Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (59)

Search Parameters:
Keywords = compact mass spectrometry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1234 KiB  
Article
Genomic Insights of Emerging Multidrug-Resistant OXA-48-Producing ST135 Proteus mirabilis
by Angeliki Mavroidi, Elisavet Froukala, Nick Spanakis, Aikaterini Michelaki, Maria Orfanidou, Vasiliki Koumaki and Athanasios Tsakris
Antibiotics 2025, 14(8), 750; https://doi.org/10.3390/antibiotics14080750 - 25 Jul 2025
Viewed by 286
Abstract
Background/Objectives: Among Enterobacterales, OXA-48-like-producing Proteus mirabilis strains have been scarcely detected. Herein, we characterized a blaOXA-48-harbouring P. mirabilis strain recovered from Greece (Pm GR-1), while phylogenomics and comparative genomics analyses with previously published blaOXA-48 carriers were also assessed. [...] Read more.
Background/Objectives: Among Enterobacterales, OXA-48-like-producing Proteus mirabilis strains have been scarcely detected. Herein, we characterized a blaOXA-48-harbouring P. mirabilis strain recovered from Greece (Pm GR-1), while phylogenomics and comparative genomics analyses with previously published blaOXA-48 carriers were also assessed. Methods: Characterization of Pm GR-1 was performed by the Vitek® Compact and Mass Spectrometry systems, antimicrobial susceptibility testing, detection of beta-lactamases, multilocus-sequence typing (MLST), and whole-genome sequencing (WGS). In silico prediction of mobile genetic elements (MGEs), genomic islands (GIs), antimicrobial resistance genes (ARGs) and virulence factors (VFs), and phylogenetic, core-genome SNP and comparative genomics analyses were executed using bioinformatic tools. Results: Pm GR-1 was isolated from a urine sample of an outpatient in a Greek hospital. It exhibited a multidrug-resistant phenotype, being susceptible only to amikacin and ceftazidime/avibactam. It co-carried several beta-lactamase genes on the chromosome (blaOXA-48, blaCTX-M-14, blaTEM-1) and a plasmid (blaTEM-2) and several other ARGs, but also mutations associated with quinolone resistance in the DNA gyrase and topoisomerase IV subunits. It belonged to the international clone ST135 that has also been detected among OXA-48-producing P. mirabilis strains from Germany and the USA. Pm GR-1 was genetically related to those from Germany, sharing highly similar MGEs, GIs, ARGs and VFs, including the chromosomal blaOXA-48 genetic structure, the O-antigen locus, the flagella locus, the MR/P fimbriae operon, and the urease gene cluster. Conclusions: To our knowledge, this is the first report from Greece of a blaOXA-48-possessing P. mirabilis strain. The emergence of blaOXA-48 among P. mirabilis strains of the international clone ST135 in different geographical regions is worrying. Close monitoring of these strains is required in One Health settings. Full article
(This article belongs to the Special Issue Antimicrobial Resistance Genes: Spread and Evolution)
Show Figures

Figure 1

16 pages, 3591 KiB  
Article
The Effects of Leuconostoc mesenteroides RSG7 Exopolysaccharide on the Physicochemical Properties and Flavor Compounds of Set Yoghurt
by Baomei Wu, Yanru Guo, Linlin Hao, Kaiyue Zuo, Yufei Du, Ruixin An and Binbin Wang
Processes 2025, 13(5), 1442; https://doi.org/10.3390/pr13051442 - 8 May 2025
Viewed by 547
Abstract
Leuconostoc mesenteroides RSG7 was previously isolated from pepino, and its exopolysaccharide has potential bioactivities. To better understand the function of RSG7 exopolysaccharide (RE), its effects on the stability and flavour characteristics of set yoghurt were comprehensively investigated. RE was incorporated into milk at [...] Read more.
Leuconostoc mesenteroides RSG7 was previously isolated from pepino, and its exopolysaccharide has potential bioactivities. To better understand the function of RSG7 exopolysaccharide (RE), its effects on the stability and flavour characteristics of set yoghurt were comprehensively investigated. RE was incorporated into milk at 0% (control), 0.05%, 0.10%, and 0.15% (w/v), respectively. Subsequently, samples were fermented and stored at 4 °C for 24 h. The pH, water-holding capacity (WHC), texture profiles, rheological properties, microstructure, and flavour characteristics were analyzed. The results showed that the addition of RE significantly enhanced the WHC; improved hardness, gumminess, chewiness, springiness, adhesiveness, apparent viscosity, and storage modulus (G′) and loss modulus (G″); and reduced the cohesiveness and loss tangent (tan δ) of set yoghurt in a dose-dependent manner, which might be attributed to the interaction between RE and proteins based on the compact microstructure. These results suggested that RE endowed yoghurt with better gel properties and more stability. No differences were observed in the pH of set yoghurt, while RE significantly improved flavour characteristics such as sourness, according to an electronic nose and tongue and gas chromatography–mass spectrometry analyses. Consequently, our results suggest that the bioactive properties, such as its interaction with milk proteins and flavour modulation capabilities, make it a promising functional ingredient for designing yoghurt formulations with enhanced texture, stability, and sensory profiles. This study deepens the understanding of RE functions and shows potential applications in the dairy industry. Full article
(This article belongs to the Section Food Process Engineering)
Show Figures

