Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (205)

Search Parameters:
Keywords = concentrated solar thermal technologies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5122 KiB  
Article
Comparative Life Cycle Assessment of Solar Thermal, Solar PV, and Biogas Energy Systems: Insights from Case Studies
by Somil Thakur, Deepak Singh, Umair Najeeb Mughal, Vishal Kumar and Rajnish Kaur Calay
Appl. Sci. 2025, 15(14), 8082; https://doi.org/10.3390/app15148082 - 21 Jul 2025
Viewed by 896
Abstract
The growing imperative to mitigate climate change and accelerate the shift toward energy sustainability has called for a critical evaluation of heat and electricity generation methods. This article presents a comparative life cycle assessment (LCA) of solar and biogas energy systems on a [...] Read more.
The growing imperative to mitigate climate change and accelerate the shift toward energy sustainability has called for a critical evaluation of heat and electricity generation methods. This article presents a comparative life cycle assessment (LCA) of solar and biogas energy systems on a common basis of 1 kWh of useful energy using SimaPro, the ReCiPe 2016 methodology (both midpoint and endpoint indicators), and cumulative energy demand (CED) analysis. This study is the first to evaluate co-located solar PV, solar thermal compound parabolic concentrator (CPC) and biogas combined heat and power (CHP) systems with in situ data collected under identical climatic and operational conditions. The project costs yield levelized costs of electricity (LCOE) of INR 2.4/kWh for PV, 3.3/kWh for the solar thermal dish and 4.1/kWh for biogas. However, the collaborated findings indicate that neither solar-based systems nor biogas technology uniformly outperform the others; rather, their effectiveness hinges on contextual factors, including resource availability and local policy incentives. These insights will prove critical for policymakers, industry stakeholders, and local communities seeking to develop effective, context-sensitive strategies for sustainable energy deployment, emissions reduction, and robust resource management. Full article
Show Figures

Figure 1

26 pages, 3957 KiB  
Article
Techno-Economic Assessment of Linear Fresnel-Based Hydrogen Production in the MENA Region: Toward Affordable, Locally Driven Deployment for Enhanced Profitability and Reduced Costs
by Abdellatif Azzaoui, Mohammed Attiaoui, Elmiloud Chaabelasri, Hugo Gonçalves Silva and Ahmed Alami Merrouni
Energies 2025, 18(14), 3633; https://doi.org/10.3390/en18143633 - 9 Jul 2025
Viewed by 405
Abstract
The MENA region, with its high solar potential and increasing investments in renewable energy, is transitioning away from fossil fuels toward more sustainable energy systems. To fully benefit from this transition and address issues such as intermittency and energy storage, “green” hydrogen is [...] Read more.
The MENA region, with its high solar potential and increasing investments in renewable energy, is transitioning away from fossil fuels toward more sustainable energy systems. To fully benefit from this transition and address issues such as intermittency and energy storage, “green” hydrogen is emerging as a key parameter. When produced using simple and cost-effective technologies like linear Fresnel reflector (LFR), it offers a practical solution. Therefore, assessing the potential of hydrogen production from LFR technology is essential to support the development of the energy sector and promote local industrial growth. This study investigates “green” hydrogen production using a 50 MW concentrated solar power (CSP) system based on LFR technology, where the CSP system generates electricity to power a proton exchange membrane electrolyzer for hydrogen production for three locations, including Ain Beni Mathar in Morocco, Assiout in Egypt, and Tabuk in Saudi Arabia. The results show that Tabuk achieved the highest annual hydrogen production (45.02 kg/kWe), followed by Assiout (38.72 kg/kWe) and Ain Beni Mathar (32.42 kg/kWe), with corresponding levelized costs of hydrogen (LCOH2) of 6.47 USD/kg, 6.84 USD/kg, and 7.35 USD/kg, respectively. In addition, several sensitivity analyses were conducted addressing the impact of thermal energy storage (TES) on the hydrogen production and costs, the effect of reduced investment costs resulting from the local manufacturing of LFR components, and the futuristic assumption of the electrolyzer cost drop. The integration of TES enhanced hydrogen output and reduced LCOH2 by up to 9%. Additionally, a future PEM electrolyzer costs projected for 2030 showed that LCOH2 could decrease by up to 1.3 USD/kg depending on site conditions. These findings demonstrate that combining TES with cost optimization strategies can significantly improve both technical performance and economic feasibility in the MENA region. Full article
(This article belongs to the Special Issue Hydrogen Energy Generation, Storage, Transportation and Utilization)
Show Figures

