Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,531)

Search Parameters:
Keywords = comprehensive management system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 1435 KiB  
Review
Smart Safety Helmets with Integrated Vision Systems for Industrial Infrastructure Inspection: A Comprehensive Review of VSLAM-Enabled Technologies
by Emmanuel A. Merchán-Cruz, Samuel Moveh, Oleksandr Pasha, Reinis Tocelovskis, Alexander Grakovski, Alexander Krainyukov, Nikita Ostrovenecs, Ivans Gercevs and Vladimirs Petrovs
Sensors 2025, 25(15), 4834; https://doi.org/10.3390/s25154834 - 6 Aug 2025
Abstract
Smart safety helmets equipped with vision systems are emerging as powerful tools for industrial infrastructure inspection. This paper presents a comprehensive state-of-the-art review of such VSLAM-enabled (Visual Simultaneous Localization and Mapping) helmets. We surveyed the evolution from basic helmet cameras to intelligent, sensor-fused [...] Read more.
Smart safety helmets equipped with vision systems are emerging as powerful tools for industrial infrastructure inspection. This paper presents a comprehensive state-of-the-art review of such VSLAM-enabled (Visual Simultaneous Localization and Mapping) helmets. We surveyed the evolution from basic helmet cameras to intelligent, sensor-fused inspection platforms, highlighting how modern helmets leverage real-time visual SLAM algorithms to map environments and assist inspectors. A systematic literature search was conducted targeting high-impact journals, patents, and industry reports. We classify helmet-integrated camera systems into monocular, stereo, and omnidirectional types and compare their capabilities for infrastructure inspection. We examine core VSLAM algorithms (feature-based, direct, hybrid, and deep-learning-enhanced) and discuss their adaptation to wearable platforms. Multi-sensor fusion approaches integrating inertial, LiDAR, and GNSS data are reviewed, along with edge/cloud processing architectures enabling real-time performance. This paper compiles numerous industrial use cases, from bridges and tunnels to plants and power facilities, demonstrating significant improvements in inspection efficiency, data quality, and worker safety. Key challenges are analyzed, including technical hurdles (battery life, processing limits, and harsh environments), human factors (ergonomics, training, and cognitive load), and regulatory issues (safety certification and data privacy). We also identify emerging trends, such as semantic SLAM, AI-driven defect recognition, hardware miniaturization, and collaborative multi-helmet systems. This review finds that VSLAM-equipped smart helmets offer a transformative approach to infrastructure inspection, enabling real-time mapping, augmented awareness, and safer workflows. We conclude by highlighting current research gaps, notably in standardizing systems and integrating with asset management, and provide recommendations for industry adoption and future research directions. Full article
Show Figures

Figure 1

18 pages, 7706 KiB  
Review
The Role of Imaging in Ventricular Tachycardia Ablation
by Pasquale Notarstefano, Michele Ciabatti, Carmine Marallo, Mirco Lazzeri, Aureliano Fraticelli, Valentina Tavanti, Giulio Zucchelli, Angelica La Camera and Leonardo Bolognese
Diagnostics 2025, 15(15), 1973; https://doi.org/10.3390/diagnostics15151973 - 6 Aug 2025
Abstract
Ventricular tachycardia (VT) remains a major cause of morbidity and mortality in patients with structural heart disease. While catheter ablation has become a cornerstone in VT management, recurrence rates remain substantial due to limitations in electroanatomic mapping (EAM), particularly in cases of deep [...] Read more.
Ventricular tachycardia (VT) remains a major cause of morbidity and mortality in patients with structural heart disease. While catheter ablation has become a cornerstone in VT management, recurrence rates remain substantial due to limitations in electroanatomic mapping (EAM), particularly in cases of deep or heterogeneous arrhythmogenic substrates. Cardiac imaging, especially when multimodal and integrated with mapping systems, has emerged as a critical adjunct to enhance procedural efficacy, safety, and individualized strategy. This comprehensive review explores the evolving role of various imaging modalities, including echocardiography, cardiac magnetic resonance (CMR), computed tomography (CT), positron emission tomography (PET), and intracardiac echocardiography (ICE), in the preprocedural and intraprocedural phases of VT ablation. We highlight their respective strengths in substrate identification, anatomical delineation, and real-time guidance. While limitations persist, including costs, availability, artifacts in device carriers, and lack of standardization, future advances are likely to redefine procedural workflows. Full article
(This article belongs to the Special Issue Advances in Diagnosis and Treatment of Cardiac Arrhythmias 2025)
Show Figures