Figure 1

14 pages, 2756 KiB  
Article
Tissue Sources Influence the Morphological and Morphometric Characteristics of Collagen Membranes for Guided Bone Regeneration
by Josefa Alarcón-Apablaza, Karina Godoy-Sánchez, Marcela Jarpa-Parra, Karla Garrido-Miranda and Ramón Fuentes
Polymers 2024, 16(24), 3499; https://doi.org/10.3390/polym16243499 - 16 Dec 2024
Cited by 1 | Viewed by 960
Abstract
(1) Background: Collagen, a natural polymer, is widely used in the fabrication of membranes for guided bone regeneration (GBR). These membranes are sourced from various tissues, such as skin, pericardium, peritoneum, and tendons, which exhibit differences in regenerative outcomes. Therefore, this study aimed [...] Read more.
(1) Background: Collagen, a natural polymer, is widely used in the fabrication of membranes for guided bone regeneration (GBR). These membranes are sourced from various tissues, such as skin, pericardium, peritoneum, and tendons, which exhibit differences in regenerative outcomes. Therefore, this study aimed to evaluate the morphological and chemical properties of porcine collagen membranes from five different tissue sources: skin, pericardium, dermis, tendons, and peritoneum. (2) Methods: The membrane structure was analyzed using energy-dispersive X-ray spectrometry (EDX), variable pressure scanning electron microscopy (VP-SEM), Fourier transform infrared spectroscopy (FTIR), and thermal stability via thermogravimetric analysis (TGA). The absorption capacity of the membranes for GBR was also assessed using an analytical digital balance. (3) Results: The membranes displayed distinct microstructural features. Skin- and tendon-derived membranes had rough surfaces with nanopores (1.44 ± 1.24 µm and 0.46 ± 0.1 µm, respectively), while pericardium- and dermis-derived membranes exhibited rough surfaces with macropores (78.90 ± 75.89 µm and 64.89 ± 13.15 µm, respectively). The peritoneum-derived membrane featured a rough surface of compact longitudinal fibers with irregular macropores (9.02 ± 3.70 µm). The thickness varied significantly among the membranes, showing differences in absorption capacity. The pericardium membrane exhibited the highest absorption, increasing by more than 10 times its initial mass. In contrast, the skin-derived membrane demonstrated the lowest absorption, increasing by less than 4 times its initial mass. Chemical analysis revealed that all membranes were primarily composed of carbon, nitrogen, and oxygen. Thermogravimetric and differential scanning calorimetry analyses showed no significant compositional differences among the membranes. FTIR spectra confirmed the presence of collagen, with characteristic peaks corresponding to Amide A, B, I, II, and III. (4) Conclusions: The tissue origin of collagen membranes significantly influences their morphological characteristics, which may, in turn, affect their osteogenic properties. These findings provide valuable insights into the selection of collagen membranes for GBR applications. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Figure 1

9 pages, 2218 KiB  
Communication
Online Monitoring of Catalytic Processes by Fiber-Enhanced Raman Spectroscopy
by John T. Kelly, Christopher J. Koch, Robert Lascola and Tyler Guin
Sensors 2024, 24(23), 7501; https://doi.org/10.3390/s24237501 - 25 Nov 2024
Cited by 2 | Viewed by 1222
Abstract
An innovative solution for real-time monitoring of reactions within confined spaces, optimized for Raman spectroscopy applications, is presented. This approach involves the utilization of a hollow-core waveguide configured as a compact flow cell, serving both as a conduit for Raman excitation and scattering [...] Read more.
An innovative solution for real-time monitoring of reactions within confined spaces, optimized for Raman spectroscopy applications, is presented. This approach involves the utilization of a hollow-core waveguide configured as a compact flow cell, serving both as a conduit for Raman excitation and scattering and seamlessly integrating into the effluent stream of a cracking catalytic reactor. The analytical technique, encompassing device and optical design, ensures robustness, compactness, and cost-effectiveness for implementation into process facilities. Notably, the modularity of the approach empowers customization for diverse gas monitoring needs, as it readily adapts to the specific requirements of various sensing scenarios. As a proof of concept, the efficacy of a spectroscopic approach is shown by monitoring two catalytic processes: CO2 methanation (CO2 + 4H2 → CH4 + 2H2O) and ammonia cracking (2NH3 → N2 + 3H2). Leveraging chemometric data processing techniques, spectral signatures of the individual components involved in these reactions are effectively disentangled and the results are compared to mass spectrometry data. This robust methodology underscores the versatility and reliability of this monitoring system in complex chemical environments. Full article
(This article belongs to the Special Issue Advances in Fiber Optic Sensors for Energy Applications)
Show Figures

