Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (833)

Search Parameters:
Keywords = compound accumulation system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1606 KB  
Article
The Effect of Growth and Nutrition in Black Soldier Fly Larvae Fed by Hemp Seed Oil Mixed Diets
by Suttida Suwannayod, Phattawin Setthaya, Kwankamol Limsopatham and Napat Harnpornchai
Insects 2025, 16(11), 1081; https://doi.org/10.3390/insects16111081 - 23 Oct 2025
Viewed by 125
Abstract
The black soldier fly (BSF), Hermetia illucens, has gained increasing attention as a sustainable protein source for animal feed. This study investigated the effects of dietary supplementation with hemp seed oil (HSO) at 0.5–6% concentrations on the growth performance and nutritional composition of [...] Read more.
The black soldier fly (BSF), Hermetia illucens, has gained increasing attention as a sustainable protein source for animal feed. This study investigated the effects of dietary supplementation with hemp seed oil (HSO) at 0.5–6% concentrations on the growth performance and nutritional composition of black soldier fly larvae (BSFL). Larval development, survival rate, body weight, and adult longevity were evaluated under controlled conditions. In addition, chemical characterization of HSO was performed, and the proximate composition, mineral content, and amino acid profile of dried larvae were analyzed. The results indicated that HSO supplementation had no statistically significant effect on developmental time, survival rate, biomass accumulation, or adult lifespan compared to the control. Gas Chromatography–Mass Spectrometry (GC-MS) profiling of HSO revealed a wide range of bioactive compounds, including unsaturated fatty acids (UFAs), phytosterols, cannabinoids, and tocopherols. The BSFL showed high levels of fat and energy, with essential amino acids and minerals present in favorable concentrations for feed applications. The HSO improves the protein levels at the 0.5–1.0% concentration, with negative correlations at higher concentrations. The findings suggest that HSO can be integrated into BSFL diets without adverse effects on growth performance, while potentially enhancing the functional value of the larvae. This supports the feasibility of incorporating hemp by-products into insect-rearing systems to promote circular and value-added feed production. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Graphical abstract

13 pages, 2414 KB  
Article
The Rapid Catalytic Degradation of Reactive Black 5 Using Mo51Fe34B15 Metallic Glass Wire
by Ya-Nan Chen, Bo Song, Chengquan Zhang, Tao Li, Chen Su and Shengfeng Guo
Metals 2025, 15(10), 1160; https://doi.org/10.3390/met15101160 - 21 Oct 2025
Viewed by 98
Abstract
Metallic glass, as an emerging catalytic material, possesses an atomic structure characterized by long-range disorder and short-range order, which creates abundant and accessible active sites that enhance the adsorption and reactivity toward pollutant molecules, particularly dye compounds. In treating highly colored and recalcitrant [...] Read more.
Metallic glass, as an emerging catalytic material, possesses an atomic structure characterized by long-range disorder and short-range order, which creates abundant and accessible active sites that enhance the adsorption and reactivity toward pollutant molecules, particularly dye compounds. In treating highly colored and recalcitrant Reactive Black 5 (RB5) dye wastewater, Mo51Fe34B15 metallic glass wire demonstrate outstanding catalytic degradation performance within a conventional Fenton-like system. Under acidic conditions (pH = 2), the material exhibits a degradation rate constant of 0.698 min−1 for a 20 ppm RB5 dye solution, achieving a degradation efficiency of 98.8% within 10 min. After 10 consecutive cycles, the efficiency remains at 95%, and throughout 15 cycles, it consistently maintains a performance level above 90%. As the reaction proceeds, the degradation rate gradually decreases, primarily due to the accumulation of corrosion products on the catalyst surface, which are predominantly composed of MoO3 and Fe2O3. During the degradation process, metallic Mo0 and Fe0 serve as electron donors that facilitate the decomposition of H2O2, generating highly reactive hydroxyl radicals (•OH). These radicals attack the chromophoric structure of the dye, leading to its structural disruption and enabling rapid decolorization. Full article
Show Figures

