Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = conditioned place aversion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3443 KB  
Article
Propranolol Administration During Morphine Addiction Attenuates Reinstatement of Drug-Aversive Memories Caused by Exposure to Stressful Stimuli
by Alberto Cánovas-Cabanes, Francisco-Javier Teruel-Fernández, Lucía Fernández-López, Elena Martínez-Laorden, Javier Navarro-Zaragoza and Pilar Almela
Pharmaceuticals 2026, 19(1), 33; https://doi.org/10.3390/ph19010033 - 23 Dec 2025
Abstract
Background/Objectives: Situations previously paired with drug use can become conditioned stimuli (i.e., physical stress or psychosocial stress) that elicit intense craving and relapse, even after prolonged abstinence. Previous studies have shown that pharmacological disruption of reconsolidation after memory reactivation could be promising for [...] Read more.
Background/Objectives: Situations previously paired with drug use can become conditioned stimuli (i.e., physical stress or psychosocial stress) that elicit intense craving and relapse, even after prolonged abstinence. Previous studies have shown that pharmacological disruption of reconsolidation after memory reactivation could be promising for reducing pathological fear and stress-related responses. For this reason, the aim of this research was to examine the role of β-AR in the retrieval of aversive memories through the potential of β-AR antagonism to mitigate the effects of exposure to stressful stimuli. Methods: This question was addressed using a model to assess the re-emergence of an aversive contextual memory induced by both physical stressors (restraint and tail-pinch) and psychosocial stress (social defeat) in morphine- or saline-treated mice previously subjected to a conditioned place aversion (CPA) paradigm, in which naloxone was administered to precipitate opioid withdrawal. To assess the effects of propranolol on aversive memories related to opioid addiction, the number of chamber crossings and the time spent in the naloxone-paired compartment were measured. Results: Our results showed that morphine-treated mice spent significantly less time in the naloxone-paired chamber than saline mice during the post-test and after exposure to stressful stimuli, than during the pre-test, showing an effect for aversive memories in addiction. In contrast, when propranolol was administered intraperitoneally 30 min before the exposure to both social and physical stress, the time spent enhanced significantly (p < 0.01), supporting a role for propranolol in addiction-related memories. Conclusions: These results suggest that propranolol could attenuate the aversive memories that may contribute to relapse to opioid addiction. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

17 pages, 1064 KB  
Article
Assessment of Abuse Potential of Three Indazole-Carboxamide Synthetic Cannabinoids 5F-ADB, MDMB-4en-PINACA and ADB-4en-PINACA
by Yanling Qiao, Xuesong Shi, Kaixi Li, Lixin Kuai, Xiangyu Li, Bin Di and Peng Xu
Int. J. Mol. Sci. 2025, 26(13), 6409; https://doi.org/10.3390/ijms26136409 - 3 Jul 2025
Viewed by 3208
Abstract
5F-ADB, MDMB-4en-PINACA and ADB-4en-PINACA are three potent indazole-carboxamide synthetic cannabinoids (SCs) that have been widely abused in recent years. However, the pharmacological research on these compounds remains limited, especially in vivo research data. The purpose of the present study was to investigate the [...] Read more.
5F-ADB, MDMB-4en-PINACA and ADB-4en-PINACA are three potent indazole-carboxamide synthetic cannabinoids (SCs) that have been widely abused in recent years. However, the pharmacological research on these compounds remains limited, especially in vivo research data. The purpose of the present study was to investigate the pharmacological effects of 5F-ADB, MDMB-4en-PINACA and ADB-4en-PINACA in mice, comparing their in vivo effects with those caused by Δ9-tetrahydrocannabinol (Δ9-THC), the main psychoactive substance in cannabis. We evaluated the cannabinoid-specific pharmacological effects of 5F-ADB, MDMB-4en-PINACA and ADB-4en-PINACA using the tetrad assay (locomotion inhibition, hypothermia, analgesia and catalepsy). Then we conducted conditioned place preference (CPP) and precipitated withdrawal assay to assess the rewarding effect and physical dependence, with Δ9-THC as a positive control. The results showed that all of the three SCs exhibited potential tetrad effects in a dose-dependent manner, with median effective dose (ED50) values ranging from 0.03 to 0.77 mg/kg. In the CPP tests, they all exhibited a significant biphasic effect of conditioned place preference (CPP) and conditioned place aversion (CPA). A significant increase in paw tremors and head twitches was observed in the rimonabant-precipitated withdrawal assay, indicating that the repeated administration of these SCs can lead to potential physical dependence. All effective doses were lower than Δ9-THC. These findings strongly suggested that the three SCs exhibited similar but stronger cannabinoid-specific tetrad effects, rewarding effect and physical dependence compared with Δ9-THC, indicating their high abuse potential and possible threats to human health. The rank order of abuse potential for these drugs was 5F-ADB > MDMB-4en-PINACA > ADB-4en-PINACA > Δ9-THC. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

