Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (291)

Search Parameters:
Keywords = comparative phenomenology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 2856 KiB  
Review
Intertwined Orders and the Physics of High Temperature Superconductors
by Eduardo Fradkin
Particles 2025, 8(3), 70; https://doi.org/10.3390/particles8030070 - 23 Jul 2025
Viewed by 194
Abstract
Complex phase diagrams are a generic feature of quantum materials that display high-temperature superconductivity. In addition to d-wave superconductivity (or other unconventional states), these phase diagrams typically include various forms of charge-ordered phases, including charge-density waves and/or spin-density waves, as well as electronic [...] Read more.
Complex phase diagrams are a generic feature of quantum materials that display high-temperature superconductivity. In addition to d-wave superconductivity (or other unconventional states), these phase diagrams typically include various forms of charge-ordered phases, including charge-density waves and/or spin-density waves, as well as electronic nematic states. In most cases, these phases have critical temperatures comparable in magnitude to that of the superconducting state and appear in a “pseudo-gap” regime. In these systems, the high temperature state does not produce a good metal with well-defined quasiparticles but a ”strange metal”. These states typically arise from doping a strongly correlated Mott insulator. With my collaborators, I have identified these behaviors as a problem with “Intertwined Orders”. A pair-density wave is a type of superconducting state that embodies the physics of intertwined orders. Here, I discuss the phenomenology of intertwined orders and the quantum materials that are known to display these behaviors. Full article
Show Figures

Figure 1

30 pages, 5311 KiB  
Article
Ancient Earth Births: Compelling Convergences of Geology, Orality, and Rock Art in California and the Great Basin
by Alex K. Ruuska
Arts 2025, 14(4), 82; https://doi.org/10.3390/arts14040082 - 22 Jul 2025
Viewed by 553
Abstract
This article critically considers sample multigenerational oral traditions of Numic-speaking communities known as the Nüümü (Northern Paiute), Nuwu (Southern Paiute), and Newe (Western Shoshone), written down over the last 151 years. Utilizing the GOAT! phenomenological method to compare the onto-epistemologies of Numic peoples [...] Read more.
This article critically considers sample multigenerational oral traditions of Numic-speaking communities known as the Nüümü (Northern Paiute), Nuwu (Southern Paiute), and Newe (Western Shoshone), written down over the last 151 years. Utilizing the GOAT! phenomenological method to compare the onto-epistemologies of Numic peoples with a wide range of data from (G)eology, (O)ral traditions, (A)rchaeology and (A)nthropology, and (T)raditional knowledge, the author analyzed 824 multigenerational ancestral teachings. These descriptions encode multigenerational memories of potential geological, climatic, and ecological observations and interpretations of multiple locations and earth processes throughout the Numic Aboriginal homelands within California and the Great Basin. Through this layered and comparative analysis, the author identified potential convergences of oral traditions, ethnography, ethnohistory, rock art, and geological processes in the regions of California, the Great Basin, and the Colorado Plateau, indicative of large-scale earth changes, cognized by Numic Indigenous communities as earth birthing events, occurring during the Late Pleistocene/Early Holocene to Middle and Late Holocene, including the Late Dry Period, Medieval Climatic Anomaly, and Little Ice Age. Full article
(This article belongs to the Special Issue Advances in Rock Art Studies)
Show Figures

Figure 1

13 pages, 485 KiB  
Article
Cognitive Systems and Artificial Consciousness: What It Is Like to Be a Bat Is Not the Point
by Javier Arévalo-Royo, Juan-Ignacio Latorre-Biel and Francisco-Javier Flor-Montalvo
Metrics 2025, 2(3), 11; https://doi.org/10.3390/metrics2030011 - 17 Jul 2025
Viewed by 337
Abstract
A longstanding ambiguity surrounds the operationalization of consciousness in artificial systems, complicated by the philosophical and cultural weight of subjective experience. This work examines whether cognitive architectures may be designed to support a functionally explicit form of artificial consciousness, focusing not on the [...] Read more.
A longstanding ambiguity surrounds the operationalization of consciousness in artificial systems, complicated by the philosophical and cultural weight of subjective experience. This work examines whether cognitive architectures may be designed to support a functionally explicit form of artificial consciousness, focusing not on the replication of phenomenology, but rather on measurable, technically realizable introspective mechanisms. Drawing on a critical review of foundational and contemporary literature, this study articulates a conceptual and methodological shift: from investigating the experiential perspective of agents (“what it is like to be a bat”) to analyzing the informational, self-regulatory, and adaptive structures that enable purposive behavior. The approach combines theoretical analysis with a comparative review of major cognitive architectures, evaluating their capacity to implement access consciousness and internal monitoring. Findings indicate that several state-of-the-art systems already display core features associated with functional consciousness—such as self-explanation, context-sensitive adaptation, and performance evaluation—without invoking subjective states. These results support the thesis that cognitive engineering may progress more effectively by focusing on operational definitions of consciousness that are amenable to implementation and empirical validation. In conclusion, this perspective enables the development of artificial agents capable of autonomous reasoning and self-assessment, grounded in technical clarity rather than speculative constructs. Full article
Show Figures