Figure 1

19 pages, 3823 KiB  
Article
Theoretical Performance of BaSnO3-Based Perovskite Solar Cell Designs Under Variable Light Intensities, Temperatures, and Donor and Defect Densities
by Nouf Alkathran, Shubhranshu Bhandari and Tapas K. Mallick
Designs 2025, 9(3), 76; https://doi.org/10.3390/designs9030076 - 18 Jun 2025
Viewed by 407
Abstract
Barium stannate (BaSnO3) has emerged as a promising alternative electron transport material owing to its superior electron mobility, resistance to UV degradation, and energy bandgap tunability, yet BaSnO3-based perovskite solar cells have not reached the efficiency levels of TiO [...] Read more.
Barium stannate (BaSnO3) has emerged as a promising alternative electron transport material owing to its superior electron mobility, resistance to UV degradation, and energy bandgap tunability, yet BaSnO3-based perovskite solar cells have not reached the efficiency levels of TiO2-based designs. This theoretical study presents a design-driven evaluation of BaSnO3-based perovskite solar cell architectures, incorporating MAPbI3 or FAMAPbI3 perovskite materials, Spiro-OMeTAD, or Cu2O hole transport materials as well as hole-free configurations, under varying light intensity. Using a systematic device modelling approach, we explore the influence of key design variables—such as layer thickness, donor density, and interface defect concentration—of BaSnO3 and operating temperature on the power conversion efficiency (PCE). Among the proposed designs, the FTO/BaSnO3/FAMAPbI3/Cu2O/Au heterostructure exhibits an exceptionally effective arrangement with PCE of 38.2% under concentrated light (10,000 W/m2, or 10 Sun). The structure also demonstrates strong thermal robustness up to 400 K, with a low temperature coefficient of −0.078% K−1. These results underscore the importance of material and structural optimisation in PSC design and highlight the role of high-mobility, thermally stable inorganic transport layers—BaSnO3 as the electron transport material (ETM) and Cu2O as the hole transport material (HTM)—in enabling efficient and stable photovoltaic performance under high irradiance. The study contributes valuable insights into the rational design of high-performance PSCs for emerging solar technologies. Full article
Show Figures

Graphical abstract

37 pages, 9432 KiB  
Review
High-Temperature Molten Salt Heat Exchanger Technology: Research Advances, Challenges, and Future Perspectives
by Chunyang Zheng, Keyong Cheng and Dongjiang Han
Energies 2025, 18(12), 3195; https://doi.org/10.3390/en18123195 - 18 Jun 2025
Viewed by 730
Abstract
Molten salt heat exchangers are pivotal components in advanced energy systems, where their high-temperature stability and efficient heat transfer performance are critical for system reliability. This paper provides a comprehensive review of recent advancements in molten salt heat exchanger technology, focusing on their [...] Read more.
Molten salt heat exchangers are pivotal components in advanced energy systems, where their high-temperature stability and efficient heat transfer performance are critical for system reliability. This paper provides a comprehensive review of recent advancements in molten salt heat exchanger technology, focusing on their application in nuclear energy, concentrated solar power, and thermal energy storage systems. Key design considerations, including thermophysical properties of molten salts and operational conditions, are analyzed to highlight performance optimization strategies. The review traces the evolution from traditional shell-and-tube heat exchangers to compact designs like printed circuit heat exchangers, emphasizing improvements in heat transfer efficiency and power density. Challenges such as material corrosion, manufacturing complexities, and flow dynamics are critically examined. Furthermore, future research directions are proposed, including the development of high-performance materials, advanced manufacturing techniques, and optimized geometries. This review aims to consolidate dispersed research findings, address technological bottlenecks, and provide a roadmap for the continued development of molten salt heat exchangers in high-temperature energy systems. Full article
(This article belongs to the Collection Advances in Heat Transfer Enhancement)
Show Figures