19 pages, 5705 KB  
Article
Effects of Biased Analogues of the Kappa Opioid Receptor Agonist, U50,488, in Preclinical Models of Pain and Side Effects
by Ross van de Wetering, Loan Y. Vu, Lindsay D. Kornberger, Dan Luo, Brittany Scouller, Sheein Hong, Kelly Paton, Thomas E. Prisinzano and Bronwyn M. Kivell
Molecules 2025, 30(3), 604; https://doi.org/10.3390/molecules30030604 - 29 Jan 2025
Cited by 3 | Viewed by 3472
Abstract
Kappa opioid receptor (KOR) agonists have well-established antinociceptive effects. However, many KOR agonists have negative side effects, which limit their therapeutic potential. Some researchers have suggested that the development of biased agonists that preferentially stimulate KOR G-protein pathways over β-arrestin pathways may yield [...] Read more.
Kappa opioid receptor (KOR) agonists have well-established antinociceptive effects. However, many KOR agonists have negative side effects, which limit their therapeutic potential. Some researchers have suggested that the development of biased agonists that preferentially stimulate KOR G-protein pathways over β-arrestin pathways may yield drugs with fewer adverse side effects. This was investigated in the current study. We describe the synthesis and characterization of three U50,488 analogues, 1, 2, and 3. We evaluated the acute and chronic antinociceptive effects of these compounds in mice using the warm-water tail flick assay and in a paclitaxel-induced neuropathic pain model. Side effects were investigated using open-field, passive wire hang, rotarod, elevated zero maze, conditioned place aversion, and whole-body plethysmography, with some tests being conducted in KOR or β-arrestin2 knock out mice. All compounds were highly potent, full agonists of the KOR, with varying signaling biases in vitro. In the warm-water tail withdrawal assay, these agonists were ~10 times more potent than U50,488, but not more efficacious. All KOR agonists reversed paclitaxel-induced neuropathic pain, without tolerance. Compound 3 showed no significant side effects on any test. Signaling bias did not correlate with the antinociceptive or side effects of any compounds and knockout of β-arrestin2 had no effect on U50,488-induced sedation or motor incoordination. These findings highlight the therapeutic potential of 3, with its lack of side effects typically associated with KOR agonists, and also suggest that G-protein signaling bias is a poor predictor of KOR agonist-induced side effects. Full article
Show Figures

Figure 1

16 pages, 1100 KB  
Article
Food Avoidance and Aversive Goal Value Computation in Anorexia Nervosa
by Siri Weider, Megan E. Shott, Tyler Nguyen, Skylar Swindle, Tamara Pryor, Lot C. Sternheim and Guido K. W. Frank
Nutrients 2024, 16(18), 3115; https://doi.org/10.3390/nu16183115 - 15 Sep 2024
Cited by 2 | Viewed by 2451
Abstract
Anorexia nervosa (AN) is associated with food restriction and significantly low body weight, but the neurobiology of food avoidance in AN is unknown. Animal research suggests that food avoidance can be triggered by conditioned fear that engages the anterior cingulate and nucleus accumbens. [...] Read more.
Anorexia nervosa (AN) is associated with food restriction and significantly low body weight, but the neurobiology of food avoidance in AN is unknown. Animal research suggests that food avoidance can be triggered by conditioned fear that engages the anterior cingulate and nucleus accumbens. We hypothesized that the neural activation during food avoidance in AN could be modeled based on aversive goal value processing. Nineteen females with AN and thirty healthy controls matched for age underwent functional magnetic resonance brain imaging while conducting a food avoidance task. During active control free-bid and computer-generated forced-bid trials, participants bid money to avoid eating food items. Brain activation was parametrically modulated with the trial-by-trial placed bids. During free-bid trials, the AN group engaged the caudate nucleus, nucleus accumbens, ventral anterior cingulate, and inferior and medial orbitofrontal cortex more than the control group. High- versus low-bid trials in the AN group were associated with higher caudate nucleus response. Emotion dysregulation and intolerance of uncertainty scores were inversely associated with nucleus accumbens free-bid trial brain response in AN. This study supports the idea that food avoidance behavior in AN involves aversive goal value computation in the nucleus accumbens, caudate nucleus, anterior cingulate, and orbitofrontal cortex. Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Figure 1

