Effects of Plastic Film and Gravel-Sand Mulching on Soil Moisture and Yield of Wolfberry Under Ridge-Furrow Planting in an Arid Desert Region of China’s Loess Plateau
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site, Climate and Soil Properties
2.2. Experimental Design
2.2.1. Surface Mulching Experimental Design
- (1)
- MS1: RF surface was covered by PFM with a layer of coarse sand over it (size range 1–2 mm, Figure 2c);
- (2)
- MS2: RF surface was covered by PFM with a layer of gravel over it (5–20 mm, Figure 2d);
- (3)
- MS3: RF surface was covered by PFM with a layer of mixed sand and gravel over it, with 40% sand and 60% gravel (Figure 2e);
- (4)
- CK (control): Bare RF surfaces exposed to the air.
2.2.2. Subsurface Soil Monitoring System
2.2.3. Analysis of Soil Physicochemical Properties
Soil Analysis Methods
- (1)
- Na+ Flame photometry
- (2)
- Ca2+ and Mg2+: Atomic absorption spectrophotometry (AAS)
- (3)
- Sodium adsorption ratio (SAR) was calculated as
- (1)
- Alkali-hydrolyzable nitrogen: Alkali diffusion method.
- (2)
- Available phosphorus: Spectrophotometric molybdenum-blue method.
- (3)
- Available potassium: Flame photometric determination after extraction with neutral 1 M ammonium acetate.
2.2.4. Determination of Yield Indicators
2.2.5. Determination of Fruit Quality Indicators
2.2.6. Wolfberry Water Consumption
2.2.7. Water Use Efficiency of Wolfberry
2.2.8. Environmental Monitoring System
2.2.9. Data Acquisition
2.3. Data Processing
3. Results
3.1. Soil Temperature Variations
3.2. The Pattern of Rainfall and Dewfall
3.3. Effects of Combined Plastic Film and Gravel-Sand Mulching on Soil Water Content
3.4. Effects of Different Mulch Treatments on Water Consumption and Water Use Efficiency by Wolfberry Across Two Distinct Hydrological Years
3.5. Dynamics of Soil Salinity
3.6. Wolfberry Yield and Contents of Nutritional Compounds
3.7. Response of Wolfberry Yield to Water Consumption
4. Discussion
4.1. The Importance of Rainfall and Dewfall for SWC
4.2. Variability of the Soil Water Content
4.3. Variability of the Water Consumption
4.4. Variability of the Electrical Conductivity in the Soil
4.5. Wolfberry Yield and Quality Response to Plastic and Gravel-Sand Mulching on Ridge-Furrow Planting System
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, S.Y.; Li, Y.; Lin, H.X.; Feng, H.; Dyck, M. Effects of different mulching technologies on evapotranspiration and summer maize growth. Agric. Water Manag. 2018, 201, 309–318. [Google Scholar] [CrossRef]
- Wang, Y.J.; Xie, Z.K.; Malhi, S.S.; Vera, C.L.; Zhang, Y.B.; Guo, Z.H. Effects of gravel-sand mulch, plastic mulch and ridge and furrow rainfall harvesting system combinations on water use efficiency, soil temperature and watermelon yield in a semi-arid Loess Plateau of northwestern China. Agric. Water Manag. 2011, 101, 88–92. [Google Scholar] [CrossRef]
- Liu, X.L.; Wang, Y.D.; Yan, X.Q.; Hou, H.Z.; Liu, P.; Cai, T.; Zhang, P.; Jia, Z.K.; Ren, X.L.; Chen, X.L. Appropriate ridge-furrow ratio can enhance crop production and resource use efficiency by improving soil moisture and thermal condition in a semi-arid region. Agric. Water Manag. 2020, 240, 106289. [Google Scholar] [CrossRef]