Graphical abstract

16 pages, 4015 KiB  
Article
Enhanced Removal of Refractory Organic Compounds from Coking Wastewater Using Polyaluminum Chloride with Coagulant Aids
by Huifang Sun, Yifan Zhou, Mengfan Du and Zhiping Du
Water 2024, 16(18), 2662; https://doi.org/10.3390/w16182662 - 19 Sep 2024
Cited by 1 | Viewed by 1642
Abstract
This study explores the enhanced removal of refractory organic compounds from coking wastewater using polyaluminum chloride (PACl) with two different basicity levels (0.5 and 2.5), in combination with coagulant aids such as cationic polyacrylamide (CPAM) and iron ions. The results demonstrated that both [...] Read more.
This study explores the enhanced removal of refractory organic compounds from coking wastewater using polyaluminum chloride (PACl) with two different basicity levels (0.5 and 2.5), in combination with coagulant aids such as cationic polyacrylamide (CPAM) and iron ions. The results demonstrated that both PACl formulations significantly outperformed commercial PACl in terms of COD and color removal, with PACl at the basicity of 2.5 achieving slightly higher efficiency than PACl at the basicity of 0.5. The improved performance was attributed to the higher content of polymeric aluminum species, enhancing charge neutralization and bridging adsorption. The addition of coagulant aids further improved the performance, with PACl at the basicity of 2.5 combined with iron ions achieving the highest COD (48.41%) and color removal (80.77%), due to sweep coagulation and complexation. Organic composition analysis using gas chromatography–mass spectrometry (GC-MS), three-dimensional excitation–emission matrix (3D-EEM) fluorescence spectroscopy, and ultraviolet (UV) spectroscopy indicated that PACl combined with iron ions was the most effective in removing polycyclic aromatic hydrocarbons (PAHs) and nitrogen-, oxygen-, and sulfur-containing heterocyclic compounds. Additionally, a floc analysis showed that the flocs formed with iron ions were more compact and had better settleability compared to those formed with CPAM, further contributing to the improved coagulation efficiency. These results highlight the importance of optimizing the PACl basicity and coagulant aid selection for the enhanced removal of refractory organic compounds from coking wastewater, offering a promising strategy for advanced wastewater treatment. Full article
Show Figures

Figure 1

11 pages, 4902 KiB  
Article
Rapid Separation and Detection of Drugs in Complex Biological Matrix Using TD-CDI Mass Spectrometer
by Wenyan Shi, Zi Ye, Qin Yang, Jianhua Zhou, Jiasi Wang and Xinming Huo
Biosensors 2024, 14(6), 271; https://doi.org/10.3390/bios14060271 - 25 May 2024
Cited by 2 | Viewed by 1734
Abstract
The drug detection technology plays a pivotal role in the domains of pharmaceutical regulation and law enforcement. In this study, we introduce a method that combines thermal desorption corona discharge ionization (TD-CDI) with mass spectrometry for efficient drug detection. The TD-CDI module, characterized [...] Read more.
The drug detection technology plays a pivotal role in the domains of pharmaceutical regulation and law enforcement. In this study, we introduce a method that combines thermal desorption corona discharge ionization (TD-CDI) with mass spectrometry for efficient drug detection. The TD-CDI module, characterized by its compact and simple design, enables the separation of analytes within seconds and real-time presentation of one or two analyte peaks on the mass spectrum most of the time, which reduces matrix interference and improves detection performance. Through experimental investigation, we studied the characteristics of TD-CDI for analyte separation and detection, even with the same mass number, and optimized the TD-CDI approach. TD-CDI-MS was employed for the rapid detection of drugs in various traditional medicine, food products, and human samples. Additionally, by utilizing TD-CDI for segmented hair direct analysis, it becomes possible to trace the drug usage cycle of individuals. This underscores the feasibility of the proposed analytical method within the realm of drug detection. Full article
Show Figures