Figure 1

25 pages, 77176 KiB  
Article
Advancing Energy Management Strategies for Hybrid Fuel Cell Vehicles: A Comparative Study of Deterministic and Fuzzy Logic Approaches
by Mohammed Essoufi, Mohammed Benzaouia, Bekkay Hajji, Abdelhamid Rabhi and Michele Calì
World Electr. Veh. J. 2025, 16(8), 444; https://doi.org/10.3390/wevj16080444 - 6 Aug 2025
Abstract
The increasing depletion of fossil fuels and their environmental impact have led to the development of fuel cell hybrid electric vehicles. By combining fuel cells with batteries, these vehicles offer greater efficiency and zero emissions. However, their energy management remains a challenge requiring [...] Read more.
The increasing depletion of fossil fuels and their environmental impact have led to the development of fuel cell hybrid electric vehicles. By combining fuel cells with batteries, these vehicles offer greater efficiency and zero emissions. However, their energy management remains a challenge requiring advanced strategies. This paper presents a comparative study of two developed energy management strategies: a deterministic rule-based approach and a fuzzy logic approach. The proposed system consists of a proton exchange membrane fuel cell (PEMFC) as the primary energy source and a lithium-ion battery as the secondary source. A comprehensive model of the hybrid powertrain is developed to evaluate energy distribution and system behaviour. The control system includes a model predictive control (MPC) method for fuel cell current regulation and a PI controller to maintain DC bus voltage stability. The proposed strategies are evaluated under standard driving cycles (UDDS and NEDC) using a simulation in MATLAB/Simulink. Key performance indicators such as fuel efficiency, hydrogen consumption, battery state-of-charge, and voltage stability are examined to assess the effectiveness of each approach. Simulation results demonstrate that the deterministic strategy offers a structured and computationally efficient solution, while the fuzzy logic approach provides greater adaptability to dynamic driving conditions, leading to improved overall energy efficiency. These findings highlight the critical role of advanced control strategies in improving FCHEV performance and offer valuable insights for future developments in hybrid-vehicle energy management. Full article
(This article belongs to the Special Issue Power and Energy Systems for E-Mobility, 2nd Edition)
Show Figures

