Development of an Advanced Inspection of the Degradation of Volatile Organic Compounds in Electrochemical Water Treatment of Paint-Industrial Water Effluents
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Samples
2.3. Industrial Water Treatment
- −
- The industrial wastewater was diluted with deionized water 1:1 (treated water 1: deionized water V:V), and a working electric current of 20 A was used for electrochemical treatment;
- −
- The industrial wastewater was diluted with deionized water 1:1 (treated water 2: deionized water V:V), and a working electric current of 30 A was used for electrochemical treatment;
- −
- The industrial wastewater was diluted with deionized water 1:3 (treated water 3: deionized water V:V), and a working electric current of 20 A was used for electrochemical treatment;
- −
- The industrial wastewater was diluted with deionized water dilution 1:3 (treated water 4: deionized water, V:V), and a working electric current of 30 A was used for electrochemical treatment.
2.4. Headspace Sampling
2.5. GC-MS Analysis
3. Results and Discussion
3.1. Evaluation of HS Sampling and Identification of Pollutants in HS Gas
3.2. Validation of the GC-MS Method
3.3. Industrial Water Treatment
3.4. Study of the Removal Efficiency
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Patwardhan, A.D. Industrial Wastewater Treatment, 2nd ed.; Eastern Economy Edition; PHI Learning: Delhi, India, 2017. [Google Scholar]
- Smith, M.R. The biodegradation of aromatic hydrocarbons by bacteria. Biodegradation 1990, 1, 191–206. [Google Scholar] [CrossRef]
- Boczkaj, G.; Fernandes, A. Wastewater treatment by means of advanced oxidation processes at basic pH conditions: A review. Chem. Eng. J. 2017, 320, 608–633. [Google Scholar] [CrossRef]
- Fedorov, K.; Plata-Gryl, M.; Khan, J.A.; Boczkaj, G. Ultrasound-assisted heterogeneous activation of persulfate and peroxymonosulfate by asphaltenes for the degradation of BTEX in water. J. Hazard. Mater. 2020, 397, 122804. [Google Scholar] [CrossRef]
- Lueders, T. The ecology of anaerobic degraders of BTEX hydrocarbons in aquifers. FEMS Microbiol. Ecol. 2017, 93, fiw220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, H.; Jiang, Y.; Zhao, J.; Li, S.; Schulz, S.; Deng, L. BTEX biodegradation is linked to bacterial community assembly patterns in contaminated groundwater ecosystem. J. Hazard. Mater. 2021, 419, 126205. [Google Scholar] [CrossRef] [PubMed]
- Godin, S.; Kubica, P.; Ranchou-Peyruse, A.; Le Hecho, I.; Patriarche, D.; Caumette, G.; Szpunar, J.; Lobinski, R. An LC-MS/MS Method for a Comprehensive Determination of Metabolites of BTEX Anaerobic Degradation in Bacterial Cultures and Groundwater. Water 2020, 12, 1869. [Google Scholar] [CrossRef]
- Lecompte, B.F.C.; Kakar, D.; Mehrvar, M. Photochemical treatment of benzene, toluene, ethylbenzene, and xylenes (BTEX) in aqueous solutions using advanced oxidation processes: Towards a cleaner production in the petroleum refining and petrochemical industries. J. Clean. Prod. 2018, 186, 609–617. [Google Scholar] [CrossRef]
- Caetano, M.O.; Schneider, I.A.H.; Gomes, L.P.; Kieling, A.G.; Miranda, L.A.S. A compact remediation system for the treatment of groundwater contaminated with BTEX and TPH. Environ. Technol. 2016, 38, 1408–1420. [Google Scholar] [CrossRef]
- Meckenstock, R.U.; Elsner, M.; Griebler, C.; Lueders, T.; Stumpp, C.; Aamand, J.; Agathos, S.N.; Albrechtsen, H.J.; Bastiaens, L.; Bjerg, P.L. Biodegradation: Updating the concepts of control for microbial cleanup in contaminated aquifers. Environ. Sci. Technol. 2015, 49, 7073–7081. [Google Scholar] [CrossRef] [Green Version]
- Zamir, S.M.; Halladj, R.; Nasernejad, B. Removal of toluene vapors using a fungal biofilter under intermittent loading. Process Saf. Environ. 2011, 89, 8–14. [Google Scholar] [CrossRef]
- Jabbar, N.M.; Alardhi, S.M.; Mohammed, A.K.; Salih, K.I.; Albayati, M.T. Challenges in the implementation of bioremediation processes in petroleum-contaminated soils: A review. Environ. Nanotechnol. Monit. Manag. 2022, 18, 100694. [Google Scholar] [CrossRef]