Figure 1

12 pages, 2511 KiB  
Article
Identification of Hypoglycemic Glycolipids from Ipomoea murucoides by Affinity-Directed Fractionation, In Vitro, In Silico and Dynamic Light Scattering Analysis
by Daniel Rosas-Ramírez, Roberto Arreguín-Espinosa, Sonia Escandón-Rivera, Adolfo Andrade-Cetto, Gerardo Mata-Torres and Ricardo Pérez-Solís
Plants 2024, 13(5), 644; https://doi.org/10.3390/plants13050644 - 26 Feb 2024
Viewed by 1596
Abstract
In the pursuit of identifying the novel resin glycoside modulators glucose-6-phosphatase and α-glucosidase enzymes, associated with blood sugar regulation, methanol-soluble extracts from the flowers of Ipomoea murucoides (cazahuate, Nahuatl), renowned for its abundance of glycolipids, were employed. The methanol-soluble extracts were fractionated [...] Read more.
In the pursuit of identifying the novel resin glycoside modulators glucose-6-phosphatase and α-glucosidase enzymes, associated with blood sugar regulation, methanol-soluble extracts from the flowers of Ipomoea murucoides (cazahuate, Nahuatl), renowned for its abundance of glycolipids, were employed. The methanol-soluble extracts were fractionated by applying the affinity-directed method with glucose-6-phosphatase enzymes from a rat’s liver and α-glucosidase enzymes from its intestines. Mass spectrometry and nuclear magnetic resonance were employed to identify the high-affinity compound as a free ligand following the release from the enzymatic complex. Gel permeation through a spin size-exclusion column allowed the separated high-affinity molecules to bind to glucose-6-phosphatase and α-glucosidase enzymes in solution, which led to the identification of some previously reported resin glycosides in the flowers of cazahuate, where a glycolipid mainly structurally related to murucoidin XIV was observed. In vitro studies demonstrated the modulating properties of resin glycosides on the glucose-6-phosphatase enzyme. Dynamic light scattering revealed conformational variations induced by resin glycosides on α-glucosidase enzyme, causing them to become more compact, akin to observations with the positive control, acarbose. These findings suggest that resin glycosides may serve as a potential source for phytotherapeutic agents with antihyperglycemic properties. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

34 pages, 24442 KiB  
Article
Cytocompatibility, Antimicrobial and Antioxidant Activity of a Mucoadhesive Biopolymeric Hydrogel Embedding Selenium Nanoparticles Phytosynthesized by Sea Buckthorn Leaf Extract
by Naomi Tritean, Luminița Dimitriu, Ștefan-Ovidiu Dima, Rusăndica Stoica, Bogdan Trică, Marius Ghiurea, Ionuț Moraru, Anisoara Cimpean, Florin Oancea and Diana Constantinescu-Aruxandei
Pharmaceuticals 2024, 17(1), 23; https://doi.org/10.3390/ph17010023 - 22 Dec 2023
Cited by 6 | Viewed by 2684
Abstract
Phytosynthesized selenium nanoparticles (SeNPs) are less toxic than the inorganic salts of selenium and show high antioxidant and antibacterial activity. Chitosan prevents microbial biofilm formation and can also determine microbial biofilm dispersal. Never-dried bacterial nanocellulose (NDBNC) is an efficient carrier of bioactive compounds [...] Read more.
Phytosynthesized selenium nanoparticles (SeNPs) are less toxic than the inorganic salts of selenium and show high antioxidant and antibacterial activity. Chitosan prevents microbial biofilm formation and can also determine microbial biofilm dispersal. Never-dried bacterial nanocellulose (NDBNC) is an efficient carrier of bioactive compounds and a flexible nanofibrillar hydrophilic biopolymer. This study aimed to develop a selenium-enriched hydrogel nanoformulation (Se-HNF) based on NDBNC from kombucha fermentation and fungal chitosan with embedded biogenic SeNPs phytosynthesized by an aqueous extract of sea buckthorn leaves (SbLEx)—SeNPsSb—in order to both disperse gingival dysbiotic biofilm and prevent its development. We determined the total phenolic content and antioxidant activity of SbLEx. Liquid chromatography–mass spectrometry (LC-MS) and high-performance liquid chromatography (HPLC) were used for the identification of polyphenols from SbLEx. SeNPsSb were characterized by transmission electron microscopy–energy-dispersive X-ray spectroscopy (TEM-EDX), dynamic light scattering (DLS), zeta potential, Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) in small- and wide-angle X-ray scattering (SAXS and WAXS). The hydrogel nanoformulation with embedded SeNPsSb was characterized by SEM, FTIR, XRD, rheology, mucin binding efficiency, contact angle and interfacial tension measurements. We also assessed the in vitro biocompatibility, antioxidant activity and antimicrobial and antibiofilm potential of SeNPsSb and Se-HNF. TEM, DLS and SAXS evidenced polydisperse SeNPsSb, whereas FTIR highlighted a heterogeneous biocorona with various biocompounds. The contact angle on the polar surface was smaller (52.82 ± 1.23°) than that obtained on the non-polar surface (73.85 ± 0.39°). The interfacial tension was 97.6 ± 0.47 mN/m. The mucin binding efficiency of Se-HNF decreased as the amount of hydrogel decreased, and the SEM analysis showed a relatively compact structure upon mucin contact. FTIR and XRD analyses of Se-HNF evidenced an interaction between BNC and CS through characteristic peak shifting, and the rheological measurements highlighted a pseudoplastic behavior, 0.186 N adhesion force and 0.386 adhesion energy. The results showed a high degree of cytocompatibility and the significant antioxidant and antimicrobial efficiency of SeNPsSb and Se-HNF. Full article
(This article belongs to the Special Issue Hydrogels for Pharmaceutical and Biomedical Applications 2024)
Show Figures

