Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (17,800)

Search Parameters:
Keywords = composite material properties

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 3349 KiB  
Review
Plant-Based Biofillers for Polymer Composites: Characterization, Surface Modification, and Application Potential
by Mateusz Pęśko and Anna Masek
Polymers 2025, 17(17), 2286; https://doi.org/10.3390/polym17172286 (registering DOI) - 23 Aug 2025
Abstract
The mounting global concern regarding the accumulation of plastic waste underscores the necessity for the development of innovative solutions, with particular emphasis on the incorporation of plant-based biofillers into polymer composites as a sustainable alternative to conventional materials. This review provides a comprehensive [...] Read more.
The mounting global concern regarding the accumulation of plastic waste underscores the necessity for the development of innovative solutions, with particular emphasis on the incorporation of plant-based biofillers into polymer composites as a sustainable alternative to conventional materials. This review provides a comprehensive and structured overview of the recent progress (2020–2025) in the integration of plant-based biofillers into both thermoplastic and thermosetting polymer matrices, with a focus on surface modification techniques, physicochemical characterization, and emerging industrial applications. Unlike the prior literature, this work highlights the dual environmental and material benefits of using plant-derived fillers, particularly in the context of waste valorization and circular material design. By clearly identifying a current research gap—the limited scalability and processing efficiency of biofillers—this review proposes a strategy in which plant-derived materials function as key enablers for sustainable composite development. Special attention is given to extraction methods of lignocellulosic fillers from renewable agricultural waste streams and their subsequent functionalization to improve matrix compatibility. Additionally, it delineates the principal approaches for biofiller modification, demonstrating how their properties can be tailored to meet specific needs in biocomposite production. This critical synthesis of the state-of-the-art literature not only reinforces the role of biofillers in reducing dependence on non-renewable fillers but also outlines future directions in scaling up their use, improving durability, and expanding performance capabilities of sustainable composites. Overall, the presented analysis contributes novel insights into the material design, processing strategies, and potential of plant biofillers as central elements in next-generation green composites. Full article
Show Figures