Figure 1

23 pages, 394 KiB  
Article
Integrated ERP Systems—Determinant Factors for Their Adoption in Romanian Organizations
by Octavian Dospinescu and Sabin Buraga
Systems 2025, 13(8), 667; https://doi.org/10.3390/systems13080667 - 6 Aug 2025
Abstract
This study examines the factors influencing the adoption of enterprise resource planning (ERP) systems within Romanian organizations. The objective is to develop a comprehensive framework for ERP adoption decisions, thereby advancing the field of knowledge and offering managerial insights. To accomplish this research [...] Read more.
This study examines the factors influencing the adoption of enterprise resource planning (ERP) systems within Romanian organizations. The objective is to develop a comprehensive framework for ERP adoption decisions, thereby advancing the field of knowledge and offering managerial insights. To accomplish this research goal, a questionnaire is envisioned, employing various research hypotheses, and distributed to a representative sample. Quantitative econometric regression analysis is employed, considering potential factors such as user training and education, competitive pressures, user involvement and participation, decentralized ERP features, top management support, data quality, the quality of the ERP system, cost and budget considerations, and business process reengineering. Of the 12 factors analyzed, 9 were found to be relevant in terms of influence on the decision to adopt ERP systems, in the context of the Romanian market. The other three factors were found to be irrelevant, thus obtaining results partially different from other areas of the world. By validating the hypotheses and answering the research questions, this work addresses a research gap regarding the lack of a comprehensive understanding of the influencing factors that shape the adoption process of ERP systems in Romania. Full article
(This article belongs to the Special Issue Management Control Systems in the Era of Digital Transformation)
25 pages, 1800 KiB  
Article
W-Model Framework for Reliability-Centered Lifecycle Modification of Aircraft Components
by Vitalii Susanin and Igor Kabashkin
Inventions 2025, 10(4), 68; https://doi.org/10.3390/inventions10040068 - 6 Aug 2025
Abstract
The classical V-Model has served as the foundational framework for aerospace systems engineering, but its scope terminates upon aircraft certification, creating a significant gap in addressing reliability degradation during operational service. This study introduces the W-model framework—a comprehensive lifecycle management approach that extends [...] Read more.
The classical V-Model has served as the foundational framework for aerospace systems engineering, but its scope terminates upon aircraft certification, creating a significant gap in addressing reliability degradation during operational service. This study introduces the W-model framework—a comprehensive lifecycle management approach that extends the V-Model to systematically integrate reliability-centered component modifications with established aerospace development practices. The W-model incorporates a structured six-phase reliability-centered modification methodology that transforms operational data into certified design improvements through systematic reliability monitoring, candidate selection, design reviews, development, and certification processes. A detailed case study on the aviation pneumatic bypass valve demonstrates the methodology. Application of the W-model resulted in a 36% improvement in the mean time between failures and a significant reduction in unscheduled removals. The W-model represents a paradigm shift from reactive maintenance strategies to proactive, data-driven reliability enhancement, providing a systematic approach that maintains the rigor and traceability required for commercial aviation while enabling continuous reliability growth throughout the complete aircraft lifecycle. Full article
Show Figures

Figure 1

29 pages, 3542 KiB  
Review
Digital Twins, AI, and Cybersecurity in Additive Manufacturing: A Comprehensive Review of Current Trends and Challenges
by Md Sazol Ahmmed, Laraib Khan, Muhammad Arif Mahmood and Frank Liou
Machines 2025, 13(8), 691; https://doi.org/10.3390/machines13080691 - 6 Aug 2025
Abstract
The development of Industry 4.0 has accelerated the adoption of sophisticated technologies, including Digital Twins (DTs), Artificial Intelligence (AI), and cybersecurity, within Additive Manufacturing (AM). Enabling real-time monitoring, process optimization, predictive maintenance, and secure data management can redefine conventional manufacturing paradigms. Although their [...] Read more.
The development of Industry 4.0 has accelerated the adoption of sophisticated technologies, including Digital Twins (DTs), Artificial Intelligence (AI), and cybersecurity, within Additive Manufacturing (AM). Enabling real-time monitoring, process optimization, predictive maintenance, and secure data management can redefine conventional manufacturing paradigms. Although their individual importance is increasing, a consistent understanding of how these technologies interact and collectively improve AM procedures is lacking. Focusing on the integration of digital twins (DTs), modular AI, and cybersecurity in AM, this review presents a comprehensive analysis of over 137 research publications from Scopus, Web of Science, Google Scholar, and ResearchGate. The publications are categorized into three thematic groups, followed by an analysis of key findings. Finally, the study identifies research gaps and proposes detailed recommendations along with a framework for future research. The study reveals that traditional AM processes have undergone significant transformations driven by digital threads, digital threads (DTs), and AI. However, this digitalization introduces vulnerabilities, leaving AM systems prone to cyber-physical attacks. Emerging advancements in AI, Machine Learning (ML), and Blockchain present promising solutions to mitigate these challenges. This paper is among the first to comprehensively summarize and evaluate the advancements in AM, emphasizing the integration of DTs, Modular AI, and cybersecurity strategies. Full article
(This article belongs to the Special Issue Neural Networks Applied in Manufacturing and Design)
Show Figures