Figure 1

20 pages, 1345 KB  
Review
Ecotoxicological Impacts of Heavy Metals on Medicinal Plant Quality and Rhizosphere Microbial Communities
by Hexigeduleng Bao, Yu Wang, Hainan Bao, Feijuan Wang, Qiong Jiang, Xiaoqi He, Hua Li, Yanfei Ding and Cheng Zhu
Plants 2025, 14(20), 3214; https://doi.org/10.3390/plants14203214 - 19 Oct 2025
Viewed by 363
Abstract
With the rapid expansion of industrial activities, the accumulation of heavy metals in the environment has become a serious threat to ecological security and public health. Rhizosphere microorganisms play a crucial role in supporting the growth and quality of medicinal plants by facilitating [...] Read more.
With the rapid expansion of industrial activities, the accumulation of heavy metals in the environment has become a serious threat to ecological security and public health. Rhizosphere microorganisms play a crucial role in supporting the growth and quality of medicinal plants by facilitating nutrient uptake and regulating hormonal balance. However, medicinal plants can absorb heavy metals from contaminated soils during growth, resulting in toxic metal accumulation in plant tissues and reduced efficacy of active compounds. At the same time, excessive heavy metal levels suppress rhizosphere microbial growth and activity, disrupt community structure and function, and weaken their beneficial interactions with plants. These processes collectively lead to soil fertility decline, hindered plant development, and compromised safety and quality of medicinal materials. This review systematically summarizes the mechanisms by which heavy metals affect medicinal plants and their rhizosphere microbiota, and highlights that future research should focus on elucidating these interactions, developing advanced remediation technologies, and establishing comprehensive monitoring systems for the quality and safety of medicinal plants, thereby providing a scientific basis for their safe utilization and quality improvement. Full article
(This article belongs to the Special Issue Soil Heavy Metal Pollution and Agricultural Product Quality)
Show Figures

Figure 1

14 pages, 1904 KB  
Article
Occurrence, Dominance, and Combined Use of Antibiotics in Aquaculture Ponds
by Emmanuel Bob Samuel Simbo, Zhiyuan Ma, Longxiang Fang, Sampa Morgan, Sahr Lamin Sumana, Meshack Chubwa Maguru, Mbonyiwe Chakanga, Haggai Gondwe, Alpha Thaimu Bundu, Liping Qiu, Chao Song and Shunlong Meng
Toxics 2025, 13(10), 892; https://doi.org/10.3390/toxics13100892 - 18 Oct 2025
Viewed by 267
Abstract
Antibiotic use in aquaculture has become widespread to sustain production and control bacterial diseases, but it poses significant ecological and human health risks due to residue accumulation and resistance development. This study investigated the occurrence, dominance, and combined use of sulfonamide and fluoroquinolone [...] Read more.
Antibiotic use in aquaculture has become widespread to sustain production and control bacterial diseases, but it poses significant ecological and human health risks due to residue accumulation and resistance development. This study investigated the occurrence, dominance, and combined use of sulfonamide and fluoroquinolone antibiotics in freshwater fish aquaculture ponds around Wuxi, China. Here, the term aquaculture refers specifically to the controlled farming of freshwater fish species such as carp and crucian carp in managed pond systems. A total of 80 water samples (collected exclusively from pond waters) were obtained from 40 ponds during the high intensity rearing and harvest stage of fish. Residues of enrofloxacin and sulfonamide antibiotics were analyzed using a validated LC–MS/MS method with detection limits in the low nanogram-per-liter range. Results revealed that antibiotics were ubiquitous in pond waters, with enrofloxacin emerging as the dominant compound in August, reaching concentrations of up to 2.36 µg/L. By October, sulfonamides, particularly sulfamethoxazole and sulfadiazine, became more prevalent, with a maximum sulfadiazine concentration exceeding 4 µg/L. Multivariate analyses demonstrated a clear seasonal shift in antibiotic profiles, while correlation analyses indicated limited combined use in summer but notable co-occurrence of sulfonamides in autumn. These findings underscore that antibiotic application patterns in aquaculture are strongly linked to production stages, with potential consequences for environmental safety, resistance development, and food security. Effective monitoring, stricter regulation, and alternative disease management strategies are urgently required to mitigate risks and promote sustainable aquaculture practices. Full article
(This article belongs to the Special Issue Ecotoxicology of Pollutants of High Concern)
Show Figures