Figure 1

21 pages, 4087 KiB  
Article
Influence of Composite Amendments on the Characteristics of Sandy Soil
by Xinrui Sui, Lingyan Wang, Xinyao Lv, Yanan Liu, Yuqi Zhu, Lingyun Fan and Hanxi Wang
Sustainability 2025, 17(17), 7619; https://doi.org/10.3390/su17177619 (registering DOI) - 23 Aug 2025
Abstract
Soil desertification control is a global challenge, and the barrenness of sandy soil limits the growth of plants. To enhance the vegetation growth capacity of sandy soils, the preparation of soil amendments and the experiment of improving desertified soil were conducted. The soil [...] Read more.
Soil desertification control is a global challenge, and the barrenness of sandy soil limits the growth of plants. To enhance the vegetation growth capacity of sandy soils, the preparation of soil amendments and the experiment of improving desertified soil were conducted. The soil amendment is prepared by mixing polyacrylamide (2.7%), biochar (16.2%), sodium bentonite (16.2%), straw fibers (5.4%), corn straw (2.7%), sheep manure organic fertilizer (54.1%), and composite microbial agents (2.7%). The laboratory experiment was conducted to investigate the effects of varying rates (0, 1.5%, 3%, 4.5%, 6%) of composite soil amendments on the properties of sandy soil and the Lolium perenne L. with a growth period of 30–60 days. The results indicated that the application of composite amendments at different rates maintained the soil pH between 7.0 and 7.5, increased the electrical conductivity, and significantly improved the soil moisture content, soil organic carbon (SOC), total nitrogen (TN), and total phosphorus contents. Under the condition of 3% amendment, the soil TN content increased from 0.74 to 1.83 g·kg⁻¹. The composite amendments remarkably promoted L. perenne growth, as evidenced by increased plant height, dry weight, and nitrogen and phosphorus nutrient content, while the SOC content increased by 1–4 times. The application of composite amendments, prepared by mixing materials such as biochar, organic fertilizer, crop straw, microbial agents, bentonite, and water-retaining agents, enhanced the physicochemical properties of sandy soil and promoted L. perenne growth, and 3% was the most suitable application rate. These findings are expected to advance desertification-controlling technologies and enhance soil carbon sequestration capacity. Full article
(This article belongs to the Section Soil Conservation and Sustainability)
15 pages, 9186 KiB  
Article
Al2O3/PTFE Composites for Marine Self-Lubricating Bearings: Modulation Mechanism of Alumina Particle Size on Material Mechanical Properties and Tribological Behavior
by Guofeng Zhao and Shifan Zhu
Lubricants 2025, 13(9), 377; https://doi.org/10.3390/lubricants13090377 (registering DOI) - 23 Aug 2025
Abstract
Polytetrafluoroethylene (PTFE) is one of the alternative materials suitable for seawater-lubricated bearings, favored for its excellent corrosion resistance and good self-lubricating properties. As marine equipment develops towards higher load, higher reliability, and longer service life, more stringent requirements are imposed on the wear [...] Read more.
Polytetrafluoroethylene (PTFE) is one of the alternative materials suitable for seawater-lubricated bearings, favored for its excellent corrosion resistance and good self-lubricating properties. As marine equipment develops towards higher load, higher reliability, and longer service life, more stringent requirements are imposed on the wear resistance of bearing materials. However, traditional PTFE materials struggle to meet the performance requirements for long-term stable operation in modern marine environments. To improve the wear resistance of PTFE, this study used alumina (Al2O3) particles with three different particle sizes (50 nm, 3 μm, and 80 μm) as fillers and prepared Al2O3/PTFE composites via the cold pressing and sintering process. Tribological performance tests were conducted using a ball-on-disk reciprocating friction and wear tester, with Cr12 steel balls as counterparts, under an artificial seawater lubrication environment, applying a normal load of 10 N for 40 min. The microstructure and wear scar morphology were characterized by scanning electron microscopy (SEM), and mechanical properties were measured using a Shore hardness tester. A systematic study was carried out on the microstructure, mechanical properties, friction coefficient, wear rate, and limiting PV value of the composites. The results show that the particle size of Al2O3 particles significantly affects the mechanical properties, friction coefficient, wear rate, and limiting PV value of the composites. The 50 nm Al2O3/PTFE formed a uniformly spread friction film and transfer film during the friction process, which has better friction and wear reduction performance and load bearing capacity. The 80 μm Al2O3 group exhibited poor friction properties despite higher hardness. The nanoscale Al2O3 filler was superior in improving the wear resistance, stabilizing the coefficient of friction, and prolonging the service life of the material, and demonstrated good seawater lubrication bearing suitability. This study provides theoretical support and an experimental basis for the design optimization and engineering application of PTFE-based composites in harsh marine environments. Full article
Show Figures