Graphical abstract

15 pages, 2937 KiB  
Article
Using Protein Fingerprinting for Identifying and Discriminating Methicillin Resistant Staphylococcus aureus Isolates from Inpatient and Outpatient Clinics
by Ayman Elbehiry, Eman Marzouk, Ihab Moussa, Sulaiman Anagreyyah, Abdulaziz AlGhamdi, Ali Alqarni, Ahmed Aljohani, Hassan A. Hemeg, Abdulaziz M. Almuzaini, Feras Alzaben, Adil Abalkhail, Roua A. Alsubki, Ali Najdi, Nawaf Algohani, Banan Abead, Bassam Gazzaz and Akram Abu-Okail
Diagnostics 2023, 13(17), 2825; https://doi.org/10.3390/diagnostics13172825 - 31 Aug 2023
Cited by 6 | Viewed by 1994
Abstract
In hospitals and other clinical settings, Methicillin-resistant Staphylococcus aureus (MRSA) is a particularly dangerous pathogen that can cause serious or even fatal infections. Thus, the detection and differentiation of MRSA has become an urgent matter in order to provide appropriate treatment and timely [...] Read more.
In hospitals and other clinical settings, Methicillin-resistant Staphylococcus aureus (MRSA) is a particularly dangerous pathogen that can cause serious or even fatal infections. Thus, the detection and differentiation of MRSA has become an urgent matter in order to provide appropriate treatment and timely intervention in infection control. To ensure this, laboratories must have access to the most up-to-date testing methods and technology available. This study was conducted to determine whether protein fingerprinting technology could be used to identify and distinguish MRSA recovered from both inpatients and outpatients. A total of 326 S. aureus isolates were obtained from 2800 in- and outpatient samples collected from King Faisal Specialist Hospital and Research Centre in Riyadh, Saudi Arabia, from October 2018 to March 2021. For the phenotypic identification of 326 probable S. aureus cultures, microscopic analysis, Gram staining, a tube coagulase test, a Staph ID 32 API system, and a Vitek 2 Compact system were used. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), referred to as protein fingerprinting, was performed on each bacterial isolate to determine its proteomic composition. As part of the analysis, Principal Component Analysis (PCA) and a single-peak analysis of MALDI-TOF MS software were also used to distinguish between Methicillin-sensitive Staphylococcus aureus (MSSA) and MRSA. According to the results, S. aureus isolates constituted 326 out of 2800 (11.64%) based on the culture technique. The Staph ID 32 API system and Vitek 2 Compact System were able to correctly identify 262 (80.7%) and 281 (86.2%) S. aureus strains, respectively. Based on the Oxacillin Disc Diffusion Method, 197 (62.23%) of 326 isolates of S. aureus exhibited a cefoxitin inhibition zone of less than 21 mm and an oxacillin inhibition zone of less than 10 mm, and were classified as MRSA under Clinical Laboratory Standards Institute guidelines. MALDI-TOF MS was able to correctly identify 100% of all S. aureus isolates with a score value equal to or greater than 2.00. In addition, a close relationship was found between S. aureus isolates and higher peak intensities in the mass ranges of 3990 Da, 4120 Da, and 5850 Da, which were found in MRSA isolates but absent in MSSA isolates. Therefore, protein fingerprinting has the potential to be used in clinical settings to rapidly detect and differentiate MRSA isolates, allowing for more targeted treatments and improved patient outcomes. Full article
(This article belongs to the Section Diagnostic Microbiology and Infectious Disease)
Show Figures