Figure 1

25 pages, 3304 KiB  
Article
Diagnostics and Group Therapy in Patients with Persistent Postural-Perceptual Dizziness and Anxiety Disorder: Biomarkers and Neurofunctional Correlates of Underlying Treatment Effects
by Maximilian Maywald, Oliver Pogarell, Agnieszka Chrobok, Susanne Levai, Daniel Keeser, Nadja Tschentscher, Boris-Stephan Rauchmann, Sophia Stöcklein, Birgit Ertl-Wagner, Boris Papazov, Marco Paolini and Susanne Karch
Diagnostics 2025, 15(14), 1729; https://doi.org/10.3390/diagnostics15141729 - 8 Jul 2025
Viewed by 529
Abstract
Background: There is a certain degree of overlap between persistent postural-perceptual dizziness (PPPD) (ICD-11) and anxiety disorders (ANX) with regard to the phenomenological, pathological and neurobiological characteristics of both conditions. The implementation of an integrative psychotherapy programme may potentially result in the [...] Read more.
Background: There is a certain degree of overlap between persistent postural-perceptual dizziness (PPPD) (ICD-11) and anxiety disorders (ANX) with regard to the phenomenological, pathological and neurobiological characteristics of both conditions. The implementation of an integrative psychotherapy programme may potentially result in the generation of synergistic effects across both patient groups. Objectives: This study assessed (1) whether psychological mechanisms similarly influence symptom severity in PPPD and ANX group, (2) the effectiveness of psychotherapy, and (3) potential neurofunctional biomarkers. Methods: Patients with PPPD (n = 14) and ANX (n = 20) underwent an integrative psychotherapy programme with balance training and mindfulness-based interventions. Emotional and neutral pictures were presented during MRI scans before and after therapy, with healthy controls (HC = 29) for comparison. Clinical and psychological questionnaires were administered, and brain activity was analysed in key regions. Results: The only diagnostic difference in the direct comparison between patients with PPPD and with ANX were the vertigo intensity values before and after therapy. PPPD with comorbid anxiety disorder had significantly more fear of physical symptoms than patients without comorbid anxiety disorder. PPPD showed no change regarding vertigo intensity (VSS), anxiety, or depression scores, but reported decreased impact of vertigo on social functioning (VHQ), and improved personal control after therapy (IPQ). By contrast, anxiety, dizziness, depression, alexithymia, and IPQ scores were significantly reduced after therapy in the ANX group. Neuroimaging revealed decreased activity in the hippocampus and superior temporal gyri (STG) in the PPPD group post-therapy as compared to the pre-therapy measurement, while the ANX group showed reduced activity in the insula, thalamus, hippocampus, and inferior frontal gyrus. Compared to the ANX and HC groups, patients with PPPD showed increased activity in the supramarginal gyrus and STG, both of which could serve as biomarkers for PPPD patients but need to be further validated. Conclusions: Anxiety and vertigo may reinforce each other in PPPD, as symptoms persisted post-therapy, whereas ANX patients improved significantly. Nevertheless, there is some evidence for a successful management of symptoms in the PPPD group. Findings are limited by small sample size and require further research. Full article
(This article belongs to the Special Issue Diagnosis and Management of Postural Disorders)
Show Figures