Graphical abstract

26 pages, 2013 KB  
Review
Title Oxidative Stress in Age-Related Macular Degeneration: From Molecular Mechanisms to Emerging Therapeutic Targets
by Tatsuya Mimura and Hidetaka Noma
Antioxidants 2025, 14(10), 1251; https://doi.org/10.3390/antiox14101251 - 18 Oct 2025
Viewed by 311
Abstract
Age-related macular degeneration (AMD) is a leading cause of irreversible visual impairment in the elderly, and oxidative stress, primarily mediated by reactive oxygen species (ROS), is widely recognized as a central driver of its onset and progression. The retina is highly susceptible to [...] Read more.
Age-related macular degeneration (AMD) is a leading cause of irreversible visual impairment in the elderly, and oxidative stress, primarily mediated by reactive oxygen species (ROS), is widely recognized as a central driver of its onset and progression. The retina is highly susceptible to oxidative damage due to its elevated oxygen consumption, abundant polyunsaturated fatty acids, and continuous exposure to light. Recent studies have elucidated molecular mechanisms in which mitochondrial dysfunction, disruption of redox homeostasis, inflammation, and complement activation interact to promote degeneration of retinal pigment epithelium (RPE) and photoreceptor cells. In addition to age-related oxidative stress, environmental factors such as motor vehicle exhaust and volatile organic compounds (VOCs) can accelerate the accumulation of lipofuscin and drusen, thereby fostering a chronic pro-inflammatory milieu. From a therapeutic perspective, beyond conventional antioxidant supplementation, emerging strategies targeting oxidative stress-related pathways have gained attention, including mitochondrial protectants, activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway, anti-inflammatory agents, and gene therapy. Importantly, several innovative approaches are under investigation, such as saffron supplementation with neuroprotective properties, drug repositioning of levodopa, and nanotechnology-based delivery systems to enhance retinal bioavailability of antioxidants and gene therapies. This review summarizes the pathophysiological role of oxidative stress in AMD from a molecular mechanistic perspective and discusses recent advances in research and novel therapeutic targets. Full article
(This article belongs to the Special Issue Role of Oxidative Stress in Eye Diseases)
Show Figures

Figure 1

32 pages, 6528 KB  
Article
JP-14: A Trace Amine-Associated Receptor 1 Agonist with Anti-Metabolic Disorder Potential
by Monika Marcinkowska, Joanna Sniecikowska, Monika Głuch-Lutwin, Barbara Mordyl, Marek Bednarski, Adam Bucki, Michał Sapa, Monika Kubacka, Agata Siwek, Agnieszka Zagórska, Jacek Sapa, Marcin Kołaczkowski and Magdalena Kotańska
Int. J. Mol. Sci. 2025, 26(20), 10033; https://doi.org/10.3390/ijms262010033 - 15 Oct 2025
Viewed by 199
Abstract
TAAR1 agonists have emerged as promising therapeutic agents capable of modulating glucose homeostasis, enhancing insulin secretion and suppressing appetite, making them attractive candidates for the treatment of obesity and related metabolic disorders. Despite their potential, the number of TAAR1-targeting compounds with well-defined pharmacological [...] Read more.
TAAR1 agonists have emerged as promising therapeutic agents capable of modulating glucose homeostasis, enhancing insulin secretion and suppressing appetite, making them attractive candidates for the treatment of obesity and related metabolic disorders. Despite their potential, the number of TAAR1-targeting compounds with well-defined pharmacological profiles remains limited. In this study, we identified and characterized JP-14, a novel aminoguanidine-based TAAR1 agonist, in a comprehensive panel of pharmacological assays. JP-14 promoted glucose uptake in HepG2 cells and reduced lipid deposition during 3T3-L1 adipocyte differentiation, with both actions dependent on TAAR1 signaling. In differentiated 3T3-L1 adipocytes, JP-14 reduced intracellular levels of both neutral lipids and phospholipids, indicating dual anti-steatotic and anti-phospholipidotic activity. In zebrafish larvae, toxicity profiling confirmed 10 µg/mL as a safe concentration for further in vivo studies. These assays showed that JP-14 promoted lipid mobilization and partially prevented fructose-induced lipid accumulation, demonstrating systemic metabolic benefits in vivo. Moreover, JP-14 markedly delayed gastric emptying in mice, an effect similar to loperamide and reversed by TAAR1 antagonism, supporting its role in regulating satiety and energy balance. Collectively, our findings establish JP-14 as a safe and metabolically active TAAR1 agonist with multifaceted effects on glucose and lipid metabolism. JP-14 represents a valuable pharmacological tool for probing TAAR1-mediated mechanisms in metabolic regulation. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Graphical abstract