- Jia, Z.F.; Wu, B.B.; Wei, W.; Chang, Y.J.; Lei, R.; Hu, W.W.; Jiang, J. Effect of Plastic Membrane and Geotextile Cloth Mulching on Soil Moisture and Spring Maize Growth in the Loess–Hilly Region of Yan’an, China. Agronomy 2023, 13, 2513. [Google Scholar] [CrossRef]
- Zhang, L.Y.; Wang, Z.; He, Z.L.; Ma, X.J.; Ma, B.; Tian, J.C.; He, J.Y. Effects of gravel-sand and plastic film mulching on soil water and temperature retention in cold and arid regions without irrigation. Sci. Total Environ. 2024, 934, 173350. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.Z.; Li, W.J.; Tang, W.; Zhang, D.M. Early plastic mulching increases stand establishment and lint yield of cotton in saline fields. Field Crop. Res. 2009, 111, 269–275. [Google Scholar] [CrossRef]
- Ma, Y.J.; Li, X.Y. Water accumulation in soil by gravel and sand mulches: Influence of textural composition and thickness of mulch layers. J. Arid. Environ. 2011, 75, 432–437. [Google Scholar] [CrossRef]
- Kumar, S.; Dey, P. Effects of different mulches and irrigation methods on root growth, nutrient uptake, water-use efficiency and yield of strawberry. Sci. Hortic. 2011, 127, 318–324. [Google Scholar] [CrossRef]
- Farah, A.H.; Al-Ghobari, H.M.; Zin El-Abedin, T.K.; Alrasasimah, M.S.; El-Shafei, A.A. Impact of Partial Root Drying and Soil Mulching on Squash Yield and Water Use Efficiency in Arid. Agronomy 2021, 11, 706. [Google Scholar] [CrossRef]
- Gu, X.B.; Cai, H.J.; Chen, P.P.; Li, Y.P.; Fang, H.; Li, Y.N. Ridge-furrow film mulching improves water and nitrogen use efficiencies under reduced irrigation and nitrogen applications in wheat field. Field Crop. Res. 2021, 270, 108–214. [Google Scholar] [CrossRef]
- Jiang, R.; Guo, S.; Ma, D.D. Review of plastic film mulching system and its impact on soil ecological environment in China’s rainfed drylands. Chin. J. Eco-Agric. 2018, 26, 317–328. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, Q.; Jia, W.Q.; Yan, C.R.; Wang, J. Agricultural plastic mulching as a source of microplastics in the terrestrial environment. Environ. Pollut. 2020, 260, 114096. [Google Scholar] [CrossRef]
- Li, S.T.; Ding, F.; Flury, M.; Wang, Z.; Xu, L.; Li, S.Y.; Jones, D.L.; Wang, J.K. Macro- and microplastic accumulation in soil after 32 years of plastic film mulching. Environ. Pollut. 2022, 300, 118945. [Google Scholar] [CrossRef]
- Kaseke, K.; Mills, A.J.; Henschel, J.; Seely, M.K.; Esler, K.; Brown, R. The effects of desert pavements (gravel mulch) on soil micro-hydrology. Pure Appl. Geophys. 2012, 169, 873–880. [Google Scholar] [CrossRef]
- Lü, H.S.; Yu, Z.B.; Horton, R.; Zhu, Y.H.; Zhang, J.Y.; Jia, Y.W.; Yang, C.G. Effect of Gravel-Sand Mulch on Soil Water and Temperature in the Semiarid Loess Region of Northwest China. J. Hydrol. Eng. 2013, 18, 1484–1494. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, M.J.; Wang, S.J.; Qu, D.Y.; Zhang, Y.; Wang, J.X. Soil moisture variability affected by sand mulch: An isotope-based assessment of irrigated farmland in Northwest China. Ecohydrology 2022, 16, e2477. [Google Scholar] [CrossRef]