Figure 1

24 pages, 3957 KiB  
Article
Steam Generation for Industry Using Linear Fresnel Solar Collectors and PV-Driven High-Temperature Heat Pumps: Techno-Economic Analysis
by Antonio Famiglietti and Ruben Abbas
Solar 2025, 5(2), 27; https://doi.org/10.3390/solar5020027 - 17 Jun 2025
Viewed by 426
Abstract
Steam is widely used in industry as a heat carrier for thermal processes and is primarily generated by gas-fired steam boilers. The decarbonization of industrial thermal demand relies on the capability of clean and renewable technologies to provide steam through reliable and cost-effective [...] Read more.
Steam is widely used in industry as a heat carrier for thermal processes and is primarily generated by gas-fired steam boilers. The decarbonization of industrial thermal demand relies on the capability of clean and renewable technologies to provide steam through reliable and cost-effective systems. Concentrating solar thermal technologies are attracting attention as a heat source for industrial steam generation. In addition, electricity-driven high-temperature heat pumps can provide heat using either renewable or grid electricity by upgrading ambient or waste heat to the required temperature level. In this study, linear Fresnel solar collectors and high-temperature heat pumps driven by photovoltaics are considered heat sources for steam generation in industrial processes. Energetic and economic analyses are performed across the European countries to assess and compare their performances. The results demonstrate that for a given available area for the solar field, solar thermal systems provide a higher annual energy yield in southern countries and at lower costs than heat pumps. On the other hand, heat pumps driven by photovoltaics provide higher annual energy for decreasing solar radiation conditions (central and northern Europe), although it leads to higher costs than solar thermal systems. A hybrid scheme combining the two technologies is the favorable option in central Europe, allowing a trade-off between the costs and the energy yield per unit area. Full article
Show Figures

Figure 1

19 pages, 3267 KiB  
Article
Analysis of Experimental Data from a Concentrating Parabolic Solar Plant and Comparison with Simulation Model Results
by Giuseppe Canneto, Irena Balog, Primo Di Ascenzi and Giampaolo Caputo
Energies 2025, 18(12), 3161; https://doi.org/10.3390/en18123161 - 16 Jun 2025
Viewed by 616
Abstract
Among the concentrating solar power (CSP) technologies, the parabolic trough (PT) solar collector is a proven technology mainly used to produce electricity and heat for industrial processes. Since 2003, a stand-alone Molten Salt Parabolic Trough (MSPT) experimental plant, located in the ENEA research [...] Read more.
Among the concentrating solar power (CSP) technologies, the parabolic trough (PT) solar collector is a proven technology mainly used to produce electricity and heat for industrial processes. Since 2003, a stand-alone Molten Salt Parabolic Trough (MSPT) experimental plant, located in the ENEA research centre of Casaccia (PCS plant), has been in operation. In this paper a brief description of the plant, the main plant operation figures, and a report of the main results obtained during the experimental test campaigns are presented. The aim of the tests was the evaluation of the thermal power collected as a function of DNI, mass flow rate, and inlet temperature of molten salt; experimental data were compared with simulation results obtained using a heat transfer software model of the solar receiver. Full article
(This article belongs to the Special Issue Advanced Solar Technologies and Thermal Energy Storage)
Show Figures

Figure 1

20 pages, 5705 KiB  
Article
Optothermal Modeling for Sustainable Design of Ultrahigh-Concentration Photovoltaic Systems
by Taher Maatallah, Mussad Alzahrani, Souheil El Alimi and Sajid Ali
Sustainability 2025, 17(12), 5262; https://doi.org/10.3390/su17125262 - 6 Jun 2025
Viewed by 407
Abstract
The development of ultrahigh-concentration photovoltaic (UHCPV) systems plays a pivotal role in advancing sustainable solar energy technologies. As the demand for clean energy grows, the need to align concentrated photovoltaic (CPV) system design with high-efficiency solar cell production becomes critical for maximizing energy [...] Read more.
The development of ultrahigh-concentration photovoltaic (UHCPV) systems plays a pivotal role in advancing sustainable solar energy technologies. As the demand for clean energy grows, the need to align concentrated photovoltaic (CPV) system design with high-efficiency solar cell production becomes critical for maximizing energy yield while minimizing resource use. Despite some experimental efforts in UHCPV development, there remains a gap in integrating Fresnel lens-based systems with the comprehensive thermal modeling of key components in improving system sustainability and performance. To bridge this gap and promote more energy-efficient designs, a detailed numerical model was established to evaluate both the thermal and optical performance of a UHCPV system. This model contributes to the sustainable design process by enabling informed decisions on system efficiency, thermal management, and material optimization before physical prototyping. Through COMSOL Multiphysics simulations, the system was assessed under direct normal irradiance (DNI) ranging from 400 to 1000 W/m2. Optical simulations indicated a high theoretical optical efficiency of ~93% and a concentration ratio of 1361 suns, underscoring the system’s potential to deliver high solar energy conversion with minimal land and material footprint. Moreover, the integration of thermal and optical modeling ensures a holistic understanding of system behavior under varying ambient temperatures (20–50 °C) and convective cooling conditions (heat transfer coefficients between 4 and 22 W/m2.K). The results showed that critical optical components remain within safe temperature thresholds (<54 °C), while the receiver stage operates between 78.5 °C and 157.4 °C. These findings highlight the necessity of an effective cooling mechanism—not only to preserve system longevity and safety but also to maintain high conversion efficiency, thereby supporting the broader goals of sustainable and reliable solar energy generation. Full article
Show Figures