19 pages, 2287 KB  
Review
Hydrogen Adsorbents in the Vacuum Layer of Liquid Hydrogen Containers: Materials and Applications
by Meng Yu, Yang Wu, Jiake Wu, Yongxiang Zhu, Xiangjun Yu and Long Jiang
Hydrogen 2025, 6(4), 89; https://doi.org/10.3390/hydrogen6040089 - 15 Oct 2025
Viewed by 274
Abstract
Hydrogen serves as a key clean-energy carrier, with the main hurdles lying in safe, efficient transport and storage (gas or liquid) and in end-use energy conversion. Liquid hydrogen (LH), as a high-density method of storage and transportation, presents cryogenic insulation as its key [...] Read more.
Hydrogen serves as a key clean-energy carrier, with the main hurdles lying in safe, efficient transport and storage (gas or liquid) and in end-use energy conversion. Liquid hydrogen (LH), as a high-density method of storage and transportation, presents cryogenic insulation as its key technical issues. In LH storage tanks, the performance of high vacuum multilayer insulation (HVMLI) will decline due to hydrogen release and leakage from the microscopic pores of steel, which significantly destroy the vacuum layer. The accumulation of residual gases will accelerate thermal failure, shorten the service life of storage tanks and increase safety risks. Adsorption is the most effective strategy for removing residual gases. This review aims to elucidate materials, methods, and design approaches related to hydrogen storage. First, it summarizes adsorbents used in liquid hydrogen storage tanks, including cryogenic adsorbents, metal oxides, zeolite molecular sieves, and non-volatile compounds. Second, it explores experimental testing methods and applications of hydrogen adsorbents in storage tanks, analyzing key challenges faced in practical applications and corresponding countermeasures. Finally, it proposes research prospects for exploring novel adsorbents and developing integrated systems. Full article
Show Figures

Figure 1

23 pages, 1577 KB  
Review
Targeting the Aryl Hydrocarbon Receptor: The Potential of Indole Compounds in the Treatment of Cystic Fibrosis
by Sen Hou, Qingkun Yue, Xia Hou and Qingtian Wu
Int. J. Mol. Sci. 2025, 26(20), 9876; https://doi.org/10.3390/ijms26209876 - 10 Oct 2025
Viewed by 582
Abstract
The aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor, plays a crucial role in regulating immune homeostasis, inflammatory responses, and intestinal barrier function. Indole compounds and their derivatives are ligands of AHR, which can activate the AHR signal transduction pathway and show significant [...] Read more.
The aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor, plays a crucial role in regulating immune homeostasis, inflammatory responses, and intestinal barrier function. Indole compounds and their derivatives are ligands of AHR, which can activate the AHR signal transduction pathway and show significant regulatory potential in various inflammatory and immune diseases. Cystic fibrosis (CF) is a life-threatening autosomal recessive genetic disorder. Cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction affects multiple systems throughout the body. The core of its pathological process is chronic infection, abnormal inflammation, and tissue damage caused by mucus accumulation. Exploring alternative or adjunctive therapeutic strategies targeting pathological pathways downstream of CFTR is of significant importance. The aim of the present study is to explore the multiple beneficial effects that indole compounds may exert in regulating pulmonary infection and inflammation, repairing intestinal barrier function, and regulating immune homeostasis in CF patients by activating the AHR signaling pathway. Additionally, this study discusses the risks and challenges associated with developing indole compounds as CF drugs, offering a novel research approach distinct from traditional CFTR modulators for creating new CF therapeutics. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