Figure 1

19 pages, 3163 KiB  
Article
Hydrophobic, Durable, and Reprocessable PEDOT:PSS/PDMS-PUa/SiO2 Film with Conductive Self-Cleaning and De-Icing Functionality
by Jie Fang, Rongqing Dong, Meng Zhou, Lishan Liang, Mingna Yang, Huakun Xing, Yongluo Qiao and Shuai Chen
Coatings 2025, 15(9), 985; https://doi.org/10.3390/coatings15090985 (registering DOI) - 23 Aug 2025
Abstract
Poly (3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) stands out as a renowned commercial conducting polymer composite, boasting extensive and promising applications in the realm of film electronics. In this study, we have made a concerted effort to overcome the inherent drawbacks of PEDOT:PSS films (especially, high [...] Read more.
Poly (3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) stands out as a renowned commercial conducting polymer composite, boasting extensive and promising applications in the realm of film electronics. In this study, we have made a concerted effort to overcome the inherent drawbacks of PEDOT:PSS films (especially, high moisture absorption, mechanical damage vulnerability, insufficient substrate adhesion ability, etc.) by uniformly blending them with polydimethylsiloxane polyurea (PDMS-PUa) and silica (SiO2) nanoparticles through a feasible mechanical stirring process, which effectively harnesses the intermolecular interactions, as well as the morphological and structural characteristics, among the various components. The Si−O bonds within PDMS-PUa and the −CH3 groups attached to Si atoms significantly enhance the hydrophobicity of the composite film (as evidenced by a water contact angle of 132.89° under optimized component ratios). Meanwhile, SiO2 microscopically modifies the surface morphology, resulting in increased surface roughness. This composite film not only maintains high conductivity (1.21 S/cm, in contrast to 0.83 S/cm for the PEDOT:PSS film) but also preserves its hydrophobicity and electrical properties under rigorous conditions, including high-temperature exposure (60–200 °C), ultraviolet (UV) aging (365.0 nm, 1.32 mW/cm2), and abradability testing (2000 CW abrasive paper, drag force of approximately 0.98 N, 40 cycles). Furthermore, the film demonstrates enhanced resistance to both acidic (1 mol/L, 24 h) and alkaline (1 mol/L, 24 h) environments, along with excellent self-cleaning and de-icing capabilities (−6 °C), and satisfactory adhesion (Level 2). Notably, the dried composite film can be re-dispersed into a solution with the aid of isopropanol through simple magnetic stirring, and the sequentially coated films also exhibit good surface hydrophobicity (136.49°), equivalent to that of the pristine film. This research aims to overcome the intrinsic performance drawbacks of PEDOT:PSS-based materials, enabling them to meet the demands of complex application scenarios in the field of organic electronics while endowing them with multifunctionality. Full article
Show Figures

Graphical abstract

23 pages, 3962 KiB  
Article
PLA/PBS Biocomposites for 3D FDM Manufacturing: Effect of Hemp Shive Content and Process Parameters on Printing Quality and Performances
by Emilia Garofalo, Luciano Di Maio and Loredana Incarnato
Polymers 2025, 17(17), 2280; https://doi.org/10.3390/polym17172280 (registering DOI) - 23 Aug 2025
Abstract
This study investigates the processability—via Fused Deposition Modeling (FDM) 3D printing—and mechanical performance of biocomposites based on polylactic acid (PLA), polybutylene succinate (PBS), and their 50/50 wt% blend, each reinforced with hemp shive at 3 and 5 wt%. Blending PLA with PBS represents [...] Read more.
This study investigates the processability—via Fused Deposition Modeling (FDM) 3D printing—and mechanical performance of biocomposites based on polylactic acid (PLA), polybutylene succinate (PBS), and their 50/50 wt% blend, each reinforced with hemp shive at 3 and 5 wt%. Blending PLA with PBS represents a straightforward and encouraging strategy to enhance both the printability and mechanical properties of the individual resins, expanding the range of their potential applications. The addition of hemp shive—a by-product of hemp processing—not only enhances the biodegradability of the composites but also improves their thermo-mechanical performance, as well as aligning with circular economy principles. The rheological characterization, performed on all the systems, evidenced that the PLA/PBS blend possesses viscoelastic properties well suited for FDM, enabling smooth extrusion through the nozzle, good shape stability after deposition, and effective interlayer adhesion. Moreover, the constrain effect of hemp shives within the polymer matrix reduced the extrudate swell, a key factor affecting the dimensional accuracy of the printed parts. Optimal processing conditions were identified at a nozzle temperature of 190 °C and a printing speed of 70 mm/s, providing a favorable compromise between print quality, final performances and production efficiency. From a mechanical perspective, the PLA/PBS blend exhibited an 8.6-fold increase in elongation at break compared to neat PLA, and its corresponding composite showed a ductility nearly three times higher than the PLA-based counterpart’s. In conclusion, the findings of this study provide new insights into the interplay between material formulation, rheological behavior and printing conditions, supporting the development of sustainable, hemp-reinforced biocomposites for additive manufacturing applications. Full article
Show Figures