10 pages, 1486 KB  
Article
Orally Administered N-Oleoyl Alanine Blocks Acute Opioid Withdrawal Induced-Conditioned Place Preference and Attenuates Somatic Withdrawal following Chronic Opioid Exposure in Rats
by Samantha M. Ayoub, Erin M. Rock, Cheryl L. Limebeer, Marieka V. DeVuono and Linda A. Parker
Psychoactives 2024, 3(2), 184-193; https://doi.org/10.3390/psychoactives3020012 - 31 Mar 2024
Viewed by 2084
Abstract
(1) Background: Intraperitoneal injections of the endogenous N-acyl amino acid N-Oleoyl alanine (OlAla) effectively reduces both the affective and somatic responses produced by opioid withdrawal in preclinical models. To increase the translational appeal of OlAla in clinical drug applications, the current [...] Read more.
(1) Background: Intraperitoneal injections of the endogenous N-acyl amino acid N-Oleoyl alanine (OlAla) effectively reduces both the affective and somatic responses produced by opioid withdrawal in preclinical models. To increase the translational appeal of OlAla in clinical drug applications, the current experiments tested whether oral OlAla pretreatment also attenuates opioid withdrawal in rats. (2) Methods: In Experiment 1, to assess its impact on affective withdrawal behavior, OlAla (0, 5, 20 mg/kg) was orally administered during the conditioning phase of an acute naloxone-precipitated morphine withdrawal conditioned place avoidance task. In Experiment 2, to assess its impact on somatic withdrawal behavior, OlAla (5–80 mg/kg) was orally administered prior to naloxone-precipitated withdrawal from chronic heroin exposure. (3) Results: Pretreatment with oral OlAla at the higher (20 mg/kg), but not lower (5 mg/kg) dose, reduced the establishment of an acute morphine withdrawal-induced conditioned place aversion. Instead, the lower dose of oral OlAla (5 mg/kg) reduced heroin withdrawal-induced abdominal contractions and diarrhea, whereas higher doses were without effect. (4) Conclusions: The results suggest a dose-dependent reduction of opioid withdrawal responses by orally administered OlAla, and further highlight the potential utility of this compound for opioid withdrawal in clinical populations. Full article
Show Figures

Figure 1

24 pages, 3943 KB  
Article
Effects of Serial Polydrug Use on the Rewarding and Aversive Effects of the Novel Synthetic Cathinone Eutylone
by Hayley N. Manke, Samuel S. Nunn, Agnieszka Sulima, Kenner C. Rice and Anthony L. Riley
Brain Sci. 2023, 13(9), 1294; https://doi.org/10.3390/brainsci13091294 - 7 Sep 2023
Cited by 4 | Viewed by 2284
Abstract
Background: As individual synthetic cathinones become scheduled and regulated by the Drug Enforcement Administration (DEA), new ones regularly are produced and distributed. One such compound is eutylone, a novel third-generation synthetic cathinone whose affective properties (and abuse potential) are largely unknown. The following [...] Read more.
Background: As individual synthetic cathinones become scheduled and regulated by the Drug Enforcement Administration (DEA), new ones regularly are produced and distributed. One such compound is eutylone, a novel third-generation synthetic cathinone whose affective properties (and abuse potential) are largely unknown. The following experiments begin to characterize these effects and how they may be impacted by drug history (a factor affecting reward/aversion for other drugs of abuse). Methods: Eutylone was assessed for its ability to induce conditioned taste avoidance (CTA; aversive effect) and conditioned place preference (CPP; rewarding effect) and their relationship (Experiment 1). Following this, the effects of exposure to cocaine or 3,4-methylenedioxymethamphetamine [MDMA] on eutylone’s affective properties were investigated (Experiment 2). Results: Eutylone produced dose-dependent CTA and CPP (Experiment 1), and these endpoints were unrelated. Pre-exposure to cocaine and MDMA differentially impacted taste avoidance induced by eutylone (MDMA > cocaine) and did not impact eutylone-induced place preference. Conclusions: These data indicate that eutylone, like other synthetic cathinones, has co-occurring, independent rewarding and aversive effects that may contribute to its abuse potential and that these effects are differentially impacted by drug history. Although these studies begin the characterization of eutylone, future studies should examine the impact of other factors on eutylone’s affective properties and its eventual reinforcing effects (i.e., intravenous self-administration [IVSA]) to predict its use and abuse liability. Full article
Show Figures