Figure 1

23 pages, 789 KiB  
Perspective
Therapeutic Cancer Vaccines in Colorectal Cancer: Platforms, Mechanisms, and Combinations
by Chiara Gallio, Luca Esposito and Alessandro Passardi
Cancers 2025, 17(15), 2582; https://doi.org/10.3390/cancers17152582 - 6 Aug 2025
Abstract
Colorectal cancer (CRC) remains one of the most lethal malignancies worldwide, with high recurrence rates and limited curative options in metastatic settings. Cancer vaccines represent an emerging immunotherapeutic approach that aims to stimulate robust, tumor-specific immune responses. This review summarizes the current state [...] Read more.
Colorectal cancer (CRC) remains one of the most lethal malignancies worldwide, with high recurrence rates and limited curative options in metastatic settings. Cancer vaccines represent an emerging immunotherapeutic approach that aims to stimulate robust, tumor-specific immune responses. This review summarizes the current state of CRC vaccine development, including tumor cell-based, dendritic cell-based, peptide-based, nucleic acid-based (DNA and mRNA), and virus-based platforms. We highlight findings from key clinical trials that demonstrate immunogenicity, safety, and preliminary efficacy, with particular attention to combinations with chemotherapy and immune checkpoint inhibitors. Furthermore, we explore critical challenges such as tumor heterogeneity, immunosuppressive tumor microenvironments, and the logistical complexity; in this context, we particularly focus on the current development of personalized cancer vaccines, exploring the newly identified encouraging epitopes and their safety and efficacy in recent trials. The integration of cancer vaccines with in silico modeling, advanced delivery systems such as nanoparticles or AI-guided designs, and microbiome modulation represents a promising avenue for enhancing their clinical utility. Overall, therapeutic and prophylactic cancer vaccines may soon contribute meaningfully to the comprehensive management of CRC, especially in settings of minimal residual disease or early recurrence. Full article
(This article belongs to the Special Issue Exploring Immunotherapy in Colorectal Cancer)
Show Figures

Figure 1

17 pages, 926 KiB  
Review
Advancing Heart Failure Care Through Disease Management Programs: A Comprehensive Framework to Improve Outcomes
by Maha Inam, Robert M. Sangrigoli, Linda Ruppert, Pooja Saiganesh and Eman A. Hamad
J. Cardiovasc. Dev. Dis. 2025, 12(8), 302; https://doi.org/10.3390/jcdd12080302 - 5 Aug 2025
Abstract
Heart failure (HF) is a major global health challenge, characterized by high morbidity, mortality, and frequent hospital readmissions. Despite the advent of guideline-directed medical therapies (GDMTs), the burden of HF continues to grow, necessitating a shift toward comprehensive, multidisciplinary care models. Heart Failure [...] Read more.
Heart failure (HF) is a major global health challenge, characterized by high morbidity, mortality, and frequent hospital readmissions. Despite the advent of guideline-directed medical therapies (GDMTs), the burden of HF continues to grow, necessitating a shift toward comprehensive, multidisciplinary care models. Heart Failure Disease Management Programs (HF-DMPs) have emerged as structured frameworks that integrate evidence-based medical therapy, patient education, telemonitoring, and support for social determinants of health to optimize outcomes and reduce healthcare costs. This review outlines the key components of HF-DMPs, including patient identification and risk stratification, pharmacologic optimization, team-based care, transitional follow-up, remote monitoring, performance metrics, and social support systems. Incorporating tools such as artificial intelligence, pharmacist-led titration, and community health worker support, HF-DMPs represent a scalable approach to improving care delivery. The success of these programs depends on tailored interventions, interdisciplinary collaboration, and health equity-driven strategies. Full article
Show Figures