Figure 1

28 pages, 14406 KiB  
Article
Development and Engineering Evaluation of Interlocking Hollow Blocks Made of Recycled Plastic for Mortar-Free Housing
by Shehryar Ahmed and Majid Ali
Buildings 2025, 15(17), 2996; https://doi.org/10.3390/buildings15172996 (registering DOI) - 23 Aug 2025
Abstract
The construction industry is the biggest consumer of raw materials, and there is growing pressure for this industry to reduce its environmental footprint through the adoption of sustainable solutions. Waste plastic in a recycled form can be used to produce valuable products that [...] Read more.
The construction industry is the biggest consumer of raw materials, and there is growing pressure for this industry to reduce its environmental footprint through the adoption of sustainable solutions. Waste plastic in a recycled form can be used to produce valuable products that can decrease dependence on natural resources. Despite the growing trend of exploring the potential of recycled plastics in construction through composite manufacturing and nonstructural products, to date no scientific data is available about converting waste plastic into recycled plastic to manufacture interlocking hollow blocks (IHBs) for construction. Thus, the current study intended to fill this gap by investigating the dynamic, mechanical, and physicochemical properties of engineered IHBs made out of recycled plastic. Engineered IHBs are able to self-center via controlled tolerance to lateral displacement, which makes their design novel. High-density polyethylene (HDPE) waste was considered due to its anticipated material properties and abundance in daily-use household products. Mechanical recycling coupled with extrusion-based pressurized filling was adopted to manufacture IHBs. Various configurations of IHBs and prism samples were tested for compression and shear strength, and forensic tests were conducted to study the physicochemical changes in the recycled plastic. In addition, to obtain better dynamic properties for energy dissipation, the compressive strength of the IHBs was 30.99 MPa, while the compressive strength of the prisms was 34.23 MPa. These values are far beyond the masonry strength requirements in applicable codes across the globe. In-plane shear strength was greater than out-of-plane shear strength, as anticipated. Microstructure analysis showed fibrous surfaces with good resistance and enclosed unburnt impurities. The extrusion process resulted in the elimination of contaminants and impurities, with limited variation in thermal stability. Overall, the outcomes are favorable for potential use in house construction due to sufficient masonry strength and negligible environmental concerns. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