Figure 1

15 pages, 2536 KiB  
Communication
Equation-Based Modeling of Shape Memory Alloys for Reinforcement of Masonry Structures Against Out-of-Plane Excitation
by Kacper Wasilewski, Artur Zbiciak and Wojciech Terlikowski
Materials 2025, 18(13), 3124; https://doi.org/10.3390/ma18133124 - 1 Jul 2025
Viewed by 255
Abstract
The incorporation of advanced smart materials, such as shape memory alloys (SMAs), in civil engineering presents significant challenges, particularly in modeling their complex behavior. Traditional numerical SMA models often require material parameters that are difficult to estimate and validate. The objective of this [...] Read more.
The incorporation of advanced smart materials, such as shape memory alloys (SMAs), in civil engineering presents significant challenges, particularly in modeling their complex behavior. Traditional numerical SMA models often require material parameters that are difficult to estimate and validate. The objective of this paper is to introduce an equation-based approach to modeling the superelastic behavior of SMAs based on rheological models. The proposed phenomenological model accurately captures SMA superelasticity under isothermal conditions, with each material parameter directly correlated to data from standard mechanical experiments. Four modifications to the baseline rheological model are proposed, highlighting their impact on superelastic characteristics. The resulting constitutive relationships are expressed as non-linear ordinary differential equations, making them compatible with commercial finite element method (FEM) software through user-defined subroutines. The practical application of this modeling approach is demonstrated through the strengthening of a historical masonry wall subjected to seismic activity. Comparative analysis shows that ties incorporating SMA segments outperform traditional steel ties by reducing the potential damage and enhancing the structural performance. Additionally, the energy dissipation during the SMA phase transformation improves the damping of vibrations, further contributing to the stability of the structure. This study underscores the potential of SMA-based solutions in seismic retrofitting and highlights the advantages of equation-based modeling for practical engineering applications. Full article
(This article belongs to the Special Issue Modelling of Deformation Characteristics of Materials or Structures)
Show Figures

Figure 1

23 pages, 2350 KiB  
Article
Comparative Evaluation of the Effects of Variable Spark Timing and Ethanol-Supplemented Fuel Use on the Performance and Emission Characteristics of an Aircraft Piston Engine
by Roussos Papagiannakis and Nikolaos Lytras
Energies 2025, 18(13), 3440; https://doi.org/10.3390/en18133440 - 30 Jun 2025
Viewed by 256
Abstract
Nowadays, there are many studies that have been conducted in order to reduce the emissions of modern reciprocating engines without, at the same time, having a negative impact on the performance characteristics. One method to accomplish that is by using ethanol-supplemented fuels instead [...] Read more.
Nowadays, there are many studies that have been conducted in order to reduce the emissions of modern reciprocating engines without, at the same time, having a negative impact on the performance characteristics. One method to accomplish that is by using ethanol-supplemented fuels instead of conventional gasoline. On the other side of the spectrum, spark timing is one of the most important parameters that affects the combustion mechanism inside a reciprocating engine and is basically controlled by the ignition advance of the engine. Therefore, the main purpose of this study is to investigate the effect of spark timing alteration on the performance characteristics and emissions of a modern reciprocating, naturally aspirated, aircraft SI engine (i.e., ROTAX 912s), operated under four different engine operating points (i.e., combination of engine speed and throttle opening), by using ethanol-supplemented fuel. The implementation of the aforementioned method is achieved through the use of an advanced simulating software (i.e., GT-POWER), which provides the user with the possibility to completely design a piston engine and parameterize it, by using a comprehensive single-zone phenomenological model, for any operating conditions in the entire range of its operating points. The predictive ability of the designed engine model is evaluated by comparing the results with the experimental values obtained from the technical manuals of the engine. For all test cases examined in the present work, the results are affiliated with important performance characteristics, i.e., brake power, brake torque, and brake-specific fuel consumption, as well as specific NO and CO concentrations. Thus, the primary objectives of this study were to examine and evaluate the results of the combination of using ethanol-supplemented fuel instead of gasoline and the alteration of the spark timing, to asses their effects on the basic performance characteristics and emissions of the aforementioned type of engine. By examining the results of this study, it is revealed that the increase in the ethanol concentration in the gasoline–ethanol fuel blend combined with the increase in the ignition advance might be an auspicious solution in order to meliorate both the performance and the environmental behavior of a naturally aspirated SI aircraft piston engine. In a nutshell, the outcoming results of this research show that the combination of the two methods examined may be a valuable solution if applied to existing reciprocating SI engines. Full article
(This article belongs to the Special Issue Internal Combustion Engine Performance 2025)
Show Figures