Figure 1

19 pages, 14314 KiB  
Article
Sustainable Breakthrough in Manganese Oxide Thermochemical Energy Storage: Advancing Efficient Solar Utilization and Clean Energy Development
by Zhizhen Wang, Mengjiao Zhao and Denghui Wang
Sustainability 2025, 17(8), 3752; https://doi.org/10.3390/su17083752 - 21 Apr 2025
Cited by 1 | Viewed by 564
Abstract
Solar power generation systems, recognized for their high energy quality and environmental benefits, require efficient energy storage to ensure stable grid integration and reduce reliance on fossil fuels. Thermochemical energy storage (TCS) using metal oxides, such as the Mn2O3/Mn [...] Read more.
Solar power generation systems, recognized for their high energy quality and environmental benefits, require efficient energy storage to ensure stable grid integration and reduce reliance on fossil fuels. Thermochemical energy storage (TCS) using metal oxides, such as the Mn2O3/Mn3O4 redox system, offers advantages like high energy density, wide temperature range, and stability, making it ideal for solar power applications. This study investigates Mn3O4 and Mn2O3 as initial reactants, analyzing reaction temperature range, rate, conversion efficiency, and cyclic performance via synchronous thermal analysis. Microstructural characterization was performed using XRD, SEM, BET, XPS, nanoparticle size, and zeta potential measurements. The results show that Mn3O4 reversibly converts to Mn2O3 with over 100% conversion efficiency over five cycles with 3.3% weight loss, indicating stable performance. Mn3O4 oxidation follows Arrhenius’ Law below 700 °C but deviates at higher temperatures. The oxidation mechanism function is G(α) = α and f(α) = 1, with an activation energy of 20.47 kJ/mol and a pre-exponential factor of 0.268/s. Mn2O3 synthesized via ammonia precipitation exhibits reversible redox behavior with 3.3% weight loss but samples from low-concentration precursors show poor cyclic performance. The reduction reaction of Mn2O3 has an activation energy of 249.87 kJ/mol. By investigating the Mn2O3/Mn3O4 redox system for TCS, this study advances its practical integration into solar thermal power systems and offers critical guidance for developing scalable, low-carbon energy storage technologies. These findings can support Sustainable Development Goals (SDGs) by advancing renewable energy storage technologies, reducing carbon emissions, and promoting the integration of solar power into sustainable energy grids. Full article
Show Figures

Figure 1

33 pages, 5789 KiB  
Review
Concentrated Solar Thermal Power Technology and Its Thermal Applications
by Chunchao Wu, Yonghong Zhao, Wulin Li, Jianjun Fan, Haixiang Xu, Zhongqian Ling, Dingkun Yuan and Xianyang Zeng
Energies 2025, 18(8), 2120; https://doi.org/10.3390/en18082120 - 20 Apr 2025
Viewed by 1060
Abstract
The industrial sector accounts for approximately 65% of global energy consumption, with projections indicating a steady annual increase of 1.2% in energy demand. In the context of growing concerns about climate change and the need for sustainable energy solutions, solar thermal energy has [...] Read more.
The industrial sector accounts for approximately 65% of global energy consumption, with projections indicating a steady annual increase of 1.2% in energy demand. In the context of growing concerns about climate change and the need for sustainable energy solutions, solar thermal energy has emerged as a promising technology for reducing reliance on fossil fuels. With its ability to provide high-efficiency heat for industrial processes at temperatures ranging from 150 °C to over 500 °C, solar thermal power generation offers significant potential for decarbonizing energy-intensive industries. This review provides a comprehensive analysis of various solar thermal technologies, including parabolic troughs, solar towers, and linear Fresnel reflectors, comparing their effectiveness across different industrial applications such as process heating, desalination, and combined heat and power (CHP) systems. For instance, parabolic trough systems have demonstrated optimal performance in high-temperature applications, achieving efficiency levels up to 80% for steam generation, while solar towers are particularly suitable for large-scale, high-temperature operations, reaching temperatures above 1000 °C. The paper also evaluates the economic feasibility of these technologies, showing that solar thermal systems can achieve a levelized cost of energy (LCOE) of USD 60–100 per MWh, making them competitive with conventional energy sources in many regions. However, challenges such as high initial investment, intermittency of solar resource, and integration into existing industrial infrastructure remain significant barriers. This review not only discusses the technical principles and economic aspects of solar thermal power generation but also outlines specific recommendations for enhancing the scalability and industrial applicability of these technologies in the near future. Full article
(This article belongs to the Special Issue Renewable Energy Power Generation and Power Demand Side Management)
Show Figures