- Zhao, W.J.; Cui, Z.; Li, N. Scale dependency of spatial variability of soil moisture in gravel-mulched field. Environ. Earth Sci. 2016, 75, 1455. [Google Scholar] [CrossRef]
- Feng, H.J.; Chen, J.F.; Zheng, X.Q.; Xue, J.; Miao, C.Y.; Du, Q.; Xu, Y.X. Effect of Sand Mulches of Different Particle Sizes on Soil Evaporation during the Freeze–Thaw Period. Water 2018, 10, 536. [Google Scholar] [CrossRef]
- Xie, Z.K.; Wang, Y.J.; Jiang, W.L.; Wei, X.H. Evaporation and evapotranspiration in a watermelon field mulched with gravel of different sizes in northwest China. Agric. Water Manag. 2006, 81, 173–184. [Google Scholar] [CrossRef]
- Xie, Z.K.; Wang, Y.J.; Cheng, G.D.; Malhi, S.S.; Vera, C.L.; Guo, Z.H.; Zhang, Y.B. Particle-size effects on soil temperature, evaporation, water use efficiency and watermelon yield in fields mulched with gravel and sand in semi-arid Loess Plateau of northwest China. Agric. Water Manag. 2010, 97, 917–923. [Google Scholar] [CrossRef]
- Wang, D.L.; Feng, H.; Liu, X.Q.; Li, Y.; Zhou, L.F.; Zhang, A.F.; Dyck, M. Effects of gravel mulching on yield and multilevel water use efficiency of wheat-maize cropping system in semi-arid region of Northwest China. Field Crop. Res. 2018, 218, 201–212. [Google Scholar] [CrossRef]
- Wang, H.L.; Zhang, X.C.; Zhang, G.P.; Yu, X.F.; Hou, H.Z.; Fang, Y.J.; Ma, Y.F.; Lei, K.N. Mulching coordinated the seasonal soil hydrothermal relationships and promoted maize productivity in a semi-arid rainfed area on the Loess Plateau. Agric. Water Manag. 2022, 263, 107448. [Google Scholar] [CrossRef]
- Zhao, L.L.; Zhao, H.; Zhao, X.; Xin, L.P. Effects of Different Gravel Mulching on Soil Moisture Status and Regression Model Prediction in Arid Regions. J. Geosci. Environ. Prot. (GEP) 2022, 10, 109–120. [Google Scholar] [CrossRef]
- Cui, L.L.; Lu, J.L.; Ding, S.H.; Song, X.S.; Chen, P.L.; Feng, B.L.; Tian, L.X. Optimizing the ratios of ridge-furrow mulching patterns and urea types improve the resource use efficiency and yield of broomcorn millet on the Loess Plateau of China. Agric. Water Manag. 2025, 312, 109415. [Google Scholar] [CrossRef]
- Yang, F.K.; He, B.L.; Dong, B.; Zhang, G.P. Film mulched ridge-furrow tillage improves the quality and fertility of dryland agricultural soil by enhancing soil organic carbon and nutrient stratification. Agric. Water Manag. 2024, 292, 108686. [Google Scholar] [CrossRef]
- Zhang, G.X.; Mo, F.; Shah, F.; Meng, W.H.; Liao, Y.C.; Han, J. Ridge-furrow configuration significantly improves soil water availability, crop water use efficiency, and grain yield in dryland agroecosystems of the Loess Plateau. Agric. Water Manag. 2021, 245, 106657. [Google Scholar] [CrossRef]
- Qin, S.H.; Zhang, J.L.; Dai, H.L.; Wang, D.; Li, D. Effect of ridge–furrow and plastic-mulching planting patterns on yield formation and water movement of potato in a semi-arid area. Agric. Water Manag. 2014, 131, 87–94. [Google Scholar] [CrossRef]