Figure 1

17 pages, 1377 KiB  
Article
Development and Characterization of Yellow Passion Fruit Peel Flour (Passiflora edulis f. flavicarpa)
by Maria Clara Coutinho Macedo, Vinícius Tadeu da Veiga Correia, Viviane Dias Medeiros Silva, Débora Tamires Vitor Pereira, Rodinei Augusti, Júlio Onésio Ferreira Melo, Christiano Vieira Pires, Ana Cardoso Clemente Filha Ferreira de Paula and Camila Argenta Fante
Metabolites 2023, 13(6), 684; https://doi.org/10.3390/metabo13060684 - 25 May 2023
Cited by 14 | Viewed by 4038
Abstract
In this study, the peels of the yellow passion fruit (Passiflora edulis f. flavicarpa) were used to develop a flour that was evaluated in terms of its physicochemical, microscopic, colorimetric, and granulometric characteristics, its total phenolic compound and carotenoid contents, and its [...] Read more.
In this study, the peels of the yellow passion fruit (Passiflora edulis f. flavicarpa) were used to develop a flour that was evaluated in terms of its physicochemical, microscopic, colorimetric, and granulometric characteristics, its total phenolic compound and carotenoid contents, and its antioxidant capacity. Fourier Transform Infrared (FTIR) spectroscopy measurements were employed to investigate the constituent functional groups, compounds’ chemical profiles were assessed by Paper Spray Mass Spectrometry (PS-MS), and the compound’s chemical profiles were evaluated by Ultra-Performance Liquid Chromatography (UPLC). This flour presented a light color, heterogeneous granulometry, high carbohydrate, carotenoid, and total phenolic compound contents with high antioxidant capacity. Scanning Electron Microscopy (SEM) showed a particulate flour, which is supposed to contribute to its compactness. FTIR demonstrated the presence of functional groups corresponding to cellulose, hemicellulose, and lignin, constituents of insoluble dietary fiber. The PS-MS analysis suggested the presence of 22 substances, covering diverse component classes such as organic, fatty, and phenolic acids, flavonoids, sugars, quinones, phenylpropanoid glycerides terpenes, and amino acids. This research demonstrated the potential of using Passion Fruit Peel Flour (PFPF) as an ingredient for food products. The advantages of using PFPF comprise the reduction of agro-industrial waste, contribution to the development of a sustainable food system, and increment of food products’ functional profile. Moreover, its high content of several bioactive compounds can benefit consumers’ health. Full article
Show Figures

Figure 1

21 pages, 3982 KiB  
Article
Siphophage 0105phi7-2 of Bacillus thuringiensis: Novel Propagation, DNA, and Genome-Implied Assembly
by Samantha M. Roberts, Miranda Aldis, Elena T. Wright, Cara B. Gonzales, Zhao Lai, Susan T. Weintraub, Stephen C. Hardies and Philip Serwer
Int. J. Mol. Sci. 2023, 24(10), 8941; https://doi.org/10.3390/ijms24108941 - 18 May 2023
Cited by 4 | Viewed by 2528
Abstract
Diversity of phage propagation, physical properties, and assembly promotes the use of phages in ecological studies and biomedicine. However, observed phage diversity is incomplete. Bacillus thuringiensis siphophage, 0105phi-7-2, first described here, significantly expands known phage diversity, as seen via in-plaque propagation, electron microscopy, [...] Read more.
Diversity of phage propagation, physical properties, and assembly promotes the use of phages in ecological studies and biomedicine. However, observed phage diversity is incomplete. Bacillus thuringiensis siphophage, 0105phi-7-2, first described here, significantly expands known phage diversity, as seen via in-plaque propagation, electron microscopy, whole genome sequencing/annotation, protein mass spectrometry, and native gel electrophoresis (AGE). Average plaque diameter vs. plaque-supporting agarose gel concentration plots reveal unusually steep conversion to large plaques as agarose concentration decreases below 0.2%. These large plaques sometimes have small satellites and are made larger by orthovanadate, an ATPase inhibitor. Phage head–host-cell binding is observed by electron microscopy. We hypothesize that this binding causes plaque size-increase via biofilm evolved, ATP stimulated ride-hitching on motile host cells by temporarily inactive phages. Phage 0105phi7-2 does not propagate in liquid culture. Genomic sequencing/annotation reveals history as temperate phage and distant similarity, in a virion-assembly gene cluster, to prototypical siphophage SPP1 of Bacillus subtilis. Phage 0105phi7-2 is distinct in (1) absence of head-assembly scaffolding via either separate protein or classically sized, head protein-embedded peptide, (2) producing partially condensed, head-expelled DNA, and (3) having a surface relatively poor in AGE-detected net negative charges, which is possibly correlated with observed low murine blood persistence. Full article
(This article belongs to the Special Issue DNA Packaging Dynamics of Bacteriophages)
Show Figures