Graphical abstract

28 pages, 4243 KiB  
Article
Electric Bus Battery Energy Consumption Estimation and Influencing Features Analysis Using a Two-Layer Stacking Framework with SHAP-Based Interpretation
by Runze Liu, Jianming Cai, Lipeng Hu, Benxiao Lou and Jinjun Tang
Sustainability 2025, 17(15), 7105; https://doi.org/10.3390/su17157105 - 5 Aug 2025
Abstract
The widespread adoption of electric buses represents a major step forward in sustainable transportation, but also brings new operational challenges, particularly in terms of improving their efficiency and controlling costs. Therefore, battery energy consumption management is a key approach for addressing these issues. [...] Read more.
The widespread adoption of electric buses represents a major step forward in sustainable transportation, but also brings new operational challenges, particularly in terms of improving their efficiency and controlling costs. Therefore, battery energy consumption management is a key approach for addressing these issues. Accurate prediction of energy consumption and interpretation of the influencing factors are essential for improving operational efficiency, optimizing energy use, and reducing operating costs. Although existing studies have made progress in battery energy consumption prediction, challenges remain in achieving high-precision modeling and conducting a comprehensive analysis of the influencing features. To address these gaps, this study proposes a two-layer stacking framework for estimating the energy consumption of electric buses. The first layer integrates the strengths of three nonlinear regression models—RF (Random Forest), GBDT (Gradient Boosted Decision Trees), and CatBoost (Categorical Boosting)—to enhance the modeling capacity for complex feature relationships. The second layer employs a Linear Regression model as a meta-learner to aggregate the predictions from the base models and improve the overall predictive performance. The framework is trained on 2023 operational data from two electric bus routes (NO. 355 and NO. W188) in Changsha, China, incorporating battery system parameters, driving characteristics, and environmental variables as independent variables for model training and analysis. Comparative experiments with various ensemble models demonstrate that the proposed stacking framework exhibits superior performance in data fitting. Furthermore, XGBoost (Extreme Gradient Boosting) is introduced as a surrogate model to approximate the decision logic of the stacking framework, enabling SHAP (SHapley Additive exPlanations) analysis to quantify the contribution and marginal effects of influencing features. The proposed stacked and surrogate models achieved superior battery energy consumption prediction accuracy (lowest MSE, RMSE, and MAE), significantly outperforming benchmark models on real-world datasets. SHAP analysis quantified the overall contributions of feature categories (battery operation parameters: 56.5%; driving characteristics: 42.3%; environmental data: 1.2%), further revealing the specific contributions and nonlinear influence mechanisms of individual features. These quantitative findings offer specific guidance for optimizing battery system control and driving behavior. Full article
(This article belongs to the Section Sustainable Transportation)
23 pages, 7533 KiB  
Article
Risk Management of Rural Road Networks Exposed to Natural Hazards: Integrating Social Vulnerability and Critical Infrastructure Access in Decision-Making
by Marta Contreras, Alondra Chamorro, Nikole Guerrero, Carolina Martínez, Tomás Echaveguren, Eduardo Allen and Nicolás C. Bronfman
Sustainability 2025, 17(15), 7101; https://doi.org/10.3390/su17157101 - 5 Aug 2025
Abstract
Road networks are essential for access, resource distribution, and population evacuation during natural events. These challenges are pronounced in rural areas, where network redundancy is limited and communities may have social disparities. While traditional risk management systems often focus on the physical consequences [...] Read more.
Road networks are essential for access, resource distribution, and population evacuation during natural events. These challenges are pronounced in rural areas, where network redundancy is limited and communities may have social disparities. While traditional risk management systems often focus on the physical consequences of hazard events alone, specialized literature increasingly suggests the development of a more comprehensive approach for risk assessment, where not only physical aspects associated with infrastructure, such as damage level or disruptions, but also the social and economic attributes of the affected population are considered. Consequently, this paper proposes a Vulnerability Access Index (VAI) to support road network decision-making that integrates the social vulnerability of rural communities exposed to natural events, their accessibility to nearby critical infrastructure, and physical risk. The research methodology considers (i) the Social Vulnerability Index (SVI) calculation based on socioeconomic variables, (ii) Importance Index estimation (Iimp) to evaluate access to critical infrastructure, (iii) VAI calculation combining SVI and Iimp, and (iv) application to a case study in the influence area of the Villarrica volcano in southern Chile. The results show that when incorporating social variables and accessibility, infrastructure criticality varies significantly compared to the infrastructure criticality assessment based solely on physical risk, modifying the decision-making regarding road infrastructure robustness and resilience improvements. Full article
Show Figures