Figure 1

18 pages, 5029 KB  
Article
Loss of Astrocytic µ Opioid Receptors Exacerbates Aversion Associated with Morphine Withdrawal in Mice: Role of Mitochondrial Respiration
by Kateryna Murlanova, Yan Jouroukhin, Ksenia Novototskaya-Vlasova, Shovgi Huseynov, Olga Pletnikova, Michael J. Morales, Yun Guan, Atsushi Kamiya, Dwight E. Bergles, David M. Dietz and Mikhail V. Pletnikov
Cells 2023, 12(10), 1412; https://doi.org/10.3390/cells12101412 - 17 May 2023
Cited by 8 | Viewed by 3655
Abstract
Astrocytes express mu/µ opioid receptors, but the function of these receptors remains poorly understood. We evaluated the effects of astrocyte-restricted knockout of µ opioid receptors on reward- and aversion-associated behaviors in mice chronically exposed to morphine. Specifically, one of the floxed alleles of [...] Read more.
Astrocytes express mu/µ opioid receptors, but the function of these receptors remains poorly understood. We evaluated the effects of astrocyte-restricted knockout of µ opioid receptors on reward- and aversion-associated behaviors in mice chronically exposed to morphine. Specifically, one of the floxed alleles of the Oprm1 gene encoding µ opioid receptor 1 was selectively deleted from brain astrocytes in Oprm1 inducible conditional knockout (icKO) mice. These mice did not exhibit changes in locomotor activity, anxiety, or novel object recognition, or in their responses to the acute analgesic effects of morphine. Oprm1 icKO mice displayed increased locomotor activity in response to acute morphine administration but unaltered locomotor sensitization. Oprm1 icKO mice showed normal morphine-induced conditioned place preference but exhibited stronger conditioned place aversion associated with naloxone-precipitated morphine withdrawal. Notably, elevated conditioned place aversion lasted up to 6 weeks in Oprm1 icKO mice. Astrocytes isolated from the brains of Oprm1 icKO mice had unchanged levels of glycolysis but had elevated oxidative phosphorylation. The basal augmentation of oxidative phosphorylation in Oprm1 icKO mice was further exacerbated by naloxone-precipitated withdrawal from morphine and, similar to that for conditioned place aversion, was still present 6 weeks later. Our findings suggest that µ opioid receptors in astrocytes are linked to oxidative phosphorylation and they contribute to long-term changes associated with opioid withdrawal. Full article
(This article belongs to the Special Issue Astrocytes in CNS Disorders)
Show Figures

Figure 1

20 pages, 9489 KB  
Article
Acute Administration of Ojeok-san Ameliorates Pain-like Behaviors in Pre-Clinical Models of Inflammatory Bowel Diseases
by Emma A. Patton, Patrice Cunningham, Matthew Noneman, Henry P. Helms, Gustavo Martinez-Muniz, Aman S. Sumal, Milan K. Dhameja, Christian A. Unger, Ahmed K. Alahdami, Reilly T. Enos, Ioulia Chatzistamou and Kandy T. Velázquez
Nutrients 2023, 15(7), 1559; https://doi.org/10.3390/nu15071559 - 23 Mar 2023
Cited by 3 | Viewed by 3178
Abstract
(1) Background: Gastrointestinal pain and fatigue are the most reported concerns of patients with inflammatory bowel disease (IBD). Commonly prescribed drugs focus on decreasing excessive inflammation. However, up to 20% of IBD patients in an “inactive” state experience abdominal pain. The medicinal herb [...] Read more.
(1) Background: Gastrointestinal pain and fatigue are the most reported concerns of patients with inflammatory bowel disease (IBD). Commonly prescribed drugs focus on decreasing excessive inflammation. However, up to 20% of IBD patients in an “inactive” state experience abdominal pain. The medicinal herb Ojeok-san (OJS) has shown promise in the amelioration of visceral pain. However, no research on OJS has been conducted in preclinical models of IBD. The mechanism by which OJS promotes analgesia is still elusive, and it is unclear if OJS possesses addictive properties. (2) Aims: In this study, we examined the potential of OJS to promote analgesic effects and rewarding behavior. Additionally, we investigated if tumor necrosis factor alpha (TNFα) from macrophages is a primary culprit of IBD-induced nociception. (3) Methods: Multiple animal models of IBD were used to determine if OJS can reduce visceral nociception. TNFα-macrophage deficient mice were used to investigate the mechanism of action by which OJS reduces nociceptive behavior. Mechanical sensitivity and operant conditioning tests were used to determine the analgesic and rewarding effects of OJS. Body weight, colon length/weight, blood in stool, colonic inflammation, and complete blood count were assessed to determine disease progression. (4) Results: OJS reduced the evoked mechanical nociception in the dextran sulphate sodium model of colitis and IL-10 knockout (KO) mice and delayed aversion to colorectal distension in C57BL/6 mice. No rewarding behavior was observed in OJS-treated IL-10 KO and mdr1a KO mice. The analgesic effects of OJS are independent of macrophage TNFα levels and IBD progression. (5) Conclusions: OJS ameliorated elicited mechanical and visceral nociception without producing rewarding effects. The analgesic effects of OJS are not mediated by macrophage TNFα. Full article
(This article belongs to the Section Nutritional Immunology)
Show Figures