Figure 1

33 pages, 7235 KiB  
Review
Hysteresis Modeling of Soft Pneumatic Actuators: An Experimental Review
by Jesús de la Morena, Francisco Ramos and Andrés S. Vázquez
Actuators 2025, 14(7), 321; https://doi.org/10.3390/act14070321 - 27 Jun 2025
Viewed by 851
Abstract
Hysteresis is a nonlinear phenomenon found in many physical systems, including soft viscoelastic actuators, where it poses significant challenges to their application and performance. Consequently, developing accurate hysteresis models is essential for the effective design and optimization of soft actuators. Moreover, a reliable [...] Read more.
Hysteresis is a nonlinear phenomenon found in many physical systems, including soft viscoelastic actuators, where it poses significant challenges to their application and performance. Consequently, developing accurate hysteresis models is essential for the effective design and optimization of soft actuators. Moreover, a reliable model can be used to design compensators that mitigate the negative effects of hysteresis, improving closed-loop control accuracy and expanding the applicability of soft actuators in robotics. Physics-based approaches for modeling hysteresis in soft actuators offer valuable insights into the underlying material behavior. Nevertheless, they are often highly complex, making them impractical for real-world applications. Instead, phenomenological models provide a more feasible solution by representing hysteresis through input–output mappings based on experimental data. To effectively fit these phenomenological models, it is essential to rely on sensing data collected from real actuators. In this context, the primary objective of this work is a comprehensive comparative evaluation of the efficiency and performance of representative phenomenological hysteresis models (e.g., Bouc–Wen and Prandtl-Ishlinskii) using experimental data obtained from a pneumatic bending actuator made of a viscoelastic material. This evaluation suggests that the Generalized Prandtl–Ishlinskii model achieves the highest modeling accuracy, while the Preisach model with a probabilistic density function formulation excels in terms of parameter compactness. Full article
(This article belongs to the Special Issue Advanced Mechanism Design and Sensing for Soft Robotics)
Show Figures

Figure 1

19 pages, 4705 KiB  
Article
An Improved Thermodynamic Energy Equation for Stress–Dilatancy Behavior in Granular Soils
by Ching S. Chang and Jason Chao
Geotechnics 2025, 5(3), 43; https://doi.org/10.3390/geotechnics5030043 - 24 Jun 2025
Viewed by 285
Abstract
This study proposes an advanced thermodynamic energy equation to accurately simulate the stress–dilatancy relationship in granular soils for both uncrushed and crushed sands. Traditional energy formulations primarily consider dissipation energy and often neglect the role of free energy. Recent developments have introduced free [...] Read more.
This study proposes an advanced thermodynamic energy equation to accurately simulate the stress–dilatancy relationship in granular soils for both uncrushed and crushed sands. Traditional energy formulations primarily consider dissipation energy and often neglect the role of free energy. Recent developments have introduced free energy components to account for plastic energy contributions from dilation and particle crushing. However, significant discrepancies between theoretical predictions and experimental observations remain, largely due to the omission of complex mechanisms such as contact network rearrangement, force-chain buckling, grain rolling, rotation without slip, and particle crushing. To address these gaps, the proposed model incorporates dual exponential decay functions into the free energy framework. Rather than explicitly modeling each mechanism, this formulation aims to phenomenologically capture the interplay between fundamentally opposing thermodynamic forces arising from complex mechanisms during granular microstructure evolution. The model’s applicability is validated using the experimental results from both uncrushed silica sand and crushed calcareous sand. Through extensive comparison with over 100 drained triaxial tests on various sands, the proposed model shows substantial improvement in reproducing stress–dilatancy behavior. The average discrepancy between predicted and measured ηD relationships is reduced to below 15%, compared to over 60% using conventional models. This enhanced energy equation provides a robust and practical tool for predicting granular soil behavior, supporting a wide range of geotechnical engineering applications. Full article
Show Figures