- Leili, M.; Farjadfard, S.; Sorial, G.A.; Ramavandi, B. Simultaneous biofiltration of BTEX and Hg from a petrochemical waste stream. J. Environ. Manag. 2017, 204, 531–539. [Google Scholar] [CrossRef] [PubMed]
- Hu, G.; Li, J.; Zeng, G. Recent development in the treatment of oily sludge from petroleum industry: A review. J. Hazard. Mater. 2013, 261, 470–490. [Google Scholar] [CrossRef] [PubMed]
- Unuigbe, C.F.; Fayemiwo, O.M.; Daramola, M.O. Performance evaluation of iron nanoparticles infused polyethersulphone (Fe-NPs/PES) membrane during treatment of BTEX-contaminated wastewater. Water Environ. J. 2020, 34, 74–86. [Google Scholar] [CrossRef]
- Sharma, D.; Chaudhari, P.K.; Dubey, S.; Prajapati, A.K. Electrocoagulation treatment of electroplating wastewater: A review. J. Environ. Eng. 2020, 146, 03120009. [Google Scholar] [CrossRef]
- Muddemann, T.; Haupt, D.; Sievers, M.; Kunz, U. Electrochemical reactors for wastewater treatment. ChemBioEng Rev. 2019, 6, 142–156. [Google Scholar] [CrossRef]
- AlJaberi, F.Y.; Alardhi, S.M.; Ahmed, S.A.; Salman, A.D.; Juzsakova, T.; Cretescu, I.; Le, P.C.; Chung, W.J.; Chang, S.W.; Nguyen, D.D. Can electrocoagulation technology be integrated with wastewater treatment systems to improve treatment efficiency? Environ. Res. 2022, 214, 113890. [Google Scholar] [CrossRef]
- Szarka, A.; Viktoryová, N.; Horváth, G.; Szalay, Z.; Šimo, F.; Hrouzková, S. GC–MS methods for the evaluation of the performance of electrochemical water treatment for the degradation of pollutants from paint industry effluents. Monatsh. Chem. 2022, 153, 161–169. [Google Scholar] [CrossRef]
- Andraščíková, M.; Matisová, E.; Hrouzková, S. Liquid Phase Microextraction Techniques as a Sample Preparation Step for Analysis of Pesticide Residues in Food. Sep. Purif. Rev. 2015, 44, 1–18. [Google Scholar] [CrossRef]
- Larriba, M.; Navarro, P.; García, J.; Rodríguez, F. Liquid-liquid extraction of BTEX from reformer gasoline using binary mixtures of [4empy][Tf2N] and [emim] [DCA] ionic liquids. Energy Fuel 2014, 28, 6666–6676. [Google Scholar] [CrossRef]
- Serrano, A.; Gallego, M. Fullerenes as sorbent materials for benzene, toluene, ethylbenzene, and xylene isomers preconcentration. J. Sep. Sci. 2006, 29, 33–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faraji, H.; Tajbakhsh, M.; Helalizadeh, M. Validation and optimization of a liquid-phase microextraction method for trace analysis of BTEX in water samples. Anal. Methods 2012, 4, 3372–3380. [Google Scholar] [CrossRef]
- Maya, F.; Ghani, M. Ordered macro/micro-porous metal-organic framework of type ZIF-8 in a steel fiber as a sorbent for solid-phase microextraction of BTEX. Microchim. Acta 2019, 186, 425. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Hu, Q.; Tong, Y.; Li, N.; Ouyang, S.; Yang, H.; Xu, J.; Ouyang, G. Sample bottle coated with sorbent as a novel solid-phase extraction device for rapid on-site detection of BTEX in water. Anal. Chim. Acta 2021, 1152, 338226. [Google Scholar] [CrossRef] [PubMed]
- Barco-Bonilla, N.; Plaza-Bolaños, P.; Fernández-Moreno, J.L.; Romero-González, R.; Frenich, G.A.; Vidal, J.L.M. Determination of 19 volatile organic compounds in wastewater effluents from different treatments by purge and trap followed by gas-chromatography coupled to mass spectrometry. Anal. Bioanal. Chem. 2011, 400, 3537–3546. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.W.; Liu, Y.T.; Wu, B.Z.; Nian, H.C.; Chen, H.J.; Chiu, K.H.; Lo, J.G. Process sampling module coupled with purge and trap-GC-FID for in situ auto-monitoring of volatile organic compounds in wastewater. Talanta 2009, 80, 903–908. [Google Scholar] [CrossRef]
- Fakhari, A.R.; Hasheminasab, K.S.; Baghdadi, M.; Khakpour, A. A simple and rapid method based on direct transfer of headspace vapor into the GC injector: Application for determination of BTEX compounds in water and wastewater samples. Anal. Methods 2012, 4, 1996–2001. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, T.; Xu, X.; Wang, H.; Miao, C. Determination of BTEX compounds in solid–liquid mixing paint using the combination of solid phase extraction, thermal desorption and GC-FID. Chromatographia 2010, 71, 1131–1135. [Google Scholar] [CrossRef]