Figure 1

21 pages, 3380 KB  
Article
Astrocyte L-Lactate Signaling in the ACC Regulates Visceral Pain Aversive Memory in Rats
by Zafar Iqbal, Shu Liu, Zhuogui Lei, Aruna Surendran Ramkrishnan, Mastura Akter and Ying Li
Cells 2023, 12(1), 26; https://doi.org/10.3390/cells12010026 - 21 Dec 2022
Cited by 17 | Viewed by 4529
Abstract
Pain involves both sensory and affective elements. An aspect of the affective dimension of pain is its sustained unpleasantness, characterized by emotional feelings. Pain results from interactions between memory, attentional, and affective brain circuitry, and it has attracted enormous interest in pain research. [...] Read more.
Pain involves both sensory and affective elements. An aspect of the affective dimension of pain is its sustained unpleasantness, characterized by emotional feelings. Pain results from interactions between memory, attentional, and affective brain circuitry, and it has attracted enormous interest in pain research. However, the brain targets and signaling mechanism involved in pain remain elusive. Using a conditioned place avoidance (CPA) paradigm, we show that colorectal distention (CRD magnitude ≤ 35 mmHg, a subthreshold for pain) paired with a distinct environment can cause significant aversion to a location associated with pain-related insults in rats. We show a substantial increase in the L-lactate concentration in the anterior cingulate cortex (ACC) following CPA training. Local exogenous infusion of lactate into the ACC enhances aversive memory and induces the expression of the memory-related plasticity genes pCREB, CREB, and Erk1/2. The pharmacological experiments revealed that the glycogen phosphorylation inhibitor 1,4-dideoxy-1,4-imino-D-arabinitol (DAB) impairs memory consolidation. Furthermore, short-term Gi pathway activation of ACC astrocytes before CPA training significantly decreases the lactate level and suppresses pain-related aversive learning. The effects were reversed by the local infusion of lactate into the ACC. Our study demonstrates that lactate is released from astrocytes in vivo following visceral pain-related aversive learning and memory retrieval and induces the expression of the plasticity-related immediate early genes CREB, pCREB, and Erk1/2 in the ACC. Chronic visceral pain is an important factor in the pathophysiology of irritable bowel syndrome (IBS). The current study provides evidence that astrocytic activity in the ACC is required for visceral pain-related aversive learning and memory. Full article
Show Figures

Figure 1

15 pages, 1522 KB  
Article
Behavioural Aversion and Cortisol Level Assessment When Adult Zebrafish Are Exposed to Different Anaesthetics
by Jorge M. Ferreira, Sara Jorge, Luís Félix, Gabriela M. Morello, I. Anna S. Olsson and Ana M. Valentim
Biology 2022, 11(10), 1433; https://doi.org/10.3390/biology11101433 - 30 Sep 2022
Cited by 11 | Viewed by 4279
Abstract
The use of zebrafish (Danio rerio) as an animal model is growing and occurs in a wide range of scientific areas. Therefore, researchers need better and more appropriate anaesthetics for stressful and/or painful procedures to prevent unpleasant experiences. Thus, we aimed [...] Read more.
The use of zebrafish (Danio rerio) as an animal model is growing and occurs in a wide range of scientific areas. Therefore, researchers need better and more appropriate anaesthetics for stressful and/or painful procedures to prevent unpleasant experiences. Thus, we aimed to study if adult zebrafish displayed aversion-associated behaviours (conditioned place aversion) and alterations in cortisol levels when exposed to equipotent concentrations of MS222, propofol/lidocaine, clove oil, or etomidate. Adult AB zebrafish (mixed-sex, N = 177) were randomly assigned to MS222 (150 mg/L), Propofol/Lidocaine (5 mg/L propofol + 150 mg/L lidocaine), Clove Oil (45 mg/L), or Etomidate (2 mg/L) groups. The conditioned place aversion test was used to assess behavioural aversion. Only etomidate resulted in a similar aversion to the positive control group (HCl; pH = 3). Cortisol levels were measured 5 and 15 min after loss of equilibrium. Etomidate induced low levels of cortisol by impairing its synthesis, whereas all the other groups had similar cortisol levels. Based on our data, etomidate was ruled out as an alternative to MS222, as it showed an aversive profile. The remaining protocols were not innocuous, displaying a weak aversive profile when compared to the positive control. In conclusion, a combination of propofol with lidocaine, clove oil, and MS222 were valid candidates for use as anaesthetic protocols. Full article
(This article belongs to the Special Issue Anaesthetics and Analgesics Used in Aquatic Animals)
Show Figures