17 pages, 4159 KB  
Article
Production of Bioactive Compounds in Grammatophyllum speciosum Blume Using Bioreactor Cultures Under Elicitation with Sodium Chloride
by Jittraporn Chusrisom, Gadewara Matmarurat, Nattanan Panjaworayan T-Thienprasert, Wannarat Phonphoem and Pattama Tongkok
Plants 2025, 14(19), 3083; https://doi.org/10.3390/plants14193083 - 6 Oct 2025
Viewed by 445
Abstract
Grammatophyllum speciosum Blume is an endangered wild orchid with medicinal properties. In this research, we propagated G. speciosum from vegetative organs grown under aseptic conditions. Subsequently, salinity stress was applied at the plantlet stage to investigate its effect on the accumulation of bioactive [...] Read more.
Grammatophyllum speciosum Blume is an endangered wild orchid with medicinal properties. In this research, we propagated G. speciosum from vegetative organs grown under aseptic conditions. Subsequently, salinity stress was applied at the plantlet stage to investigate its effect on the accumulation of bioactive compounds. Half-strength Murashige and Skoog (½ MS) medium supplemented with a combination of 1 mg of L−1 1-naphthaleneacetic acid (NAA) and 0.5 mg of L−1 6-benzylaminopurine (BAP) proved to be a more suitable medium for shoot formation (32.33 ± 2.52 shoots per explant). The protocorm-like bodies, derived from embryogenic callus, were transferred into a temporary immersion bioreactor (TIB) system; 10-min of immersion every 3 h enhanced the maximum number of shoots, shoot height, and the fresh growth index (127.00 ± 2.16, 5.00 ± 0.51 cm and 4.26 ± 0.52, respectively). The proliferated plantlets from the TIB system successfully rooted in Vacin and Went medium. Furthermore, the plantlets were maintained in ½ MS medium supplemented with sodium chloride (NaCl) (0, 50, 100 or 200 µM) under a white light-emitting diode for 72 h to determine the total phenolic content (TPC) in the in vitro cultures. The TPC was highest in the medium with 100 µM of NaCl (111.06 ± 2.24 mg gallic acid equivalent g−1 dry weight), the diphenyl picrylhydrazyl antioxidant activity was 24.50 ± 0.76% and ferric-reducing antioxidant power values were in the range 2441.79 ± 1.21 to 2491.96 ± 3.23 µM ascorbic acid equivalent g−1 dry weight. The G. speciosum extracts showed antibacterial activity against acne pathogens, with minimum inhibitory concentration and minimum bactericidal concentration values in the ranges 6.4–12.8 mg mL−1 and 12.8–25.6 mg mL−1, respectively. Full article
Show Figures

Graphical abstract

29 pages, 15230 KB  
Article
Harpagide Confers Protection Against Acute Lung Injury Through Multi-Omics Dissection of Immune–Microenvironmental Crosstalk and Convergent Therapeutic Mechanisms
by Hong Wang, Jicheng Yang, Yusheng Zhang, Jie Wang, Shaoqi Song, Longhui Gao, Mei Liu, Zhiliang Chen and Xianyu Li
Pharmaceuticals 2025, 18(10), 1494; https://doi.org/10.3390/ph18101494 - 4 Oct 2025
Viewed by 505
Abstract
Background: Acute lung injury (ALI) and its severe form, acute respiratory distress syndrome (ARDS), remain major causes of morbidity and mortality, yet no targeted pharmacological therapy is available. Excessive neutrophil and macrophage infiltration drives reactive oxygen species (ROS) production and cytokine release, leading [...] Read more.
Background: Acute lung injury (ALI) and its severe form, acute respiratory distress syndrome (ARDS), remain major causes of morbidity and mortality, yet no targeted pharmacological therapy is available. Excessive neutrophil and macrophage infiltration drives reactive oxygen species (ROS) production and cytokine release, leading to alveolar–capillary barrier disruption and fatal respiratory failure. Methods: We applied an integrative multi-omics strategy combining single-cell transcriptomics, peripheral blood proteomics, and lung tissue proteomics in a lipopolysaccharide (LPS, 10 mg/kg)-induced mouse ALI model to identify key signaling pathways. Harpagide, an iridoid glycoside identified from our natural compound screen, was evaluated in vivo (40 and 80 mg/kg) and in vitro (0.1–1 mg/mL). Histopathology, oxidative stress markers (SOD, GSH, and MDA), cytokine levels (IL-6 and IL-1β), and signaling proteins (HIF-1α, p-PI3K, p-AKT, Nrf2, and HO-1) were quantitatively assessed. Direct target engagement was probed using surface plasmon resonance (SPR), the cellular thermal shift assay (CETSA), and 100 ns molecular dynamics (MD) simulations. Results: Multi-omics profiling revealed robust activation of HIF-1, PI3K/AKT, and glutathione-metabolism pathways following the LPS challenge, with HIF-1α, VEGFA, and AKT as core regulators. Harpagide treatment significantly reduced lung injury scores by ~45% (p < 0.01), collagen deposition by ~50%, and ROS accumulation by >60% relative to LPS (n = 6). The pro-inflammatory cytokines IL-6 and IL-1β were reduced by 55–70% at the protein level (p < 0.01). Harpagide dose-dependently suppressed HIF-1α and p-AKT expression while enhancing Nrf2 and HO-1 levels (p < 0.05). SPR confirmed direct binding of Harpagide to HIF-1α (KD = 8.73 µM), and the CETSA demonstrated enhanced thermal stability of HIF-1α. MD simulations revealed a stable binding conformation within the inhibitory/C-TAD region after 50 ns. Conclusions: This study reveals convergent immune–microenvironmental regulatory mechanisms across cellular and tissue levels in ALI and demonstrates the protective effects of Harpagide through multi-pathway modulation. These findings offer new insights into the pathogenesis of ALI and support the development of “one-drug, multilayer co-regulation” strategies for systemic inflammatory diseases. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Graphical abstract