Figure 1

37 pages, 727 KiB  
Review
Next-Generation CSP: The Synergy of Nanofluids and Industry 4.0 for Sustainable Solar Energy Management
by Mohamed Shameer Peer, Tsega Y. Melesse, Pier Francesco Orrù, Mattia Braggio and Mario Petrollese
Energies 2025, 18(8), 2083; https://doi.org/10.3390/en18082083 - 17 Apr 2025
Cited by 1 | Viewed by 785
Abstract
The growing demand for efficient and sustainable energy solutions underscores the importance of advancing solar energy technologies, particularly Concentrated Solar Power (CSP) systems. This review presents a structured evaluation of two key innovation domains in CSP: the application of nanofluids and the adoption [...] Read more.
The growing demand for efficient and sustainable energy solutions underscores the importance of advancing solar energy technologies, particularly Concentrated Solar Power (CSP) systems. This review presents a structured evaluation of two key innovation domains in CSP: the application of nanofluids and the adoption of Industry 4.0 technologies. The first part analyzes experimental and simulation-based studies on nanofluid-enhanced CSP systems, covering four major collector types—parabolic trough, solar power tower, solar dish, and Fresnel reflectors. Nanofluids have been shown to significantly enhance thermal efficiency, with hybrid formulations offering the greatest improvements. The second part examines the role of Industry 4.0 technologies—including artificial intelligence (AI), machine learning (ML), and digital twins (DT)—in improving CSP system monitoring, performance prediction, and operational reliability. Although a few recent studies explore the combined use of nanofluids and Industry 4.0 tools in CSP systems, most research addresses these areas independently. This review identifies this lack of integration as a gap in the current literature. By presenting separate yet complementary analyses, the study offers a comprehensive overview of emerging pathways for CSP optimization. Key research challenges and future directions are highlighted, particularly in nanofluid stability, system cost-efficiency, and digital implementation at scale. Full article
Show Figures

Figure 1

25 pages, 3127 KiB  
Article
The Strategic Selection of Concentrated Solar Thermal Power Technologies in Developing Countries Using a Fuzzy Decision Framework
by Abdulrahman AlKassem, Kamal Al-Haddad, Dragan Komljenovic and Andrea Schiffauerova
Energies 2025, 18(8), 1957; https://doi.org/10.3390/en18081957 - 11 Apr 2025
Viewed by 538
Abstract
Relative to other renewable energy technologies, concentrated solar power (CSP) is only in the beginning phases of large-scale deployment. Its incorporation into national grids is steadily growing, with anticipation of its substantial contribution to the energy mix. A number of emerging economies are [...] Read more.
Relative to other renewable energy technologies, concentrated solar power (CSP) is only in the beginning phases of large-scale deployment. Its incorporation into national grids is steadily growing, with anticipation of its substantial contribution to the energy mix. A number of emerging economies are situated in areas that receive abundant amounts of direct normal irradiance (DNI), which translates into expectations of significant effectiveness for CSP. However, any assessment related to the planning of CSP facilities is challenging because of the complexity of the associated criteria and the number of stakeholders. Additional complications are the differing concepts and configurations for CSP plants available, a dearth of related experience, and inadequate amounts of data in some developing countries. The goal of the work presented in this paper was to evaluate the practical CSP implementation options for such parts of the world. Ambiguity and imprecision issues were addressed through the application of multi-criteria decision-making (MCDM) in a fuzzy environment. Six technology combinations, involving dry cooling and varied installed capacity levels, were examined: three parabolic trough collectors with and without thermal storage, two solar towers with differing storage levels, and a linear Fresnel with direct steam generation. The in-depth performance analysis was based on 4 main criteria and 29 sub-criteria. Quantitative and qualitative data, plus input from 44 stakeholders, were incorporated into the proposed fuzzy analytic hierarchy process (AHP) model. In addition to demonstrating the advantages and drawbacks of each scenario relative to the local energy sector requirements, the model’s results also provide accurate recommendation guidelines for integrating CSP technology into national grids while respecting stakeholders’ priorities. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