Figure 1

20 pages, 6622 KiB  
Article
Determination of Phosphodiesterase Type-5 Inhibitors (PDE-5) in Dietary Supplements
by Oana Ramona Cătălina Gheorghiu, Anne Marie Ciobanu, Claudia Maria Guțu, Carmen Lidia Chițescu, Giorgiana Valentina Costea, Daniela Mădălina Anghel, Ana Maria Vlasceanu and Daniela Luiza Baconi
Molecules 2023, 28(10), 4116; https://doi.org/10.3390/molecules28104116 - 16 May 2023
Cited by 6 | Viewed by 3802
Abstract
This study proposed a high-performance thin-layer chromatography (HPTLC) screening method to detect phosphodiesterase 5 (PDE-5) inhibitors as possible adulterant agents in various dietary supplements. Chromatographic analysis was performed on silica gel 60F254 plates using a mixture of ethyl acetate:toluene:methanol:ammonia in a volume ratio [...] Read more.
This study proposed a high-performance thin-layer chromatography (HPTLC) screening method to detect phosphodiesterase 5 (PDE-5) inhibitors as possible adulterant agents in various dietary supplements. Chromatographic analysis was performed on silica gel 60F254 plates using a mixture of ethyl acetate:toluene:methanol:ammonia in a volume ratio of 50:30:20:0.5 as a mobile phase. The system provided compact spots and symmetrical peaks of sildenafil and tadalafil with retardation factor values of 0.55 and 0.90, respectively. The analysis of products purchased from the internet or specialized stores demonstrated the presence of sildenafil, tadalafil, or both compounds in 73.3% of products, highlighting inadequacies and inconsistencies in the labeling, as all dietary supplements were declared to be natural. The results were confirmed using ultra-high-performance liquid chromatography coupled with a positive electrospray ionization high-resolution tandem mass spectrometry (UHPLC-HRMS-MS) method. Furthermore, in some samples, vardenafil and various analogs of PDE-5 inhibitors were detected using a non-target HRMS-MS approach. The results of the quantitative analysis revealed similar findings between the two methods, with adulterant quantities found to be similar to or higher than those in approved medicinal products. This study demonstrated that the HPTLC method is a suitable and economical method for screening PDE-5 inhibitors as adulterants in dietary supplements intended for sexual activity enhancement. Full article
(This article belongs to the Special Issue Forensic Analysis in Chemistry)
Show Figures

Figure 1

8 pages, 1691 KiB  
Proceeding Paper
Assessment of the Freshness of Fish and Poultry Meat by Fast Protein and Metabolite Liquid Chromatography Using a New Optical Sensor
by Georgii Konoplev, Alar Sünter, Artur Kuznetsov, Aleksandr Frorip, Vadim Korsakov, Oksana S. Stepanova, Daniil Lyalin and Oksana V. Stepanova
Eng. Proc. 2023, 35(1), 3; https://doi.org/10.3390/IECB2023-14565 - 8 May 2023
Cited by 3 | Viewed by 1842
Abstract
Fresh fish and poultry meat are in high demand on the market: poultry, mainly chicken, is the second most consumed and the most affordable meat product in the world. Fish consumption varies greatly across regions but, in some countries, seafood is the main [...] Read more.
Fresh fish and poultry meat are in high demand on the market: poultry, mainly chicken, is the second most consumed and the most affordable meat product in the world. Fish consumption varies greatly across regions but, in some countries, seafood is the main source of abundant and affordable macro- and micronutrients. Meat and, especially, fish are highly perishable products; methods and equipment for rapid, objective, and reliable assessing the freshness of fish and meat are crucial for the food industry. Generally recognized reference techniques such as total volatile basic nitrogen (TVB-N), volatile fatty acids (VFA), high pressure liquid chromatography (HPLC), mass spectrometry, or nuclear magnetic resonance (NMR) spectroscopy are time-consuming and require expensive and complex equipment. We developed a novel chromatographic optical sensor with a deep UV LED photometric detection (255–265 nm) for rapid assessment of meat and fish freshness based on determination of the relative content of adenosine triphosphate (ATP) metabolites. The sensor has a simple and compact design, and relatively low cost; sample preparation and processing of a chromatogram takes less than 30 min. The sensor was tested on Amur (farmed freshwater fish) and rooster meat, obtained from a local farmer. The samples were kept refrigerated at +4 °C, measurements were taken daily during a 14 day period. All chromatograms show two peaks: proteins are responsible for the first one; the second broad post-protein band is formed due to the overlapping of individual peaks of ATP and its metabolites. As fish and poultry meat are stored, ATP is converted into metabolites with lower molecular weight, which is reflected in the chromatograms—the elution time for the second peak increases. It was shown that this time can be directly associated with the freshness status of a product. As expected, poultry meat showed better storage stability and freshness retention compared to Amur fish. Full article
(This article belongs to the Proceedings of The 3rd International Electronic Conference on Biosensors)
Show Figures