26 pages, 4018 KB  
Article
In Vitro Plantlet Regeneration and Accumulation of Ginkgolic Acid in Leaf Biomass of Ginkgo biloba L.
by Yumei Xie, Keyuan Zheng, Yuan Chen, Jianxu Li, Juan Guo, Jianguo Cao and Mulan Zhu
Forests 2025, 16(10), 1539; https://doi.org/10.3390/f16101539 - 3 Oct 2025
Viewed by 214
Abstract
This study established an efficient in vitro regeneration system using stem nodes from root collar suckers as explants. Subsequently, regenerated shoots were used to establish an in vitro medicinal production protocol that achieved ginkgolic acid production. The self-developed Ginkgo biloba medium (GBM), first [...] Read more.
This study established an efficient in vitro regeneration system using stem nodes from root collar suckers as explants. Subsequently, regenerated shoots were used to establish an in vitro medicinal production protocol that achieved ginkgolic acid production. The self-developed Ginkgo biloba medium (GBM), first reported in this study, was pivotal to system establishment. The plantlet propagation system showed that the bases of stem nodes dipped in GBM with 2 mg·L−1 6-benzyladenine (BA) and 0.2 mg·L−1 1-naphthaleneacetic acid (NAA) achieved near-complete axillary bud induction (99.56%). Adventitious shoot induction reached 82.22% (3.5 shoots/explant) using GBM with 0.2 mg·L−1 BA, 0.02 mg·L−1 kinetin (Kin) and 0.2 g·L−1 proline (Pro). Maximum adventitious shoot elongation (92.22%, average 3.35 cm) was observed on GBM containing 0.1 mg·L−1 zeatin (ZT) and 0.01 mg·L−1 BA. After 3-week preculture with 15 mg·L−1 phloroglucinol (PG), treatment with 0.6 mg·L−1 indole-3-butyric acid (IBA) and 0.2% activated carbon (AC) yielded 96.67% rooting (6.19 roots/explant) and 85% acclimatization survival. For medicinal resource production, bud cluster induction at 94.44% (20.89 buds/explant) on GBM with 1 mg·L−1 BA, 0.03 mg·L−1 Kin, and 0.2 g·L−1 Pro. Leaf organs in GBM with 0.3 mg·L−1 BA, 0.01 mg·L−1 Kin, 0.01 mg·L−1 IBA, 0.3 g·L−1 Pro, and 0.01 mg·L−1 glutamine (Gln) accumulated 20.64 g fresh weight and 41.910 mg·g−1 DW ginkgolic acids, representing a 4.93-fold increase over mother plants. This system enables large-scale Ginkgo biloba L. propagation and provides an in vitro strategy for producing medicinal compounds in endangered plants. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