- Liu, C.A.; Zhou, L.M.; Jia, J.J.; Wang, L.J.; Si, J.T.; Li, X.; Pan, C.C.; Siddique, K.H.M.; Li, F.M. Maize yield and water balance is affected by nitrogen application in a film-mulching ridge–furrow system in a semiarid region of China. Eur. J. Agron. 2014, 52, 103–111. [Google Scholar] [CrossRef]
- Greve, P.; Roderick, M.L.; Ukkola, A.M.; Wada, Y. The aridity Index under global warming. Environ. Res. Lett. 2019, 14, 124006. [Google Scholar] [CrossRef]
- Richards, L.A. Diagnosis and Improvement of Saline and Alkaline Soils; Agriculture Handbook No. 60; USDA: Washington, DC, USA, 1954. [Google Scholar]
- Bao, S.D. Soil Agricultural Chemical Analysis, 3rd ed.; China Agricultural Press: Beijing, China, 2000. [Google Scholar]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric methods for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Chang, C.C.; Yang, M.H.; Wen, H.M.; Chern, J.C. Estimated of total flavonoid content in propolis by two complementary colorimetric methods. J. Food Drug Anal. 2002, 10, 178–182. [Google Scholar] [CrossRef]
- Oweis, T.Y.; Farahani, H.J.; Hachum, A.Y. Evapotranspiration and water use of full and deficit irrigated cotton in the Mediterranean environment in northern Syria. Agric. Water Manag. 2011, 98, 1239–1248. [Google Scholar] [CrossRef]
- Guo, Y.Y. Farmland Water Conservancy, 2nd ed.; Water Resources and Electric Power Press: Beijing, China, 1986. [Google Scholar]
- Ma, B.; Tian, J.C.; He, J.Y.; Wang, Z. The mechanisms of dew formation and its influence on surface soil water content in the Central Ningxia arid belt. Adv. Water Sci. 2022, 33, 955–966. [Google Scholar] [CrossRef]
- Lawrence, M.G. The relationship between relative humidity and the dewpoint temperature in moist air: A simple conversion and applications. Bull. Am. Meteorol. Soc. 2005, 86, 225–234. [Google Scholar] [CrossRef]
- Wang, H.; Jia, Z.F.; Wang, Z. Dew amount and its inducing factors in the loess hilly region of northern Shaanxi Province, China. Chin. J. Appl. Ecol. 2017, 28, 3703–3710. [Google Scholar] [CrossRef]
- Jia, Z.F.; Wang, Z.; Wang, H. Characteristics of dew formation in the semi-arid Loess Plateau of central Shaanxi Province. Water 2019, 11, 126. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Zhang, S.Y.; Li, J.Z.; Zhang, T.; Feng, P.; Shi, H. How does dewfall affect drought assessment in different climate regions in China. J. Hydrol. 2023, 616, 128601. [Google Scholar] [CrossRef]
- Gallo, A.; Odokonyero, K.; Mousa, M.A.; Reihmer, J.; Al-Mashharawi, S.; Marasco, R.; Manalastas, E.; Morton, M.L.; Daffonchio, D.; McCabe, M.F.; et al. Nature-Inspired Superhydrophobic Sand Mulches Increase Agricultural Productivity and Water-Use Efficiency in Arid Regions. ACS Agric. Sci. Technol. 2022, 2, 276–288. [Google Scholar] [CrossRef]
- Lv, W.C.; Qiu, Y.; Xie, Z.K.; Wang, X.P.; Wang, Y.J.; Hua, C.P. Gravel mulching effects on soil physicochemical properties and microbial community composition in the Loess Plateau, northwestern China. Eur. J. Soil Biol. 2019, 94, 103115. [Google Scholar] [CrossRef]