23 pages, 25475 KiB  
Article
Impact of Mechanical Arc Oscillation on the Microstructure and Durability of Welded Joints in Molten Salt Thermal Storage System
by Raúl Pastén, Mauro Henríquez, Mehran Nabahat, Victor Vergara, Juan C. Reinoso-Burrows, Carlos Soto, Carlos Durán, Edward Fuentealba and Luis Guerreiro
Materials 2025, 18(7), 1619; https://doi.org/10.3390/ma18071619 - 2 Apr 2025
Viewed by 606
Abstract
The two-tank molten salt thermal storage system is the most common storage solution in concentrated solar power (CSP) plants. Solar salt (60% NaNO3 + 40% KNO3) is the most widely used energy storage material in solar thermal plants. In solar [...] Read more.
The two-tank molten salt thermal storage system is the most common storage solution in concentrated solar power (CSP) plants. Solar salt (60% NaNO3 + 40% KNO3) is the most widely used energy storage material in solar thermal plants. In solar tower technology, where the molten salts must operate at temperatures ranging from 290 °C to 565 °C, several issues related to tank failures have emerged in recent years, with some of these failures attributed to the welding process. The welding process of joints in 316L stainless steel (ASS) probes exposed to a moving flow of a binary mixture containing 60% NaNO3 and 40% KNO3 (solar salt) is analysed. The results were evaluated using scanning electron microscopy (SEM) at 120, 500, 1000, 1500, and 2300 h of exposure. It was identified that arc mechanical oscillations significantly improve the microstructural properties and geometrical characteristics of welded joints, reducing structural defects and improving corrosion resistance. The technique promotes uniform thermal distribution, refined dendrite morphology, and homogeneous alloying element distribution, resulting in lower mass loss in high-temperature molten salt environments. Additionally, oscillation welding optimises the bead geometry, with reduced wetting angles and controlled penetration, making it ideal for high-precision industrial applications and extreme environments, such as molten salt thermal storage systems. Full article
Show Figures

Figure 1

24 pages, 6138 KiB  
Article
Decision-Making and Selection Framework for Potential Implementation of Concentrated Solar Power Technologies: Case Study
by Maycon Figueira Magalhães, Boniface Dominick Mselle and Francisca Galindo
Energies 2025, 18(7), 1753; https://doi.org/10.3390/en18071753 - 31 Mar 2025
Cited by 1 | Viewed by 564
Abstract
The decarbonization of industrial processes requires efficient and scalable renewable energy solutions. Concentrated Solar Power (CSP) technology stands out by providing both electricity and high-temperature heat, yet its optimal deployment remains a challenge. This study presents an innovative framework for selecting and optimizing [...] Read more.
The decarbonization of industrial processes requires efficient and scalable renewable energy solutions. Concentrated Solar Power (CSP) technology stands out by providing both electricity and high-temperature heat, yet its optimal deployment remains a challenge. This study presents an innovative framework for selecting and optimizing CSP technologies tailored for potential industrial practical applications. In this study, a multi-phase approach is deployed integrating a decision matrix, performance simulations using SOLARPILOT and SAM, and techno-economic evaluation to identify the best CSP solution. The study addresses the feasibility of four candidate CSP technologies, the characteristics of deployment areas, operation parameters such as energy storage time, and characteristics of energy storage material (comparing commercially available materials and an innovative molten salt named FERT-1). The results highlight solar towers as the most suitable technology, while the characteristics of the deployment can lead to over 3.2% difference in annual energy generation (when comparing between two areas, A1 and A2). Regarding energy storage, an optimal storage time of 11 h was identified, achieving a Levelized Cost of Electricity (LCOE) of 24–25 cents/kWh and a 31–32% energy capacity factor. Moreover, regarding energy storage material, the innovative molten salt highlighted improved thermal efficiency. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