Figure 1

19 pages, 4516 KB  
Article
Bis-Cyclic Guanidine Heterocyclic Peptidomimetics as Opioid Ligands with Mixed μ-, κ- and δ-Opioid Receptor Interactions: A Potential Approach to Novel Analgesics
by Jay P. McLaughlin, Ramanjaneyulu Rayala, Ashley J. Bunnell, Mukund P. Tantak, Shainnel O. Eans, Khadija Nefzi, Michelle L. Ganno, Colette T. Dooley and Adel Nefzi
Int. J. Mol. Sci. 2022, 23(17), 9623; https://doi.org/10.3390/ijms23179623 - 25 Aug 2022
Cited by 6 | Viewed by 3812
Abstract
The design and development of analgesics with mixed-opioid receptor interactions has been reported to decrease side effects, minimizing respiratory depression and reinforcing properties to generate safer analgesic therapeutics. We synthesized bis-cyclic guanidine heterocyclic peptidomimetics from reduced tripeptides. In vitro screening with radioligand competition [...] Read more.
The design and development of analgesics with mixed-opioid receptor interactions has been reported to decrease side effects, minimizing respiratory depression and reinforcing properties to generate safer analgesic therapeutics. We synthesized bis-cyclic guanidine heterocyclic peptidomimetics from reduced tripeptides. In vitro screening with radioligand competition binding assays demonstrated variable affinity for the mu-opioid receptor (MOR), delta-opioid receptor (DOR), and kappa-opioid receptor (KOR) across the series, with compound 1968-22 displaying good affinity for all three receptors. Central intracerebroventricular (i.c.v.) administration of 1968-22 produced dose-dependent, opioid receptor-mediated antinociception in the mouse 55 °C warm-water tail-withdrawal assay, and 1968-22 also produced significant antinociception up to 80 min after oral administration (10 mg/kg, p.o.). Compound 1968-22 was detected in the brain 5 min after intravenous administration and was shown to be stable in the blood for at least 30 min. Central administration of 1968-22 did not produce significant respiratory depression, locomotor effects or conditioned place preference or aversion. The data suggest these bis-cyclic guanidine heterocyclic peptidomimetics with multifunctional opioid receptor activity may hold potential as new analgesics with fewer liabilities of use. Full article
(This article belongs to the Special Issue Small Molecule Drug Design and Research)
Show Figures

Figure 1

11 pages, 1546 KB  
Article
Metabotropic Glutamate Receptor 5 in the Dysgranular Zone of Primary Somatosensory Cortex Mediates Neuropathic Pain in Rats
by Geehoon Chung, Yeong-Chan Yun, Chae Young Kim, Sun Kwang Kim and Sang Jeong Kim
Biomedicines 2022, 10(7), 1633; https://doi.org/10.3390/biomedicines10071633 - 7 Jul 2022
Cited by 4 | Viewed by 2649
Abstract
The primary somatosensory cortex (S1) plays a key role in the discrimination of somatic sensations. Among subdivisions in S1, the dysgranular zone of rodent S1 (S1DZ) is homologous to Brodmann’s area 3a of primate S1, which is involved in the processing of noxious [...] Read more.
The primary somatosensory cortex (S1) plays a key role in the discrimination of somatic sensations. Among subdivisions in S1, the dysgranular zone of rodent S1 (S1DZ) is homologous to Brodmann’s area 3a of primate S1, which is involved in the processing of noxious signals from the body. However, molecular changes in this region and their role in the pathological pain state have never been studied. In this study, we identified molecular alteration of the S1DZ in a rat model of neuropathic pain induced by right L5 spinal nerve ligation (SNL) surgery and investigated its functional role in pain symptoms. Brain images acquired from SNL group and control group in our previous study were analyzed, and behaviors were measured using the von Frey test, acetone test, and conditioned place preference test. We found that metabotropic glutamate receptor 5 (mGluR5) levels were significantly upregulated in the S1DZ contralateral to the nerve injury in the SNL group compared to the sham group. Pharmacological deactivation of mGluR5 in S1DZ ameliorated symptoms of neuropathic allodynia, which was shown by a significant increase in the mechanical paw withdrawal threshold and a decrease in the behavioral response to cold stimuli. We further confirmed that this treatment induced relief from the tonic-aversive state of chronic neuropathic pain, as a place preference memory associated with the treatment-paired chamber was formed in rats with neuropathic pain. Our data provide evidence that mGluR5 in the S1DZ is involved in the manifestation of abnormal pain sensations in the neuropathic pain state. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Nerve Injury and Neuropathic Pain)
Show Figures