- Guo, C.C.; Sun, J.N.; Li, W.J.; Yang, R.Y.; Zhang, Z.H.; Geng, Y.J.; Pan, Y.H. Straw application and drip irrigation boost wolfberry performance in coastal saline soil by modifying the root zone environment and rhizosphere microbiome. Plant Soil 2025, 270, 108–214. [Google Scholar] [CrossRef]
- Mohammad, A.K.; Yumi, Y.; Mikiya, T.; Kimihito, N. Evaluation of soil water evaporation and condensation using stable water isotopes under plastic mulching. Soil Tillage Res. 2025, 253, 106678. [Google Scholar] [CrossRef]
- Banihabib, M.E.; Vaziri, B.; Javadi, S. A model for the assessment of the effect of mulching on aquifer recharging by rainfalls in an arid region. J. Hydrol. 2018, 567, 102–113. [Google Scholar] [CrossRef]
- Yamanaka, T.; Inoue, M.; Kaihotsu, I. Effects of gravel mulch on water vapor transfer above and below the soil surface. Agric. Water Manag. 2004, 67, 145–155. [Google Scholar] [CrossRef]
- Mahdavi, S.M.; Neyshabouri, M.R.; Fujimaki, H.; Heris, A.M. Coupled heat and moisture transfer and evaporation in mulched soils. Catena 2017, 151, 34–48. [Google Scholar] [CrossRef]
- Shi, X.S.; Lin, J.Z.; Xiong, H.; Liu, J.Y.; Zeng, Y.W. Practical estimation of the thermal conductivity of granular soils considering grading and relative density using three physical parameters. Acta Geotech. 2024, 20, 965–985. [Google Scholar] [CrossRef]
- Zhang, N.; Yu, X.B.; Pradhan, A.; Puppala, A.J. Effects of Particle Size and Fines Content on Thermal Conductivity of Quartz Sands. Transp. Res. Rec. 2015, 2510, 36–43. [Google Scholar] [CrossRef]
- Li, X.Y. Effects of gravel and sand mulches on dew deposition in the semiarid region of China. J. Hydrol. 2002, 260, 151–160. [Google Scholar] [CrossRef]
- Agam, N.; Berliner, P.R. Dew formation and water vapor adsorption in semi-arid environments—A review. J. Arid. Environ. 2006, 65, 572–590. [Google Scholar] [CrossRef]
- Sun, C.T.; Feng, D.; Mi, Z.R.; Li, C.X.; Zhang, J.P.; Gao, Y.; Sun, J.S. Impacts of Ridge-Furrow Planting on Salt Stress and Cotton Yield under Drip Irrigation. Water 2017, 9, 49. [Google Scholar] [CrossRef]
- Dong, Q.G.; Yang, Y.C.; Zhang, T.B.; Zhou, L.F.; He, J.Q.; Chau, H.W.; Zou, Y.F.; Feng, H. Impacts of ridge with plastic mulch-furrow irrigation on soil salinity, spring maize yield and water use efficiency in an arid saline area. Agric. Water Manag. 2018, 201, 268–277. [Google Scholar] [CrossRef]
- Weil, R.R.; Brady, N.C. Nature and Properties of Soils, 15th ed.; Pearson: Columbus, OH, USA, 2016. [Google Scholar]
- Lv, S.Q.; Li, J.; Yang, Z.Y.; Li, H.T.; Wang, L.Q.; Tian, S.Z.; Ahmed, I. Long-term soil mulching combined with N fertilizer could maintain soil water balance in semi-arid regions of Northwest China. Agric. Water Manag. 2025, 317, 109656. [Google Scholar] [CrossRef]
- Li, H.; Zeng, S.; Luo, X.W.; Fang, L.Y.; Liang, Z.H.; Yang, W.W. Effects of small ridge and furrow mulching degradable film on dry direct seeded rice. Sci. Rep. 2021, 11, 317. [Google Scholar] [CrossRef]