Figure 1

26 pages, 682 KiB  
Article
Gates of Consciousness: Buddhist Phenomenology of Cognition in the Abhidhamma
by Federico Divino
Philosophies 2025, 10(3), 68; https://doi.org/10.3390/philosophies10030068 - 10 Jun 2025
Viewed by 1199
Abstract
This article aims to provide a comparative analysis between Husserl’s phenomenology and the Pāli Abhidhamma. To conduct this analysis, I will mainly draw on some books of the Abhidhamma and three works by Husserl. What emerges from this study are interesting convergences between [...] Read more.
This article aims to provide a comparative analysis between Husserl’s phenomenology and the Pāli Abhidhamma. To conduct this analysis, I will mainly draw on some books of the Abhidhamma and three works by Husserl. What emerges from this study are interesting convergences between the two systems of thought, which allow us to consider, in some respects, a true Buddhist phenomenology codified in the Abhidhamma. While not perfectly coinciding with Husserl’s phenomenology, it is similar enough to allow for a comparative study and perhaps even more. The intent is also to propose the possibilities of a true Buddhist phenomenology based on its methodology, and thus, not to see differences with Husserl’s approach as a limitation, but as something that can enrich the phenomenological methodology itself. Full article
Show Figures

Figure 1

10 pages, 623 KiB  
Article
Offshore Wind Turbine Key Components’ Life Cycle Cost Analysis (LCCA): Specification Options in Western Australia
by Parit Akkawat, Andrew Whyte and Umair Hasan
Eng 2025, 6(6), 118; https://doi.org/10.3390/eng6060118 - 1 Jun 2025
Viewed by 526
Abstract
Laminated Veneer Lumber (LVL) presents an alternative material for offshore wind turbine towers and blades for an energy sector whose greenhouse gas emissions are substantial. In compliance with AS/NZS 4536, this case study facilitates a specifications’ selection framework that embraces a validated, cost–benefit [...] Read more.
Laminated Veneer Lumber (LVL) presents an alternative material for offshore wind turbine towers and blades for an energy sector whose greenhouse gas emissions are substantial. In compliance with AS/NZS 4536, this case study facilitates a specifications’ selection framework that embraces a validated, cost–benefit determination via life cycle cost analyses (LCCA) specification comparisons. A structured consultation with three key Western Australian offshore industry experts, compliant with a standard phenomenological qualitative approach, further facilitates offshore wind turbine (OWT), LCCA cost comparisons between traditional steel and fibreglass components and LVL wooden components. LVL is found to have a higher capital cost but can generate long-term savings of AUD 30,400 per comparable unit less than Traditional OWT specifications, noting a 5% lower LVL operation and maintenance cost. Where decommissioning recycling facilities exist, OWT LVL specification components are encouraged. This work argues that LVL options uptake in Western Australia (WA) is both practicable and whole-cost effective. Full article
Show Figures

Figure 1

23 pages, 7979 KiB  
Article
Constitutive Model for Hot Deformation Behavior of Fe-Mn-Cr-Based Alloys: Physical Model, ANN Model, Model Optimization, Parameter Evaluation and Calibration
by Jie Xu, Chaoyang Sun, Huijun Liang, Lingyun Qian and Chunhui Wang
Metals 2025, 15(5), 512; https://doi.org/10.3390/met15050512 - 1 May 2025
Cited by 1 | Viewed by 569
Abstract
The development and validation of constitutive models for high-temperature deformation are critical for bridging microstructure evolution with macroscopic mechanical behavior in materials. In this study, we systematically analyzed the hot deformation behavior of Fe-Mn-Cr-based alloys, compared the modeling processes of physical, phenomenological, and [...] Read more.
The development and validation of constitutive models for high-temperature deformation are critical for bridging microstructure evolution with macroscopic mechanical behavior in materials. In this study, we systematically analyzed the hot deformation behavior of Fe-Mn-Cr-based alloys, compared the modeling processes of physical, phenomenological, and data-driven approaches in detail, and optimized their structural and predictive properties. First, the advantages, disadvantages, and applicability of three traditional models, namely the physical Arrhenius model, the phenomenological Johnson–Cook model, and the artificial neural network (ANN) model, are compared for flow stress prediction. Subsequently, traditional mathematical derivations and numerical optimization methods are evaluated. The parameters and architecture of the ANN model are then systematically optimized using optimization algorithms to enhance training efficiency and prediction accuracy. Finally, sensitivity analysis integrated with Bayesian posterior probability density functions enables the calibration of physical model parameters and uncertainty quantification. The results demonstrate that the ANN with optimized parameters and architecture achieves superior prediction accuracy (R2 = 0.9985, AARE = 3.01%) compared to traditional methods. Bayesian inference-based quantification of parameter uncertainty significantly enhances the reliability and interpretability of constitutive model parameters. This study not only reveals the strain–temperature coupling effects in the hot deformation behavior of Fe-Mn-Cr-based alloys but also provides systematic methodological support for constitutive modeling of high-performance alloys and a theoretical foundation for material processing technology design. Full article
(This article belongs to the Special Issue Modeling, Simulation and Experimental Studies in Metal Forming)
Show Figures