30 pages, 7540 KiB  
Article
Radiated Free Convection of Dissipative and Chemically Reacting Flow Suspension of Ternary Nanoparticles
by Rekha Satish, Raju B. T, S. Suresh Kumar Raju, Fatemah H. H. Al Mukahal, Basma Souayeh and S. Vijaya Kumar Varma
Processes 2025, 13(4), 1030; https://doi.org/10.3390/pr13041030 - 30 Mar 2025
Viewed by 388
Abstract
This study investigates magnetohydrodynamic (MHD) heat and mass transport in a water-based ternary hybrid nanofluid flowing past an exponentially accelerated vertical porous plate. Two critical scenarios are analyzed: (i) uniform heat flux with variable mass diffusion and (ii) varying heat source with constant [...] Read more.
This study investigates magnetohydrodynamic (MHD) heat and mass transport in a water-based ternary hybrid nanofluid flowing past an exponentially accelerated vertical porous plate. Two critical scenarios are analyzed: (i) uniform heat flux with variable mass diffusion and (ii) varying heat source with constant species diffusion. The model integrates thermal radiation, heat sink/source, thermal diffusion, and chemical reaction effects to assess flow stability and thermal performance. Governing equations are non-dimensionalized and solved analytically using the Laplace transform method, with results validated against published data and finite difference method outcomes. Ternary hybrid nanofluids exhibit a significantly higher Nusselt number compared to hybrid and conventional nanofluids, demonstrating superior heat transfer capabilities. Magnetic field intensity reduces fluid velocity, while porosity enhances momentum transfer. Thermal radiation amplifies temperature profiles, critical for energy systems. Concentration boundary layer thickness decreases with higher chemical reaction rates, optimizing species diffusion. These findings contribute to the development of advanced thermal management systems, such as solar energy collectors and nuclear reactors, enhance energy-efficient industrial processes, and support biomedical technologies that require precise heat and mass control. This study positions ternary hybrid nanofluids as a transformative solution for optimizing high-performance thermal systems. Full article
Show Figures

Figure 1

20 pages, 1827 KiB  
Review
Hybrid Small Modular Nuclear Reactor with Concentrated Solar Power: Towards 4+ Reactors?
by Ruben Bartali, Emanuele De Bona, Michele Bolognese, Alessandro Vaccari, Matteo Testi and Luigi Crema
Solar 2025, 5(1), 12; https://doi.org/10.3390/solar5010012 - 19 Mar 2025
Viewed by 807
Abstract
Solar thermal energy is one of the most interesting sustainable solutions for decarbonizing the energy sector. Integrating solar collectors with other energy sources is common, as seen in domestic heating, where solar collectors are combined with common heaters to reduce fuel consumption (gasoline, [...] Read more.
Solar thermal energy is one of the most interesting sustainable solutions for decarbonizing the energy sector. Integrating solar collectors with other energy sources is common, as seen in domestic heating, where solar collectors are combined with common heaters to reduce fuel consumption (gasoline, electricity, gas, and biomass) and therefore, the energy cost. Similarly, this concept can be applied to nuclear energy, where the reduction in nuclear fuel consumption is very strategic for decreasing not only its cost but also the risk in handling, transportation, and storage (both the fuel and the nuclear waste as well). Nuclear energy, on the other hand, seems to be very useful in reducing the land occupation of concentrated solar power plants (CSPs) and helping a more constant production of electricity, both points being two important bottlenecks of CSP technologies. CSP and nuclear reactors, on the other hand, share common heating technologies and both can produce energy without CO2 emissions. Solar and nuclear energy, especially with the advent of the fourth generation of small modular reactors (SMRs), present a compelling opportunity for sustainable electricity generation. In this work, we present a brief review of CSP technology, a brief review of SMR concepts and development, and a brief overview of the combination of these two technologies. The review shows that in general, combined SMR + CSP technologies offer several advantages in terms of a strong reduction in the solar field extension areas, improved dispatchability of energy, improved efficiency of the SMRs, and, in particular, lower nuclear fuel consumption (hence, e.g., with a lowered refueling frequency). Full article
Show Figures

Figure 1

Back to TopTop