- Heng, T.; Ma, Y.J.; Ai, P.R.; Liu, Z.Y.; Wu, M.; Liu, C.J. The Effects of Soil Salt Stress on the Nitrogen Uptake, Yield Response and Nitrogen Use Efficiency of Cotton in Arid Areas. Agronomy 2024, 14, 229. [Google Scholar] [CrossRef]
- Zhao, C.Z.; Wang, Y.J.; Qiu, Y.; Xie, Z.K.; Zhang, Y.B. Response of soil respiration to hydrothermal effects of gravel–sand mulch in arid regions of the Loess Plateau, China. Soil Tillage Res. 2023, 231, 105733. [Google Scholar] [CrossRef]
- Gabriel, A.L.; Libertad, M.; Mariel, N.G.; Lalor, E. Sand mulching and its relationship with soil temperature and light environment in the cultivation of Lilium longiflorum cut flower. Sci. Hortic. 2018, 240, 453–459. [Google Scholar] [CrossRef]
- Wu, Y.Y.; Jia, Z.J.; Li, W.C.; Gao, S.S.; Zhang, X.; Niu, X.X.; Huang, Y.H. Gravel Mulching Significantly Improves Crop Yield and Water Productivity in Arid and Semi-Arid Regions of Northwest China: Evidence from a Meta-Analysis. Agronomy 2024, 14, 1717. [Google Scholar] [CrossRef]









| Treatment | Soil Temperature | |||||
|---|---|---|---|---|---|---|
| 2022 | 2023 | |||||
| 2 cm | 10 cm | 20 cm | 2 cm | 10 cm | 20 cm | |
| MS1 | 17.63 ± 10.28aB | 17.84 ± 9.76aB | 18.45 ± 8.91aA | 16.5 ± 10.37bA | 16.59 ± 10.17bA | 16.44 ± 9.59bA |
| MS2 | 17.24 ± 10.56aB | 18 ± 9.76aA | 18.11 ± 8.84aA | 16.66 ± 10.47bB | 17.28 ± 10.19aA | 17.3 ± 9.62aA |
| MS3 | 17.63 ± 10.77aB | 17.73 ± 10.07aB | 18.13 ± 9.11aA | 17.42 ± 10.35aA | 17.32 ± 10.13aA | 17.5 ± 9.62aA |
| CK | 16.34 ± 11.49b | 16.72 ± 10.94b | 16.01 ± 11.06c | 16.41 ± 10.37b | ||
| Treatment (A) | ** | * | ||||
| Soil depth (B) | ** | ** | ||||
| A × B | ns | ns | ||||
| Soil Water Content (%) | ||
|---|---|---|
| 2022 | 2023 | |
| Treatment (A) | ** | ** |
| Soil depth (B) | ** | ** |
| A × B | ** | ** |
| Treatment | MS1 | MS2 | MS3 | CK | |
|---|---|---|---|---|---|
| Growth Stages | |||||
| Spring Shoot Stage | 2022 | 23.99 ± 0.02a | 24.05 ± 0.21a | 23.95 ± 0.04a | 23.46 ± 0.29b |
| 2023 | 2.05 ± 0.03a | 0.42 ± 0.05c | 1.16 ± 0.04b | −0.59 ± 0.07d | |
| Flowering Stage | 2022 | 42.43 ± 0.02d | 42.65 ± 0.05b | 42.94 ± 0.03a | 42.48 ± 0.1c |
| 2023 | 7.31 ± 0.07b | 7.37 ± 0.17b | 7.82 ± 0.06a | 6.99 ± 0.2c | |
| Fruit Ripening Stage | 2022 | 45.43 ± 0.05b | 44.86 ± 0.11d | 46.03 ± 0.05a | 45.09 ± 0.14c |
| 2023 | 65.69 ± 0.12d | 67.44 ± 0.19a | 66.43 ± 0.1c | 67.24 ± 0.19b | |
| Leaf Fall Stage | 2022 | 0.39 ± 0.08b | 0.52 ± 0.11a | 0.54 ± 0.07a | 0.38 ± 0.11b |
| 2023 | 16.6 ± 0.082a | 15.58 ± 0.06d | 16.18 ± 0.05c | 16.34 ± 0.12b | |
| Entire growth Season | 2022 | 112.24 ± 0.14b | 112.08 ± 0.09c | 113.46 ± 0.09a | 111.4 ± 0.41d |
| 2023 | 91.64 ± 0.03a | 90.81 ± 0.15b | 91.59 ± 0.08a | 89.98 ± 0.16c | |
| WUE | 2022 | 2.05 ± 0.003a | 2.02 ± 0.002c | 2.03 ± 0.002b | 1.67 ± 0.008d |
| 2023 | 1.87 ± 0.001a | 1.77 ± 0.003c | 1.83 ± 0.002b | 1.41 ± 0.002d |
| Treatment | Electrical Conductivity (EC) (dS/m) | |||||
|---|---|---|---|---|---|---|
| 2022 | 2023 | |||||
| 2 cm | 10 cm | 20 cm | 2 cm | 10 cm | 20 cm | |
| MS1 | 3.2 ± 0.9aA | 2.7 ± 0.8bB | 3.4 ± 0.8aA | 2.1 ± 0.9aB | 1.8 ± 0.9aC | 3.1 ± 1.2aA |