30 pages, 1887 KiB  
Article
Laser-Induced Graphene on Biocompatible PDMS/PEG Composites for Limb Motion Sensing
by Anđela Gavran, Marija V. Pergal, Teodora Vićentić, Milena Rašljić Rafajilović, Igor A. Pašti, Marko V. Bošković and Marko Spasenović
Sensors 2025, 25(17), 5238; https://doi.org/10.3390/s25175238 - 22 Aug 2025
Abstract
The advancement of laser-induced graphene (LIG) has significantly enhanced the development of wearable and flexible electronic devices. Due to its exceptional physical, chemical, and electronic properties, LIG has emerged as a highly effective active material for wearable sensors. However, despite the wide range [...] Read more.
The advancement of laser-induced graphene (LIG) has significantly enhanced the development of wearable and flexible electronic devices. Due to its exceptional physical, chemical, and electronic properties, LIG has emerged as a highly effective active material for wearable sensors. However, despite the wide range of materials suitable as precursors for LIG, the scarcity of stretchable and biocompatible polymers amenable to laser graphenization has remained a persistent challenge. In this study, laser-induced graphene (LIG) was fabricated directly on biocompatible and flexible cross-linked PDMS/PEG (with Mn (PEG) = 400 g/mol) composites for the first time, enabling their application in wearable sensors. The addition of PEG compensates for the low carbon content in PDMS, enabling efficient laser graphenization. Laser parameters were systematically optimized to achieve high-quality graphene, and a comprehensive characterization with varying PEG content (10–40 wt.%) was conducted using multiple analytical techniques. Tensile tests revealed that incorporating PEG significantly enhanced elongation at break, reaching 237% for PDMS/40 wt.% PEG while reducing Young’s modulus to 0.25 MPa, highlighting the excellent flexibility of the substrate material. Surface analysis using X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and Raman spectroscopy demonstrated the formation of high-quality few-layer graphene with the fewest defects in PDMS/40 wt.% PEG composites. Nevertheless, the adhesion of electrical contacts to LIG that was directly induced on PDMS/PEG proved to be challenging. To overcome this challenge, we produced devices by means of laser induction on polyimide and transfer to PDMS/PEG. We demonstrate the practical utility of such devices by applying them to monitor limb motion in real time. The sensor showed a stable and repeatable piezoresistive response under multiple bending cycles. These results provide valuable insights into the fabrication of biocompatible LIG-based flexible sensors, paving the way for their broader implementation in medical and sports technologies. Full article
(This article belongs to the Special Issue Materials and Devices for Flexible Electronics in Sensor Applications)
27 pages, 3575 KiB  
Article
Preparation of High-Strength and High-Rigidity Carbon Layer on Si/C Material Surface Using Solid–Liquid Coating Method
by Xiaoguang Zhang, Wei Wang and Juan Zhang
Nanomaterials 2025, 15(17), 1300; https://doi.org/10.3390/nano15171300 - 22 Aug 2025
Abstract
The application of silicon–carbon (Si/C) composite materials in lithium-ion batteries faces problems regarding volume expansion and surface defects. Although coating is a popular modification scheme in the market, the influence of carbon layer quality on the electrochemical performance of Si/C still needs to [...] Read more.
The application of silicon–carbon (Si/C) composite materials in lithium-ion batteries faces problems regarding volume expansion and surface defects. Although coating is a popular modification scheme in the market, the influence of carbon layer quality on the electrochemical performance of Si/C still needs to be studied. By comparing the carbon layers produced by solid-phase and liquid-phase coating methods, an innovative solid–liquid coating technology was proposed to prepare high-strength and high-stiffness carbon layers, and the effects of different coating processes on the physical, mechanical, and electrochemical properties of the materials were systematically studied. Through physical properties and electrochemical testing, it was found that the solid–liquid coating method (Si/C@Pitch+RGFQ) can form a carbon layer with the least defects and the highest density. Compared with solid-phase coating and liquid-phase coating, its specific surface area (SSA) and carbon increment are the lowest, and the surface carbon content and oxygen content are significantly reduced after solid–liquid coating. Mechanical performance tests show that the Young’s modulus of the carbon layer prepared by this method reaches 30.3 GPa, demonstrating excellent structural strength and elastic deformation ability. The first coulombic efficiency (ICE) of Si/C@Pitch+RGFQ reached 88.17%, the interface impedance (23.2 Ω) was the lowest, and the lithium-ion diffusion coefficient was significantly improved. At a rate of 0.1 C to 2 C, the capacity retention rate is excellent. After one hundred and a half-cell cycles, the remaining capacity is 1420.5 mAh/g, and the capacity retention rate reaches 92.4%. The full-cell test further proves that the material has a capacity retention rate of 82.3% and 81.3% after 1000 cycles at room temperature and high temperature (45 °C), respectively. At the same time, it has good rate performance and high-/low-temperature performance, demonstrating good commercial application potential. The research results provide a key basis for the optimized preparation of the surface carbon layer of Si/C composite materials and promote the practical application of high-performance silicon-based negative electrode materials. Full article
Show Figures