12 pages, 4480 KB  
Article
Transcriptomic Insights into Anthocyanin Biosynthesis in Aronia melanocarpa Callus Under Different Light Conditions
by Mingjun Hou, Bingrui Wang, Chang An, Yulai Wu, Mohammad Gul Arabzai, Xiaopeng Fan, Changbing Liu and Zongshen Zhang
Int. J. Mol. Sci. 2025, 26(19), 9588; https://doi.org/10.3390/ijms26199588 - 1 Oct 2025
Viewed by 332
Abstract
Aronia melanocarpa is rich in anthocyanins, compounds with significant medicinal and industrial value, making it an attractive species for enhanced production. Compared with fruits or intact plants, callus tissue offers a uniform, controllable in vitro system that is particularly suitable for dissecting regulatory [...] Read more.
Aronia melanocarpa is rich in anthocyanins, compounds with significant medicinal and industrial value, making it an attractive species for enhanced production. Compared with fruits or intact plants, callus tissue offers a uniform, controllable in vitro system that is particularly suitable for dissecting regulatory mechanisms under defined environmental conditions. Although light quality is known to influence anthocyanin biosynthesis, its specific regulatory mechanisms in A. melanocarpa remain unclear. In this study, callus tissues were cultured under six light regimes: full-spectrum LED, blue:red (5:1), red:blue (5:1), red:blue:white (1:1:1), red:white (5:1), and pure blue light. Anthocyanin content was quantified using the pH differential method, and the results showed that the blue:red (5:1) treatment produced the highest accumulation, reaching 14.06 mg/100 g. Transcriptome sequencing was then performed to compare the gene expression profiles between calli cultured under blue:red (5:1) light and those maintained in darkness. A total of 10,547 differentially expressed genes (DEGs) were identified, including 6134 upregulated and 4413 downregulated genes. Functional enrichment analysis indicated that these DEGs were mainly involved in anthocyanin biosynthesis and transport. Importantly, key structural genes such as PAL, C4H, 4CL, CHS, ANS, UFGT, and GST were significantly upregulated under blue:red (5:1) light, as further validated by qRT-PCR. Overall, our findings demonstrate that a blue:red (5:1) light ratio enhances anthocyanin accumulation by promoting the expression of biosynthetic and transport-related genes. This study not only provides new transcriptomic insights into the light-mediated regulation of secondary metabolism in A. melanocarpa callus, but also establishes a foundation for optimizing in vitro culture systems for sustainable anthocyanin production. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

22 pages, 4578 KB  
Article
Effects of Plastic Film and Gravel-Sand Mulching on Soil Moisture and Yield of Wolfberry Under Ridge-Furrow Planting in an Arid Desert Region of China’s Loess Plateau
by Xiaojuan Ma, Zhi Wang, Bo Ma, Luyao Zhang, Juncang Tian and Jinyu He
Agronomy 2025, 15(10), 2312; https://doi.org/10.3390/agronomy15102312 - 30 Sep 2025
Viewed by 590
Abstract
In arid areas, the combined use of plastic sheeting under gravel-sand mulch on ridge-furrow planting systems is an emerging practice to minimize soil water evaporation and micro-plastic pollution. In this study, we conducted a two-year field experiment near Gobi-Tengger Desert in Ningxia, China, [...] Read more.
In arid areas, the combined use of plastic sheeting under gravel-sand mulch on ridge-furrow planting systems is an emerging practice to minimize soil water evaporation and micro-plastic pollution. In this study, we conducted a two-year field experiment near Gobi-Tengger Desert in Ningxia, China, to evaluate the effects of a plastic film underneath a layer of pure sand (MS1), pure gravel (MS2) and mixed gravel-and-sand (MS3) mulch on the soil hydrothermal properties, water use efficiency, yield, and fruit quality of wolfberry, compared to bare soil (CK). The results showed that mulching significantly increased soil temperature and water content in the 0–20 cm surface layer, though the effects varied with soil depth and water availability between a supplemental irrigated year (2022) and a rain-fed year (2023). Mulching markedly altered soil water dynamics, enhancing the capture and retention of light-to-heavy rainfall events. Consequently, all mulches significantly increased seasonal water consumption (ET) and water use efficiency (WUE) compared to CK. The MS1 treatment consistently achieved the highest yield and WUE, and the highest accumulation of beneficial fruit compounds like polysaccharides and flavonoids. However, this treatment also resulted in elevated soil salinity. Our findings demonstrate that combined mulching, especially MS1, is a highly effective strategy for optimizing soil conditions, water productivity, and fruit quality in wolfberry cultivation, although long-term salinity management requires attention. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