| MS2 | 2 ± 1cB | 2.9 ± 0.5bA | 0.03 ± 0.02bC | 2.1 ± 1.4aA | 1.9 ± 1.1aAB | 1.7 ± 1bB |
| MS3 | 2.5 ± 0.9bB | 3.3 ± 1.1aA | 3.2 ± 0.58aA | 0.6 ± 0.3cC | 1.4 ± 0.9bB | 2.8 ± 0.9aA |
| CK | 2.1 ± 0.9c | 2 ± 1.1c | 0.9 ± 0.6b | 0.7 ± 0.5c | ||
| Treatment (A) | ** | ** | ||||
| Soil depth (B) | ** | ** | ||||
| A × B | ** | ** | ||||
| Treatment | Fresh-to-Dry Weight Ratio (FDR) | Weight of 100 Berries g | Berry Count per 50 g | |
|---|---|---|---|---|
| 2022 | MS1 | 4.16 ± 0.03d | 19.64 ± 0.09a | 254.67 ± 1.15d |
| MS2 | 4.36 ± 0.02b | 18.59 ± 0.07c | 269 ± 1b | |
| MS3 | 4.28 ± 0.03c | 19.13 ± 0.09b | 261.33 ± 1.15c | |
| CK | 4.51 ± 0.03a | 17.71 ± 0.03d | 282.33 ± 0.58a | |
| 2023 | MS1 | 4.24 ± 0.01d | 19.11 ± 0.05a | 261.67 ± 0.58d |
| MS2 | 4.34 ± 0.01b | 18.45 ± 0.07c | 271 ± 1b | |
| MS3 | 4.29 ± 0.01c | 18.71 ± 0.04b | 267.33 ± 0.58c | |
| CK | 4.46 ± 0.03a | 17.44 ± 0.03d | 286.67 ± 0.58a | |
| Treatment | β-Carotene Content μg/g | Polysaccharides Content g/100 g | Total Soluble Sugars Content g/100 g | Total Flavonoids Content g/100 g | Betaine Content g/100 g | |
|---|---|---|---|---|---|---|
| 2022 | MS1 | 1558.78 ± 1.95a | 5.73 ± 0.04a | 52.25 ± 0.57a | 0.84 ± 0.03a | 0.44 ± 0.08c |
| MS2 | 1412.43 ± 2.47c | 5.2 ± 0.06c | 50.77 ± 0.46b | 0.73 ± 0.03bc | 0.67 ± 0.04a | |
| MS3 | 1646.61 ± 1.55b | 5.37 ± 0.08b | 51.7 ± 0.2a | 0.78 ± 0.02b | 0.54 ± 0.04b | |
| CK | 1374.71 ± 2.49d | 4.2 ± 0.14d | 49.38 ± 0.43c | 0.55 ± 0.01d | 0.76 ± 0.02a | |
| 2023 | MS1 | 1486.98 ± 2.5a | 5.56 ± 0.03a | 51.35 ± 0.09a | 0.73 ± 0.03a | 0.45 ± 0.03d |
| MS2 | 1312.43 ± 2.29c | 5.26 ± 0.03c | 50.24 ± 0.06c | 0.64 ± 0.02c | 0.60 ± 0.01b | |
| MS3 | 1446.57 ± 1.5b | 5.35 ± 0.04b | 50.7 ± 0.2b | 0.69 ± 0.02b | 0.53 ± 0.02c | |
| CK | 1274.55 ± 2.24d | 4.04 ± 0.03d | 49.05 ± 0.07d | 0.51 ± 0.01d | 0.73 ± 0.01a | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, X.; Wang, Z.; Ma, B.; Zhang, L.; Tian, J.; He, J. Effects of Plastic Film and Gravel-Sand Mulching on Soil Moisture and Yield of Wolfberry Under Ridge-Furrow Planting in an Arid Desert Region of China’s Loess Plateau. Agronomy 2025, 15, 2312. https://doi.org/10.3390/agronomy15102312
Ma X, Wang Z, Ma B, Zhang L, Tian J, He J. Effects of Plastic Film and Gravel-Sand Mulching on Soil Moisture and Yield of Wolfberry Under Ridge-Furrow Planting in an Arid Desert Region of China’s Loess Plateau. Agronomy. 2025; 15(10):2312. https://doi.org/10.3390/agronomy15102312
Chicago/Turabian StyleMa, Xiaojuan, Zhi Wang, Bo Ma, Luyao Zhang, Juncang Tian, and Jinyu He. 2025. "Effects of Plastic Film and Gravel-Sand Mulching on Soil Moisture and Yield of Wolfberry Under Ridge-Furrow Planting in an Arid Desert Region of China’s Loess Plateau" Agronomy 15, no. 10: 2312. https://doi.org/10.3390/agronomy15102312
APA StyleMa, X., Wang, Z., Ma, B., Zhang, L., Tian, J., & He, J. (2025). Effects of Plastic Film and Gravel-Sand Mulching on Soil Moisture and Yield of Wolfberry Under Ridge-Furrow Planting in an Arid Desert Region of China’s Loess Plateau. Agronomy, 15(10), 2312. https://doi.org/10.3390/agronomy15102312