Figure 1

42 pages, 5651 KiB  
Article
Towards a Trustworthy Rental Market: A Blockchain-Based Housing System Architecture
by Ching-Hsi Tseng, Yu-Heng Hsieh, Yen-Yu Chang and Shyan-Ming Yuan
Electronics 2025, 14(15), 3121; https://doi.org/10.3390/electronics14153121 - 5 Aug 2025
Abstract
This study explores the transformative potential of blockchain technology in overhauling conventional housing rental systems. It specifically addresses persistent issues, such as information asymmetry, fraudulent listings, weak Rental Agreements, and data breaches. A comprehensive review of ten academic publications highlights the architectural frameworks, [...] Read more.
This study explores the transformative potential of blockchain technology in overhauling conventional housing rental systems. It specifically addresses persistent issues, such as information asymmetry, fraudulent listings, weak Rental Agreements, and data breaches. A comprehensive review of ten academic publications highlights the architectural frameworks, underlying technologies, and myriad benefits of decentralized rental platforms. The intrinsic characteristics of blockchain—immutability, transparency, and decentralization—are pivotal in enhancing the credibility of rental information and proactively preventing fraudulent activities. Smart contracts emerge as a key innovation, enabling the automated execution of Rental Agreements, thereby significantly boosting efficiency and minimizing reliance on intermediaries. Furthermore, Decentralized Identity (DID) solutions offer a robust mechanism for securely managing identities, effectively mitigating risks associated with data leakage, and fostering a more trustworthy environment. The suitability of platforms such as Hyperledger Fabric for developing such sophisticated rental systems is also critically evaluated. Blockchain-based systems promise to dramatically increase market transparency, bolster transaction security, and enhance fraud prevention. They also offer streamlined processes for dispute resolution. Despite these significant advantages, the widespread adoption of blockchain in the rental sector faces several challenges. These include inherent technological complexity, adoption barriers, the need for extensive legal and regulatory adaptation, and critical privacy concerns (e.g., ensuring compliance with GDPR). Furthermore, blockchain scalability limitations and the intricate balance between data immutability and the necessity for occasional data corrections present considerable hurdles. Future research should focus on developing user-friendly DID solutions, enhancing blockchain performance and cost-efficiency, strengthening smart contract security, optimizing the overall user experience, and exploring seamless integration with emerging technologies. While current challenges are undeniable, blockchain technology offers a powerful suite of tools for fundamentally improving the rental market’s efficiency, transparency, and security, exhibiting significant potential to reshape the entire rental ecosystem. Full article
(This article belongs to the Special Issue Blockchain Technologies: Emerging Trends and Real-World Applications)
Show Figures

Figure 1

51 pages, 4099 KiB  
Review
Artificial Intelligence and Digital Twin Technologies for Intelligent Lithium-Ion Battery Management Systems: A Comprehensive Review of State Estimation, Lifecycle Optimization, and Cloud-Edge Integration
by Seyed Saeed Madani, Yasmin Shabeer, Michael Fowler, Satyam Panchal, Hicham Chaoui, Saad Mekhilef, Shi Xue Dou and Khay See
Batteries 2025, 11(8), 298; https://doi.org/10.3390/batteries11080298 - 5 Aug 2025
Abstract
The rapid growth of electric vehicles (EVs) and new energy systems has put lithium-ion batteries at the center of the clean energy change. Nevertheless, to achieve the best battery performance, safety, and sustainability in many changing circumstances, major innovations are needed in Battery [...] Read more.
The rapid growth of electric vehicles (EVs) and new energy systems has put lithium-ion batteries at the center of the clean energy change. Nevertheless, to achieve the best battery performance, safety, and sustainability in many changing circumstances, major innovations are needed in Battery Management Systems (BMS). This review paper explores how artificial intelligence (AI) and digital twin (DT) technologies can be integrated to enable the intelligent BMS of the future. It investigates how powerful data approaches such as deep learning, ensembles, and models that rely on physics improve the accuracy of predicting state of charge (SOC), state of health (SOH), and remaining useful life (RUL). Additionally, the paper reviews progress in AI features for cooling, fast charging, fault detection, and intelligible AI models. Working together, cloud and edge computing technology with DTs means better diagnostics, predictive support, and improved management for any use of EVs, stored energy, and recycling. The review underlines recent successes in AI-driven material research, renewable battery production, and plans for used systems, along with new problems in cybersecurity, combining data and mass rollout. We spotlight important research themes, existing problems, and future drawbacks following careful analysis of different up-to-date approaches and systems. Uniting physical modeling with AI-based analytics on cloud-edge-DT platforms supports the development of tough, intelligent, and ecologically responsible batteries that line up with future mobility and wider use of renewable energy. Full article
Show Figures