Figure 1

32 pages, 7308 KiB  
Article
Assessment and Comparison of Phenomenological and Physical Constitutive Models for Predicting the Hot Deformation Behavior of Metallic Materials: A Pathway for Sustainable Metal Forming in Al-Kharj Governorate
by Ali Abd El-Aty and Abdallah Shokry
Materials 2025, 18(9), 2061; https://doi.org/10.3390/ma18092061 - 30 Apr 2025
Cited by 1 | Viewed by 370
Abstract
In the context of Al-Kharj city, which is steadily advancing as an industrial and manufacturing hub within Saudi Arabia, this study has significant relevance. The city’s focus on metal forming, fabrication, and materials engineering makes it crucial to optimize processes such as hot [...] Read more.
In the context of Al-Kharj city, which is steadily advancing as an industrial and manufacturing hub within Saudi Arabia, this study has significant relevance. The city’s focus on metal forming, fabrication, and materials engineering makes it crucial to optimize processes such as hot deformation of metallic alloys for various sectors, including aerospace, automotive, oil and gas, and structural applications. By assessing and comparing phenomenological and physical material models for nickel, aluminum, titanium, and iron-based alloys, this study aids Al-Kharj industries in advancing their process simulation and predictive performance. Thus, this study aims to evaluate the proposed phenomenological and physically based constitutive models for Ni-, Al-, Ti-, and Fe-based alloys to enhance the accuracy of high-temperature deformation simulations. Phenomenological models investigated include the Johnson–Cook (JC), Fields and Backofen (FB), and Khan–Huang–Liang (KHL) formulations, while the Zerilli–Armstrong (ZA) model represents the physical category. Additionally, various modifications to these models are explored. Model parameters are calibrated using the Levenberg–Marquardt algorithm to minimize mean square error. Performance is assessed through key statistical metrics, including the correlation coefficient (R), average absolute relative error (AARE), and root mean square error (RMSE). Of the 32 models analyzed, a modified version of the JC model delivers the highest accuracy across all alloys. Furthermore, four other modifications, one each for the JC and ZA models and two for the FB model, exhibit superior predictive capability for specific alloys. This makes this study valuable not just academically, but also as a practical resource to boost Al-Kharj’s industrial competitiveness and innovation capacity. Full article
Show Figures

Graphical abstract

14 pages, 5677 KiB  
Article
Solidification Window in Al-Based Casting Alloys
by Simone Ferraro, Mauro Palumbo, Marcello Baricco and Alberto Castellero
Metals 2025, 15(5), 489; https://doi.org/10.3390/met15050489 - 26 Apr 2025
Viewed by 522
Abstract
Semi-solid processes of aluminium alloys, characterised by the coexistence of solid and liquid phases, offer advantages in terms of mechanical properties and fatigue resistance, thanks to the more globular microstructure. Thermodynamic models can be used to analyse the solidification behaviour and to predict [...] Read more.
Semi-solid processes of aluminium alloys, characterised by the coexistence of solid and liquid phases, offer advantages in terms of mechanical properties and fatigue resistance, thanks to the more globular microstructure. Thermodynamic models can be used to analyse the solidification behaviour and to predict the solidification window, ΔT. The CALPHAD method enables the calculation of the phases formed during solidification and the optimisation of alloy composition to meet specific industrial requirements. This study aims to assess how thermodynamic properties in both liquid and solid phases affect the ΔT. Initially, the influence of thermodynamic properties of pure components and interaction parameters was analysed in simplified regular binary systems. To compare these findings with real industrial systems, Al-based alloys were examined. Using available databases, the ΔT was estimated via the CALPHAD method adding alloying elements commonly found in secondary Al-alloys. Finally, the same minority alloying elements were added to Al-Si 8 and 11 wt.% alloys, and the corresponding ΔT were calculated. Cr, Fe, Mg, Mn, and Ti increase the ΔT, while Cu, Ni, and Zn decrease it. The obtained results may serve as a valuable tool for interpreting phenomenological observations and understanding the role of minority elements in the semi-solid processing of secondary Al-Si casting alloys. Full article
(This article belongs to the Special Issue Solidification and Phase Transformation of Light Alloys)
Show Figures