Figure 1

17 pages, 1435 KiB  
Review
Overview of Thermal Management Solution for 3D Integrated Circuits Using Carbon-Nanotube-Based Silicon Through-Vias
by Heebo Ha, Hongju Kim, Sumin Lee, Sooyong Choi, Chunghyeon Choi, Wan Yusmawati Wan Yusoff, Ali Shan, Sooman Lim and Byungil Hwang
Micromachines 2025, 16(9), 968; https://doi.org/10.3390/mi16090968 - 22 Aug 2025
Abstract
Three-dimensional integrated circuit (3D IC) technology is an innovative approach in the semiconductor industry aimed at enhancing performance and reducing power consumption. However, thermal management issues arising from high-density stacking pose significant challenges. Carbon nanotubes (CNTs) have gained attention as a promising material [...] Read more.
Three-dimensional integrated circuit (3D IC) technology is an innovative approach in the semiconductor industry aimed at enhancing performance and reducing power consumption. However, thermal management issues arising from high-density stacking pose significant challenges. Carbon nanotubes (CNTs) have gained attention as a promising material for addressing the thermal management problems of through-silicon vias (TSVs) owing to their unique properties, such as high thermal conductivity, electrical conductivity, excellent mechanical strength, and low coefficient of thermal expansion (CTE). This paper reviews various applications and the latest research results on CNT-based TSVs. Furthermore, it proposes a novel TSV design using CNT–copper–tin composites to optimize the performance and assess the feasibility of CNT-based TSVs. Full article
(This article belongs to the Section D:Materials and Processing)
26 pages, 1288 KiB  
Review
Lithium Niobate Crystal Preparation, Properties, and Its Application in Electro-Optical Devices
by Yan Zhang, Xuefeng Xiao, Jiayi Chen, Han Zhang, Yan Huang, Jiashun Si, Shuaijie Liang, Qingyan Xu, Huan Zhang, Lingling Ma, Cui Yang and Xuefeng Zhang
Inorganics 2025, 13(9), 278; https://doi.org/10.3390/inorganics13090278 - 22 Aug 2025
Abstract
Lithium Niobate (LiNbO3, LN) crystals are multifunctional optical materials with excellent electro-optical, acousto-optical, and nonlinear optical properties, and their broad spectral transparency makes them widely used in electro-optical modulators, tunable filters, and beam deflectors. Near Stoichiometric Lithium Niobate (NSLN) crystals have [...] Read more.
Lithium Niobate (LiNbO3, LN) crystals are multifunctional optical materials with excellent electro-optical, acousto-optical, and nonlinear optical properties, and their broad spectral transparency makes them widely used in electro-optical modulators, tunable filters, and beam deflectors. Near Stoichiometric Lithium Niobate (NSLN) crystals have a lithium to niobium ratio ([Li]/[Nb]) close to 1:1,demonstrate superior performance characteristics compared to composition lithium niobate (Congruent Lithium Niobate (CLN), [Li]/[Nb] = 48.5:51.5) crystals. NSLN crystals have a lower coercive field (~4 kV/mm), higher electro-optic coefficient ( 𝛾33= 38.3 pm/V), and better nonlinear optical properties. This paper systematically reviews the research progress on preparation methods, the physical properties of LN and NSLN crystals, and their applications in devices such as electro-optical modulators, optical micro-ring resonators, and holographic storage. Finally, the future development direction of NSLN crystals in the preparation process (large-size single-crystal growth and defect control) and new electro-optical devices (low voltage deflectors based on domain engineering) is envisioned. Full article
16 pages, 3508 KiB  
Article
Tensile Strength and Electromagnetic Wave Absorption Properties of B-Doped SiC Nanowire/Silicone Composites
by Yiwei Wang, Qin Qin, Jingyue Chen, Xiang Lu, Jialu Yin, Ranhao Liu, Peijie Jiang, Jianlei Kuang and Wenbin Cao
Nanomaterials 2025, 15(17), 1298; https://doi.org/10.3390/nano15171298 - 22 Aug 2025
Abstract
To investigate the synthesis route and electromagnetic wave absorption performance of SiC nanowires (SiC-NWs), boron was simultaneously employed as both a catalyst and a dopant, and the doped nanowires were embedded into a silicone matrix to fabricate SiC-NW/silicone composites with enhanced mechanical properties [...] Read more.
To investigate the synthesis route and electromagnetic wave absorption performance of SiC nanowires (SiC-NWs), boron was simultaneously employed as both a catalyst and a dopant, and the doped nanowires were embedded into a silicone matrix to fabricate SiC-NW/silicone composites with enhanced mechanical properties and microwave attenuation. Boric acid significantly increased the yield of SiC-NWs, while boron doping enhanced both conductive and relaxation losses. The subsequent nanowire pull-out mechanism improved the tensile strength of the composites by 185%, reaching 5.7 MPa at a filler loading of 5 wt%. The three-dimensional SiC-NW network provided synergistic dielectric and conductive losses, along with good impedance matching, achieving a minimum reflection loss of −35 dB at a thickness of 3.5 mm and an effective absorption bandwidth of 4.2 GHz within the 8.2–12.4 GHz range, with a nanowire content of only 5 wt%. Full article
(This article belongs to the Special Issue Nanowires: Growth, Properties, and Applications)
Show Figures

