techniques were highly effective in surface crack detection. Full article
(This article belongs to the Topic AI Enhanced Civil Infrastructure Safety)
Show Figures

Figure 1

22 pages, 8081 KiB  
Article
Investigation of Submerged MEMS Ultrasonic Sensors for Underwater Obstacle Avoidance Application
by Zhihao Wang, Wendong Zhang, Renxin Wang, Changde He, Shurui Liu, Jingwen Wang, Zhaodong Li, Xiaoxing Lu, Yun Qin, Guojun Zhang, Jiangong Cui, Yuhua Yang and Licheng Jia
Remote Sens. 2024, 16(3), 497; https://doi.org/10.3390/rs16030497 - 28 Jan 2024
Cited by 8 | Viewed by 3586
Abstract
Ultrasound is a powerful and versatile technology that has been applied extensively in medicine and scientific research. The development of miniature underwater robots focuses on achieving specific tasks, such as surveys and inspections in confined spaces. However, traditional sonar has limited use in [...] Read more.
Ultrasound is a powerful and versatile technology that has been applied extensively in medicine and scientific research. The development of miniature underwater robots focuses on achieving specific tasks, such as surveys and inspections in confined spaces. However, traditional sonar has limited use in micro underwater robots due to its large size and heavy power demands. Conversely, capacitive micromechanical ultrasonic transducers (CMUTs) offer various advantages, including a wide bandwidth, compact size, and integration feasibility. These attributes make CMUTs a candidate for obstacle avoidance in micro underwater robots. Hence, a novel CMUT structure using Si-Si bonding is proposed. In this design, a membrane isolation layer replaces the cavity bottom isolation layer, simplifying the process and improving bond reliability. A finite element model of the CMUT was constructed in COMSOL and numerically assessed for the CMUT’s operating frequency, collapse voltage, and submerged depth. The CMUT, manufactured using micro-electro-mechanical system (MEMS) technology, undergoes waterproofing with PDMS—A material with similar acoustic impedance to water and corrosion resistance. Underwater tests reveal the CMUT’s resonant frequency in water as approximately 2 MHz, with a −3 dB bandwidth of 108.7%, a transmit/receive beam width of 7.3°, and a standard deviation of measured distance from the true distance of less than 0.05. These outcomes suggest that CMUTs hold promise in obstacle avoidance applications for fish-shaped underwater robots. Full article
(This article belongs to the Section Engineering Remote Sensing)
Show Figures

Graphical abstract

10 pages, 1711 KiB  
Article
Tracking Sensor Location by Video Analysis in Double-Shell Tank Inspections
by Jacob Price, Ethan Aaberg, Changki Mo and John Miller
Appl. Sci. 2023, 13(15), 8708; https://doi.org/10.3390/app13158708 - 28 Jul 2023
Cited by 1 | Viewed by 1414
Abstract
Double-shell tanks (DSTs) are a critical part of the infrastructure for nuclear waste management at the U.S. Department of Energy’s Hanford site. They are expected to be used for the interim storage of partially liquid nuclear waste until 2050, which is the target [...] Read more.
Double-shell tanks (DSTs) are a critical part of the infrastructure for nuclear waste management at the U.S. Department of Energy’s Hanford site. They are expected to be used for the interim storage of partially liquid nuclear waste until 2050, which is the target date for completing the immobilization process for all Hanford nuclear waste. At that time, DSTs will have been used about 15 years beyond their original projected lifetime. Consequently, for the next approximately 30 years, Hanford DSTs will undergo periodic nondestructive evaluation (NDE) to ensure their integrity. One approach to perform NDE is to use ultrasonic data from a robot moving through air slots, originally designed for cooling, in the confined space between primary and secondary tanks. Interpreting ultrasonic sensor output requires knowing where measurements were taken with a precision of approximately one inch. Analyzing video acquired during inspection is one approach to tracking sensor location. The top edge of an air slot is easily detected due to the difference in color and texture between the primary tank bottom and the air slot walls. A line fit to this edge is used in a model to calculate the apparent width of the air slot in pixels at targets near the top edge that can be recognized in video images. The apparent width of the air slot at the chosen target in a later video frame determines how far the robot has moved between those frames. Algorithms have been developed that automate target selection and matching in later frames. Tests in a laboratory mockup demonstrated that the method tracks the location of the ultrasonic sensor with the required precision. Full article
(This article belongs to the Special Issue Computer Vision-Based Intelligent Systems: Challenges and Approaches)
Show Figures

Figure 1

18 pages, 53282 KiB  
Article
A Soft Robot Driven by a Spring-Rolling Dielectric Elastomer Actuator with Two Bristles
by Yangyang Du, Xiaojun Wu, Jiasheng Xue, Xingyu Chen, Chongjing Cao and Xing Gao
Micromachines 2023, 14(3), 618; https://doi.org/10.3390/mi14030618 - 8 Mar 2023
Cited by 8 | Viewed by 3713
Abstract
Confined space searches such as pipeline inspections are widely demanded in various scenarios, where lightweight soft robots with inherent compliance to adapt to unstructured environments exhibit good potential. We proposed a tubular soft robot with a simple structure of a spring-rolled dielectric elastomer [...] Read more.
Confined space searches such as pipeline inspections are widely demanded in various scenarios, where lightweight soft robots with inherent compliance to adapt to unstructured environments exhibit good potential. We proposed a tubular soft robot with a simple structure of a spring-rolled dielectric elastomer (SRDE) and compliant passive bristles. Due to the compliance of the bristles, the proposed robots can work in pipelines with inner diameters both larger and smaller than the one of the bristles. Firstly, the nonlinear dynamic behaviors of the SRDE were investigated experimentally. Then, we fabricated the proposed robot with a bristle diameter of 19 mm and then studied its performance in pipelines on the ground with inner diameters of 18 mm and 20 mm. When the pipeline’s inner diameter was less than the outer diameter of the bristles, the bristles remained in the state of bending and the robot locomotion is mainly due to anisotropic friction (1.88 and 0.88 body lengths per second horizontally and vertically, respectively, in inner diameter of 18 mm and 0.06 body length per second in that of 16 mm). In the case of the pipeline with the larger inner diameter, the bristles were not fully constrained, and a small bending moment applied on the lower bristle legs contributed to the robot’s locomotion, leading to a high velocity (2.78 body lengths per second in 20 mm diameter acrylic pipe). In addition, the robot can work in varying geometries, such as curving pipes (curve radius ranges from 0.11 m to 0.31 m) at around two body lengths per second horizontally and on the ground at 3.52 body lengths per second, showing promise for pipeline or narrow space inspections. Full article
(This article belongs to the Special Issue Soft Actuators: Design, Fabrication and Applications)
Show Figures

Figure 1

Back to TopTop