Figure 1

16 pages, 316 KiB  
Article
“Diversity” Is “The Motor Driving Universal Energy”: Édouard Glissant’s (1928–2011) Relation and Watsuji Tetsurō’s (1889–1960) Fūdo
by Andrea Sartori
Humanities 2025, 14(5), 99; https://doi.org/10.3390/h14050099 - 25 Apr 2025
Viewed by 407
Abstract
This paper critically examines Édouard Glissant’s philosophy of relation through the lens of Watsuji Tetsurō’s theory of fūdo (climate and milieu), arguing that Watsuji’s insights help address some of the tensions and limitations in Glissant’s thought. While Glissant foregrounds relationality as a dynamic [...] Read more.
This paper critically examines Édouard Glissant’s philosophy of relation through the lens of Watsuji Tetsurō’s theory of fūdo (climate and milieu), arguing that Watsuji’s insights help address some of the tensions and limitations in Glissant’s thought. While Glissant foregrounds relationality as a dynamic process of cultural creolization, his emphasis on fluidity and opacity at times risks obscuring the material and environmental conditions that shape human interactions. In contrast, Watsuji’s fūdo provides a framework for understanding relationality as always embedded in specific climatic and spatial conditions, grounding Glissant’s poetics of relation in a more concrete phenomenological and ecological perspective. By integrating Watsuji’s attention to the reciprocal formation of human subjectivity and milieu, this paper argues for a more nuanced articulation of relational identity—one that does not merely resist fixity but also acknowledges the formative role of an (interconnected) place (or places) and environment (or environments). Ultimately, this comparative approach highlights the potential for a deeper ecological and material grounding of Glissant’s thought, offering a corrective to its occasional indeterminacy while reaffirming its decolonial aspirations. In doing so, it contributes to broader discussions on the intersections of environmental philosophy, postcolonial thought, and theories of intersubjectivity. Full article
(This article belongs to the Special Issue Space Between: Landscape, Mindscape, Architecture)
32 pages, 487 KiB  
Article
The Possibility of Cosmopolitan Philosophy: Integrating Ontologism and Phenomenological Hermeneutics Within a Post-Foundationalist Framework
by Abbas Jong
Philosophies 2025, 10(2), 45; https://doi.org/10.3390/philosophies10020045 - 15 Apr 2025
Viewed by 931
Abstract
This paper examines the intellectual crises of (post-)modern philosophy, proposing a cosmopolitan philosophy as a remedy for the philosophical fragmentation that has contributed to global intellectual and cultural disintegration. Drawing on the ontological framework of Semyon Frank and enriched by Henry Corbin’s comparative [...] Read more.
This paper examines the intellectual crises of (post-)modern philosophy, proposing a cosmopolitan philosophy as a remedy for the philosophical fragmentation that has contributed to global intellectual and cultural disintegration. Drawing on the ontological framework of Semyon Frank and enriched by Henry Corbin’s comparative philosophy and phenomenological hermeneutics, the paper establishes a new foundation for constructing a cosmopolitan philosophy within a post-foundationalist framework. Frank’s concept of “All-Unity” offers a metaphysical basis that reconciles the universal with the particular, resolving the antinomies of universality versus singularity and historicity versus non-historicity as foundational conditions of the possibility for this philosophy. Corbin’s focus on intuition and the imaginal realm further deepens this approach, enabling the integration of diverse intellectual traditions while honoring their unique and particular contributions. This paper argues that cosmopolitan philosophy can provide a coherent framework for engaging with the complexities of global thought and diverse intellectual traditions, offering a foundation for mutual understanding and addressing the existential crises of contemporary life. Full article
Back to TopTop