Figure 1

13 pages, 2256 KiB  
Article
The Influence of the Ar/N2 Ratio During Reactive Magnetron Sputtering of TiN Electrodes on the Resistive Switching Behavior of MIM Devices
by Piotr Jeżak, Aleksandra Seweryn, Marcin Klepka and Robert Mroczyński
Materials 2025, 18(17), 3940; https://doi.org/10.3390/ma18173940 - 22 Aug 2025
Abstract
Resistive switching (RS) phenomena are nowadays one of the most studied topics in the area of microelectronics. It can be observed in Metal–Insulator–Metal (MIM) structures that are the basis of resistive switching random-access memories (RRAMs). In the case of commercial use of RRAMs, [...] Read more.
Resistive switching (RS) phenomena are nowadays one of the most studied topics in the area of microelectronics. It can be observed in Metal–Insulator–Metal (MIM) structures that are the basis of resistive switching random-access memories (RRAMs). In the case of commercial use of RRAMs, it is beneficial that the applied materials would have to be compatible with Complementary Metal-Oxide-Semiconductor (CMOS) technology. Fabricating methods of these materials can determine their stoichiometry and structural composition, which can have a detrimental impact on the electrical performance of manufactured devices. In this study, we present the influence of the Ar/N2 ratio during reactive magnetron sputtering of titanium nitride (TiN) electrodes on the resistive switching behavior of MIM devices. We used silicon oxide (SiOx) as a dielectric layer, which was characterized by the same properties in all fabricated MIM structures. The composition of TiN thin layers was controlled by tuning the Ar/N2 ratio during the deposition process. The fabricated conductive materials were characterized in terms of chemical and structural properties employing X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) analysis. Structural characterization revealed that increasing the Ar content during the reactive sputtering process affects the crystallite size of the deposited TiN layer. The resulting crystallite sizes ranged from 8 Å to 757.4 Å. The I-V measurements of fabricated devices revealed that tuning the Ar/N2 ratio during the deposition of TiN electrodes affects the RS behavior. Our work shows the importance of controlling the stoichiometry and structural parameters of electrodes on resistive switching phenomena. Full article
Show Figures

Graphical abstract

30 pages, 7635 KiB  
Article
Characterization and Evaluation of Agar as a Bio-Based Asphalt Binder Alternative
by Melissa R. Frey, Sarah L. Williams, Wil V. Srubar and Cristina Torres-Machi
Infrastructures 2025, 10(9), 223; https://doi.org/10.3390/infrastructures10090223 - 22 Aug 2025
Abstract
Over 90% of roads in the United States are surfaced with asphaltic materials that use petroleum-based asphalt binders, a material with high negative environmental impacts and costs. Biopolymers are a sustainable alternative, as they are sourced from renewable materials and offer the potential [...] Read more.
Over 90% of roads in the United States are surfaced with asphaltic materials that use petroleum-based asphalt binders, a material with high negative environmental impacts and costs. Biopolymers are a sustainable alternative, as they are sourced from renewable materials and offer the potential to reduce carbon footprint. However, their performance and durability in construction applications remain insufficiently understood. This study analyzes the potential of agar, a biopolymer extracted from red seaweed, to serve as a direct and sustainable replacement for asphalt binders. The study characterizes the rheological properties and durability of agar-based binders and the mechanical and microstructural properties of composites. The study found that agar-based binders exhibited resistance to fungal deterioration, adequate stiffness to resist rutting at temperatures up to 80 °C, and potential for energy efficiencies associated with lower mixing and compacting temperatures. Results indicate that agar-based composites illustrate many properties in line with those of traditional engineering materials. Overall, these results suggest that agar-based materials exhibit promising fresh-state and biodeterioration resistance properties to serve as a sustainable alternative to traditional, petroleum-based asphalt binders. Full article
(This article belongs to the Special Issue Sustainable and Digital Transformation of Road Infrastructures)
Show Figures