Figure 1

34 pages, 1543 KiB  
Review
Treatment Strategies for Cutaneous and Oral Mucosal Side Effects of Oncological Treatment in Breast Cancer: A Comprehensive Review
by Sanja Brnić, Bruno Špiljak, Lucija Zanze, Ema Barac, Robert Likić and Liborija Lugović-Mihić
Biomedicines 2025, 13(8), 1901; https://doi.org/10.3390/biomedicines13081901 - 4 Aug 2025
Abstract
Cutaneous and oral mucosal adverse events (AEs) are among the most common non-hematologic toxicities observed during breast cancer treatment. These complications arise across various therapeutic modalities including chemotherapy, targeted therapy, hormonal therapy, radiotherapy, and immunotherapy. Although often underrecognized compared with systemic side effects, [...] Read more.
Cutaneous and oral mucosal adverse events (AEs) are among the most common non-hematologic toxicities observed during breast cancer treatment. These complications arise across various therapeutic modalities including chemotherapy, targeted therapy, hormonal therapy, radiotherapy, and immunotherapy. Although often underrecognized compared with systemic side effects, dermatologic and mucosal toxicities can severely impact the patients’ quality of life, leading to psychosocial distress, pain, and reduced treatment adherence. In severe cases, these toxicities may necessitate dose reductions, treatment delays, or discontinuation, thereby compromising oncologic outcomes. The growing use of precision medicine and novel targeted agents has broadened the spectrum of AEs, with some therapies linked to distinct dermatologic syndromes and mucosal complications such as mucositis, xerostomia, and lichenoid reactions. Early detection, accurate classification, and timely multidisciplinary management are essential for mitigating these effects. This review provides a comprehensive synthesis of current knowledge on cutaneous and oral mucosal toxicities associated with modern breast cancer therapies. Particular attention is given to clinical presentation, underlying pathophysiology, incidence, and evidence-based prevention and management strategies. We also explore emerging approaches, including nanoparticle-based delivery systems and personalized interventions, which may reduce toxicity without compromising therapeutic efficacy. By emphasizing the integration of dermatologic and mucosal care, this review aims to support clinicians in preserving treatment adherence and enhancing the overall therapeutic experience in breast cancer patients. The novelty of this review lies in its dual focus on cutaneous and oral complications across all major therapeutic classes, including recent biologic and immunotherapeutic agents, and its emphasis on multidisciplinary, patient-centered strategies. Full article
(This article belongs to the Section Cancer Biology and Oncology)
Show Figures