Figure 1

16 pages, 3389 KB  
Article
Characterization of CM-398, a Novel Selective Sigma-2 Receptor Ligand, as a Potential Therapeutic for Neuropathic Pain
by Lisa L. Wilson, Amy R. Alleyne, Shainnel O. Eans, Thomas J. Cirino, Heather M. Stacy, Marco Mottinelli, Sebastiano Intagliata, Christopher R. McCurdy and Jay P. McLaughlin
Molecules 2022, 27(11), 3617; https://doi.org/10.3390/molecules27113617 - 4 Jun 2022
Cited by 20 | Viewed by 4291
Abstract
Sigma receptors modulate nociception, offering a potential therapeutic target to treat pain, but relatively little is known regarding the role of sigma-2 receptors (S2R) in nociception. The purpose of this study was to investigate the in vivo analgesic and anti-allodynic activity and liabilities [...] Read more.
Sigma receptors modulate nociception, offering a potential therapeutic target to treat pain, but relatively little is known regarding the role of sigma-2 receptors (S2R) in nociception. The purpose of this study was to investigate the in vivo analgesic and anti-allodynic activity and liabilities of a novel S2R selective ligand, 1-[4-(6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolin-2-yl)butyl]-3-methyl-1,3-dihydro-1,3-benzimidazol-2-one (CM-398). The inhibition of thermal, induced chemical, or inflammatory pain as well as the allodynia resulting from chronic nerve constriction injury (CCI) model of neuropathic pain were assessed in male mice. CM-398 dose-dependently (10–45 mg/kg i.p.) reduced mechanical allodynia in the CCI neuropathic pain model, equivalent at the higher dose to the effect of the control analgesic gabapentin (50 mg/kg i.p.). Likewise, pretreatment (i.p.) with CM-398 dose-dependently produced antinociception in the acetic acid writhing test (ED50 (and 95% C.I.) = 14.7 (10.6–20) mg/kg, i.p.) and the formalin assay (ED50 (and 95% C.I.) = 0.86 (0.44–1.81) mg/kg, i.p.) but was without effect in the 55 °C warm-water tail-withdrawal assay. A high dose of CM-398 (45 mg/kg, i.p.) exhibited modest locomotor impairment in a rotarod assay and conditioned place aversion, potentially complicating the interpretation of nociceptive testing. However, in an operant pain model resistant to these confounds, mice experiencing CCI and treated with CM-398 demonstrated robust conditioned place preference. Overall, these results demonstrate the S2R selective antagonist CM-398 produces antinociception and anti-allodynia with fewer liabilities than established therapeutics, adding to emerging data suggesting possible mediation of nociception by S2R, and the development of S2R ligands as potential treatments for chronic pain. Full article
(This article belongs to the Special Issue Featured Papers in Medicinal Chemistry)
Show Figures