Figure 1

19 pages, 6809 KiB  
Article
Balancing Strength and Flexibility: Mechanical Characterization of Carbon Fiber-Reinforced PLA Composites in FDM 3D Printing
by Boston Blake, Ryan Mendenhall and Babak Eslami
J. Manuf. Mater. Process. 2025, 9(9), 288; https://doi.org/10.3390/jmmp9090288 - 22 Aug 2025
Abstract
Fused Deposition Modeling (FDM) is a commonly used 3D printing process characterized by its versatility in material selection; however, FDM’s layer-by-layer process often leads to lower strength properties. This study explores the mechanical properties of FDM 3D-printed composite materials printed with varying nozzle [...] Read more.
Fused Deposition Modeling (FDM) is a commonly used 3D printing process characterized by its versatility in material selection; however, FDM’s layer-by-layer process often leads to lower strength properties. This study explores the mechanical properties of FDM 3D-printed composite materials printed with varying nozzle diameters, specifically on the influence of Carbon Fiber-reinforced Polylactic Acid (PLA-CF) on tensile and flexural strength when reinforcing Polylactic Acid (PLA) parts. Composite samples were printed with varying ratios of PLA and PLA-CF, ranging from 0% to 100% PLA-CF in 20% increments, with layer groups stacked vertically, while also using three different nozzle diameters (0.4 mm, 0.6 mm, and 0.8 mm). Tensile testing revealed a proportional increase in strength as PLA-CF content increased, indicating that carbon fiber reinforcement significantly enhances tensile performance. However, flexural testing demonstrated a decrease in bending strength with higher PLA-CF content, suggesting a trade-off between stiffness and flexibility. Mid-range ratios (40–60% PLA-CF) provided a balance between tensile and flexural properties. Finally, atomic force microscopy was utilized to provide a better understanding of the microscale morphology and surface properties of PLA and PLA-CF thin films. The results highlight the potential of PLA-CF/PLA composites to allow for more direct control over the tensile–flexural trade-off during the printing process, as opposed to manufacturing filaments with fixed fiber percentages. These results provide a path for tailoring the mechanical behavior of printed parts without requiring specialized filaments. Full article
Show Figures

Figure 1

29 pages, 5199 KiB  
Review
Recent Progress on Synthesis and Electrochemical Performance of Iron Fluoride Conversion Cathodes for Li-Ion Batteries
by Jiabin Tian, Ziyi Yang, Yayun Zheng and Zhengfei Chen
Solids 2025, 6(3), 47; https://doi.org/10.3390/solids6030047 - 22 Aug 2025
Abstract
Despite notable advancements in lithium-ion battery (LIB) technology, growing industrialization, rising energy demands, and evolving consumer electronics continue to raise performance requirements. As the primary determinant of battery performance, cathode materials have become a central research focus. Among emerging candidates, iron-based fluorides show [...] Read more.
Despite notable advancements in lithium-ion battery (LIB) technology, growing industrialization, rising energy demands, and evolving consumer electronics continue to raise performance requirements. As the primary determinant of battery performance, cathode materials have become a central research focus. Among emerging candidates, iron-based fluorides show great promise due to their high theoretical specific capacities, elevated operating voltages, low cost (owing to abundant iron and fluorine), and structurally diverse crystalline forms such as pyrochlore and tungsten bronze types. These features make them strong contenders for next-generation high-energy, low-cost LIBs. This review highlights recent progress in iron-based fluoride cathode materials, with an emphasis on structural regulation and performance enhancement strategies. Using pyrochlore-type hydrated iron trifluoride (Fe2F5·H2O), synthesized via ionic liquids like BmimBF4, as a representative example, we discuss key methods for tuning physicochemical properties—such as electronic conductivity, ion diffusion, and structural stability—via doping, compositing, nanostructuring, and surface engineering. Advanced characterization tools (XRD, SEM/TEM, XPS, Raman, synchrotron radiation) and electrochemical analyses are used to reveal structure–property–performance relationships. Finally, we explore current challenges and future directions to guide the practical deployment of iron-based fluorides in LIBs. This review provides theoretical insights for designing high-performance, cost-effective cathode materials. Full article
Show Figures

Graphical abstract

Back to TopTop