44 pages, 4335 KB  
Article
Nanoencapsulated Dunaliella tertiolecta Extract and β-Carotene in Liposomal Carriers: Antioxidant and Erythroprotective Potential Through Sustained-Release Systems
by Jonathan García-Morales, Ricardo Iván González-Vega, Diana Fimbres-Olivarría, Ariadna Thalía Bernal-Mercado, Santiago Pedro Auobourg-Martínez, Karla Alejandra López-Gastélum, Silvia Elena Burruel-Ibarra, María Irene Silvas-García, Andrea Grijalva-Molina, José de Jesús Ornelas-Paz and Carmen Lizette Del-Toro-Sánchez
Molecules 2025, 30(19), 3924; https://doi.org/10.3390/molecules30193924 - 29 Sep 2025
Viewed by 345
Abstract
The nanoencapsulation of bioactive compounds such as β-carotene and microalgal extracts has emerged as an effective strategy to enhance their stability, bioavailability, and biological efficacy, particularly against oxidative stress. Dunaliella tertiolecta, a microalga rich in carotenoids and chlorophylls, presents notable antioxidant and [...] Read more.
The nanoencapsulation of bioactive compounds such as β-carotene and microalgal extracts has emerged as an effective strategy to enhance their stability, bioavailability, and biological efficacy, particularly against oxidative stress. Dunaliella tertiolecta, a microalga rich in carotenoids and chlorophylls, presents notable antioxidant and erythroprotective properties; however, its bioactive potential is limited by low bioaccessibility and degradation during processing and digestion. This study aimed to develop and evaluate nanoliposomes loaded with D. tertiolecta extract and β-carotene as sustained-release systems to improve antioxidant performance and erythroprotective effects. The methodology involved optimizing microalgal cultivation under nitrogen and salinity stress to enhance pigment accumulation, followed by extraction, nanoencapsulation via the particle dispersion method, and physicochemical characterization of the nanoliposomes. Antioxidant capacity and release kinetics were assessed through ABTS and FRAP assays, while erythroprotective activity was evaluated by monitoring oxidative hemolysis in human erythrocytes. The release kinetics revealed an anomalous transport mechanism for both systems, with β-carotene showing faster and more efficient release due to its greater lipophilic compatibility with the nanoliposomal matrix. The nanoliposomal systems demonstrated nanoscale size, high encapsulation efficiency, sustained antioxidant release, and effective erythrocyte protection, with the extract-loaded formulation exhibiting synergistic effects superior to isolated β-carotene. These findings support the potential application of this nanotechnology-based delivery system in functional foods, nutraceuticals, and biomedical formulations aimed at preventing oxidative stress-related cellular damage. Full article
Show Figures

Figure 1

18 pages, 1717 KB  
Article
Native Phosphate Solubilizing Bacteria Mitigate the Effect of the Phytopathogen Sclerotium rolfsii on Peanut (Arachis hypogaea L.) Plants in a P-Deficient Environment
by Ana Laura Gentile, Maria Soledad Figueredo, Maria Soledad Anzuay, Maria Laura Tonelli, Adriana Fabra, Tania Taurian and Liliana Ludueña
Agronomy 2025, 15(10), 2278; https://doi.org/10.3390/agronomy15102278 - 26 Sep 2025
Viewed by 421
Abstract
Phosphorus (P) deficiency and soil-borne fungal diseases are major constraints to peanut (Arachis hypogaea L.) production. Phosphate-solubilizing bacteria (PSB) can improve P availability in the soil, thereby promoting plant growth. However, their potential to improve plant resistance against pathogens under P-limited conditions [...] Read more.
Phosphorus (P) deficiency and soil-borne fungal diseases are major constraints to peanut (Arachis hypogaea L.) production. Phosphate-solubilizing bacteria (PSB) can improve P availability in the soil, thereby promoting plant growth. However, their potential to improve plant resistance against pathogens under P-limited conditions remains poorly understood. In this study, we first evaluated the ability of two PSB strains, Enterobacter sp. J49 and Serratia sp. S119, to induce systemic resistance (ISR) in peanut plants against the fungal pathogen Sclerotium rolfsii. Results showed that strain S119 reduced disease severity by 40%, whereas strain J49 reduced both incidence (30%) and severity (40%). The protective effect produced by strain J49 was mediated by ISR, as evidenced by the early increase in phenolic compounds accumulation (48 h) and total peroxidase activity (72 h) in inoculated plants. Under P-deficient conditions, the J49 strain was also able to protect peanut plants against S. rolfsii, as demonstrated by a significant reduction in disease severity (55%). These findings highlight the potential of multifunctional bacterium Enterobacter sp. J49 to enhance sustainable peanut production by simultaneously improving P acquisition and strengthening plant defense mechanisms. Full article
Show Figures

Figure 1

Back to TopTop