Figure 1

20 pages, 18592 KB  
Article
Peptide LCGA-17 Attenuates Behavioral and Neurochemical Deficits in Rodent Models of PTSD and Depression
by Anton V. Malyshev, Iuliia A. Sukhanova, Valeria M. Ushakova, Yana A. Zorkina, Olga V. Abramova, Anna Y. Morozova, Eugene A. Zubkov, Nikita A. Mitkin, Vsevolod V. Pavshintsev, Igor I. Doronin, Vasilina R. Gedzun, Gennady A. Babkin, Sergio A. Sanchez, Miah D. Baker and Colin N. Haile
Pharmaceuticals 2022, 15(4), 462; https://doi.org/10.3390/ph15040462 - 12 Apr 2022
Cited by 6 | Viewed by 5012
Abstract
We have previously described the LCGA-17 peptide as a novel anxiolytic and antidepressant candidate that acts through the α2δ VGCC (voltage-gated calcium channel) subunit with putative synergism with GABA-A receptors. The current study tested the potential efficacy of acute and chronic intranasal (i.n.) [...] Read more.
We have previously described the LCGA-17 peptide as a novel anxiolytic and antidepressant candidate that acts through the α2δ VGCC (voltage-gated calcium channel) subunit with putative synergism with GABA-A receptors. The current study tested the potential efficacy of acute and chronic intranasal (i.n.) LCGA-17 (0.05 mg/kg and 0.5 mg/kg) in rats on predator odor-induced conditioned place aversion (POCPA), a model of post-traumatic stress disorder (PTSD), and chronic unpredictable stress (CUS) that produce a range of behavioral and physiological changes that parallel symptoms of depression in humans. CUS and LCGA-17 treatment effects were tested in the sucrose preference (SPT) social interaction (SI), female urine sniffing (FUST), novelty-suppressed feeding (NSFT), and forced swim (FST) tests. Analysis of the catecholamines content in brain structures after CUS was carried out using HPLC. The efficacy of i.n. LCGA-17 was also assessed using the Elevated plus-maze (EPM) and FST. Acute LCGA-17 administration showed anxiolytic and antidepressant effects in EPM and FST, similar to diazepam and ketamine, respectively. In the POCPA study, LCGA-17 significantly reduced place aversion, with efficacy greater than doxazosin. After CUS, chronic LCGA-17 administration reversed stress-induced alterations in numerous behavioral tests (SI, FUST, SPT, and FST), producing significant anxiolytic and antidepressant effects. Finally, LCGA-17 restored the norepinephrine levels in the hippocampus following stress. Together, these results support the further development of the LCGA-17 peptide as a rapid-acting anxiolytic and antidepressant. Full article
(This article belongs to the Section Biopharmaceuticals)
Show Figures

Graphical abstract

23 pages, 3224 KB  
Article
Molecular Mechanisms Underlying the Retrieval and Extinction of Morphine Withdrawal-Associated Memories in the Basolateral Amygdala and Dentate Gyrus
by Aurelio Franco-García, Francisco José Fernández-Gómez, Victoria Gómez-Murcia, Juana M. Hidalgo, M. Victoria Milanés and Cristina Núñez
Biomedicines 2022, 10(3), 588; https://doi.org/10.3390/biomedicines10030588 - 2 Mar 2022
Cited by 7 | Viewed by 3802
Abstract
Despite their indisputable efficacy for pain management, opiate prescriptions remain highly controversial partially due to their elevated addictive potential. Relapse in drug use is one of the principal problems for addiction treatment, with drug-associated memories being among its main triggers. Consequently, the extinction [...] Read more.
Despite their indisputable efficacy for pain management, opiate prescriptions remain highly controversial partially due to their elevated addictive potential. Relapse in drug use is one of the principal problems for addiction treatment, with drug-associated memories being among its main triggers. Consequently, the extinction of these memories has been proposed as a useful therapeutic tool. Hence, by using the conditioned place aversion (CPA) paradigm in rats, we investigated some of the molecular mechanisms that occurr during the retrieval and extinction of morphine withdrawal memories in the basolateral amygdala (BLA) and the hippocampal dentate gyrus (DG), which control emotional and episodic memories, respectively. The retrieval of aversive memories associated with the abstinence syndrome paralleled with decreased mTOR activity and increased Arc and GluN1 expressions in the DG. Additionally, Arc mRNA levels in this nucleus very strongly correlated with the CPA score exhibited by the opiate-treated rats. On the other hand, despite the unaltered mTOR phosphorylation, Arc levels augmented in the BLA. After the extinction test, Arc and GluN1 expressions were raised in both the DG and BLA of the control and morphine-treated animals. Remarkably, Homer1 expression in both areas correlated almost perfectly with the extinction showed by morphine-dependent animals. Moreover, Arc expression in the DG correlated strongly with the extinction of the CPA manifested by the group treated with the opiate. Finally, our results support the coordinated activity of some of these neuroplastic proteins for the extinction of morphine withdrawal memories in a regional-dependent manner. Present data provide evidence of differential expression and activity of synaptic molecules during the retrieval and extinction of aversive memories of opiate withdrawal in the amygdalar and hippocampal regions that will likely permit the development of therapeutic strategies able to minimize relapses induced by morphine withdrawal-associated aversive memories. Full article
(This article belongs to the Special Issue Biological Aspects of Drug Addiction)
Show Figures

Figure 1

Back to TopTop