Figure 1

14 pages, 5995 KiB  
Article
Integrated Remote Sensing Evaluation of Grassland Degradation Using Multi-Criteria GDCI in Ili Prefecture, Xinjiang, China
by Liwei Xing, Dongyan Jin, Chen Shen, Mengshuai Zhu and Jianzhai Wu
Land 2025, 14(8), 1592; https://doi.org/10.3390/land14081592 - 4 Aug 2025
Abstract
As an important ecological barrier and animal husbandry resource base in arid and semi-arid areas, grassland degradation directly affects regional ecological security and sustainable development. Ili Prefecture is located in the western part of Xinjiang, China, and is a typical grassland resource-rich area. [...] Read more.
As an important ecological barrier and animal husbandry resource base in arid and semi-arid areas, grassland degradation directly affects regional ecological security and sustainable development. Ili Prefecture is located in the western part of Xinjiang, China, and is a typical grassland resource-rich area. However, in recent years, driven by climate change and human activities, grassland degradation has become increasingly serious. In view of the lack of comprehensive evaluation indicators and the inconsistency of grassland evaluation grade standards in remote sensing monitoring of grassland resource degradation, this study takes the current situation of grassland degradation in Ili Prefecture in the past 20 years as the research object and constructs a comprehensive evaluation index system covering three criteria layers of vegetation characteristics, environmental characteristics, and utilization characteristics. Net primary productivity (NPP), vegetation coverage, temperature, precipitation, soil erosion modulus, and grazing intensity were selected as multi-source indicators. Combined with data sources such as remote sensing inversion, sample survey, meteorological data, and farmer survey, the factor weight coefficient was determined by analytic hierarchy process. The Grassland Degeneration Comprehensive Index (GDCI) model was constructed to carry out remote sensing monitoring and evaluation of grassland degradation in Yili Prefecture. With reference to the classification threshold of the national standard for grassland degradation, the GDCI grassland degradation evaluation grade threshold (GDCI reduction rate) was determined by the method of weighted average of coefficients: non-degradation (0–10%), mild degradation (10–20%), moderate degradation (20–37.66%) and severe degradation (more than 37.66%). According to the results, between 2000 and 2022, non-degraded grasslands in Ili Prefecture covered an area of 27,200 km2, representing 90.19% of the total grassland area. Slight, moderate, and severe degradation accounted for 4.34%, 3.33%, and 2.15%, respectively. Moderately and severely degraded areas are primarily distributed in agro-pastoral transition zones and economically developed urban regions, respectively. The results revealed the spatial and temporal distribution characteristics of grassland degradation in Yili Prefecture and provided data basis and technical support for regional grassland resource management, degradation prevention and control and ecological restoration. Full article
Show Figures

Figure 1

33 pages, 3972 KiB  
Article
A Review and Case of Study of Cooling Methods: Integrating Modeling, Simulation, and Thermal Analysis for a Model Based on a Commercial Electric Permanent Magnet Synchronous Motor
by Henrry Gabriel Usca-Gomez, David Sebastian Puma-Benavides, Victor Danilo Zambrano-Leon, Ramón Castillo-Díaz, Milton Israel Quinga-Morales, Javier Milton Solís-Santamaria and Edilberto Antonio Llanes-Cedeño
World Electr. Veh. J. 2025, 16(8), 437; https://doi.org/10.3390/wevj16080437 - 4 Aug 2025
Abstract
The efficiency of electric motors is highly dependent on their operating temperature, with lower temperatures contributing to enhanced performance, reliability, and extended service life. This study presents a comprehensive review of state-of-the-art cooling technologies and evaluates their impact on the thermal behavior of [...] Read more.
The efficiency of electric motors is highly dependent on their operating temperature, with lower temperatures contributing to enhanced performance, reliability, and extended service life. This study presents a comprehensive review of state-of-the-art cooling technologies and evaluates their impact on the thermal behavior of a commercial motor–generator system in high-demand applications. A baseline model of a permanent magnet synchronous motor (PMSM) was developed using MotorCAD 2023® software, which was supported by reverse engineering techniques to accurately replicate the motor’s physical and thermal characteristics. Subsequently, multiple cooling strategies were simulated under consistent operating conditions to assess their effectiveness. These strategies include conventional axial water jackets as well as advanced oil-based methods such as shaft cooling and direct oil spray to the windings. The integration of these systems in hybrid configurations was also explored to maximize thermal efficiency. Simulation results reveal that hybrid cooling significantly reduces the temperature of critical components such as stator windings and permanent magnets. This reduction in thermal stress improves current efficiency, power output, and torque capacity, enabling reliable motor operation across a broader range of speeds and under sustained high-load conditions. The findings highlight the effectiveness of hybrid cooling systems in optimizing both thermal management and operational performance of electric machines. Full article
Show Figures

Figure 1

Back to TopTop