Figure 1

16 pages, 3127 KiB  
Article
An Analysis of the Influence of Low Density Polyethylene, Novolac, and Coal Tar Pitch Additives on the Decrease in Content of Impurities Emitted from Densified Pea Husks during the Process of Their Pyrolysis
by Marcin Bielecki, Valentina Zubkova and Andrzej Strojwas
Energies 2023, 16(6), 2644; https://doi.org/10.3390/en16062644 - 10 Mar 2023
Cited by 1 | Viewed by 2110
Abstract
The course of pyrolysis of pea husks was studied. It was stated that the compaction of a sample during its pyrolysis causes an almost two-fold increase in the content of hydrocarbons in the composition of volatile products in the temperature range of 350–470 [...] Read more.
The course of pyrolysis of pea husks was studied. It was stated that the compaction of a sample during its pyrolysis causes an almost two-fold increase in the content of hydrocarbons in the composition of volatile products in the temperature range of 350–470 °C. Low density polyethylene (LDPE), novolac, and coal tar pitch (CTP) wastes were added to feedstocks in the amount of 2 wt% in order to decrease the contribution of saturated and unsaturated hydrocarbons along with oxygen-containing compounds in volatile products. The analysis of the obtained products of pyrolysis was conducted using the techniques of thermogravimetry/Fourier transform infrared spectroscopy (TG/FT-IR), attenuated total reflectance (ATR) and ultraviolet (UV)-spectroscopies, gas chromatography-mass spectrometry (GCMS), X-ray diffractions (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray analysis (EDX). It was determined that pitch took the first place in a series of effectiveness in decreasing the content of harmful compounds in pyrolysis products; novolac was the second. A temperature of 370 °C (CTP) lowers the contribution of compounds with carbonyl groups (by approx. 2.7 times) and the contribution of alcohols, phenols, and esters (by approx. 4.4 times). At a temperature of 465 °C, this additive reduces the contribution of saturated and unsaturated hydrocarbons in the composition of volatiles (by approx. 5.8 times) and at a temperature of 520 °C, a more substantial decrease is observed (by approx. 14.3 times). During the pyrolysis in the temperature range of 420–520 °C, LDPE actively emits its own products of decomposition in the form of aliphatic hydrocarbons that negatively affect the environment. The composition of condensed pyrolysis products changes under the influence of additives. In water condensates, the concentration of determined phenols and anhydrosugars increases slightly under the influence of additives. The SEM and XRD investigations proved that inorganics interact with volatile pyrolysis products from the blends of pea husks with additives and change their composition. After the transformation of chemical composition, inorganics catalyse secondary reactions that take place in the pyrolysis products of blends. Full article
(This article belongs to the Special Issue Pyrolysis and Gasification of Biomass and Waste II)
Show Figures

Figure 1

12 pages, 929 KiB  
Article
Development of an Advanced Inspection of the Degradation of Volatile Organic Compounds in Electrochemical Water Treatment of Paint-Industrial Water Effluents
by Agneša Szarka, Veronika Mihová, Gabriel Horváth and Svetlana Hrouzková
Appl. Sci. 2023, 13(1), 443; https://doi.org/10.3390/app13010443 - 29 Dec 2022
Cited by 9 | Viewed by 2106
Abstract
This study presents a compact system developed to treat paint-industrial water contaminated by the residues of volatile organic compounds (VOCs) using hybrid electrothermochemical wastewater treatment technology. Different treatment parameters (sample dilution, working current) were studied, and the power of the removal was expressed [...] Read more.
This study presents a compact system developed to treat paint-industrial water contaminated by the residues of volatile organic compounds (VOCs) using hybrid electrothermochemical wastewater treatment technology. Different treatment parameters (sample dilution, working current) were studied, and the power of the removal was expressed by the removal efficiency factor. It was shown that for all of the VOCs, significant removal was obtained with dilution 1:3 (industrial water: deionized water, V:V) and electric current set at 30 A. For advanced inspection of the treatment process, a simple and solventless method has been developed and validated, using headspace sampling combined with gas chromatography-mass spectrometry. Parameters affecting the headspace sampling efficiency were thoroughly studied, including the temperature, time, and mixing rate. The proposed method was partially validated utilizing the selected sampling parameters. The limits of detection ranged between 0.19 µg/L and 4.02 μg/L. The validated analytical method was an efficient tool for the inspection of residual VOCs in paint-industrial water and treated water samples. The new electrochemical water treatment was shown to be helpful in the paint industry’s effluent reuse. Full article
(This article belongs to the Special Issue Electrochemical Technologies in Water and Wastewater Treatment)
Show Figures

Figure 1

Back to TopTop