- Erkmen, J. Solvent Bazlı Inşaat Boyalarında Pigment Boyutunun Etkilerinin Uzun Zaman Aralığında Incelenmesi. Master’s Thesis, Atatürk University, Erzurum, Turkey, 2012. [Google Scholar]
- Yilmazcan, O.; Ozer, E.T.; Izgi, B.; Gucer, S. Optimization of static head-space gas chromatography–mass spectrometry–conditions for the determination of benzene, toluene, ethyl benzene, xylene, and styrene in model solutions. Ekoloji 2013, 22, 76–83. [Google Scholar] [CrossRef]
- Hou, M.; Ren, H.; Cheng, W.; Li, L.; Zhang, S.; Chen, Y.; Yu, C.; Li, F.; Tian, S.; Deng, Z. Development of a headspace-gas chromatography/mass spectrometry method based on matrix-matched calibration for evaluating VOC content, characterization, source, and risk in RO membrane. Polym. Test. 2022, 107, 107474. [Google Scholar] [CrossRef]
- Pascale, R.; Bianco, G.; Calace, S.; Masi, S.; Mancini, I.M.; Mazzone, G.; Caniani, D. Method development and optimization for the determination of benzene, toluene, ethylbenzene and xylenes in water at trace levels by static headspace extraction coupled to gas chromatography-barrier ionization discharge detection. J. Chromatogr. A 2018, 1548, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Eshagi, Z.; Ebrahimi, M.; Hosseini, M.S. Optimization of a novel method for determination of benzene, toluene, ethylbenzene, and xylenes in hair and waste water samples by carbon nanotubes reinforced sol–gel based hollow fiber solid phase microextraction and gas chromatography using factorial experimental design. J. Chromatogr. A 2011, 1218, 3400–3406. [Google Scholar]
- Eremektar, G.; Goksen, S.; Babuna, F.; Dogruel, S. Coagulation-flocculation of wastewaters from a water-based paint and allied products industry and its effect on inert COD. J. Environ. Sci. Health A–Toxic Hazard. Subst. Environ. Eng. 2006, 41, 1843–1852. [Google Scholar] [CrossRef]
- Balik, Ö.Y.; Aydin, S. Coagulation/flocculation optimization and sludge production for pre-treatment of paint industry wastewater. Desalin. Water Treat. 2016, 57, 12692–12699. [Google Scholar] [CrossRef]
- Aldemir, A.; Hakkıtanır, E.; Özgüven, A. Determination of optimum treatment conditions for paint industry wastewater with the coagulation/flocculation method. Desalin. Water Treat. 2021, 211, 165–176. [Google Scholar] [CrossRef]
- Körbahti, B.K.; Aktas¸, N.; Tanyolaç, A. Optimization of electrochemical treatment of industrial paint wastewater with res-ponse surface methodology. J. Hazard Mater. 2007, 148, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Ozturk, D.; Dagdas, E.; Fil, B.A.; Bashir, M.J.K. Central composite modeling for electrochemical degradation of paint manu-facturing plant wastewater: One-step/two-response optimization. Environ. Technol. Innov. 2021, 21, 101264. [Google Scholar] [CrossRef]
- Can-Güven, E.; Guvenc, S.Y.; Ilhan, F.; Varank, G. Application of combined EO/PMS/Me2+ process in organic matter and true color removal from paint manufacturing industry wastewater. Environ. Res. 2022, 212, 113451. [Google Scholar] [CrossRef]
- De Oliveira, I.S.; Viana, L.; Verona, C.; Fallavena, V.L.V.; Azevedo, C.M.N.; Pires, M. Alkydic resin wastewaters treatment by fenton and photo-Fenton processes. J. Hazard. Mater. 2007, 146, 564–568. [Google Scholar] [CrossRef]
Analytes | Retention Time [min] | Ions [m/z] | LOD [µg/L] | Correlation Coefficient | ||
---|---|---|---|---|---|---|
Toluene | 1.330 | 91 | 92 | 65 | 0.19 | 0.9978 |
Chlorobenzene | 1.593 | 112 | 77 | 114 | 3.22 | 0.9902 |
Ethylbenzene | 1.627 | 106 | 91 | 78 | 2.07 | 0.9935 |
Xylenes | 1.700, 1.721 | 105 | 106 | 91 | 4.02 | 0.9921 |
Treatment Method | COD Removal Efficiency [%] | Specific Compounds’ Removal | References |
---|---|---|---|
Coagulation-flocculation | 59 | X | [35] |
Coagulation-flocculation | 86–88 | X | [36] |
Coagulation-flocculation | 94.1 | X | [37] |
Batch reactor (carbon electrodes) | 66 | X | [38] |
Electrooxidation (Ti/Pt anode) | 81 | X | [39] |
Electrooxidation (Ti/IrO2 anode) | 75 | X | [40] |
Photo-Fenton process (solar radiation) | 99.5 | X | [41] |
Electro-thermochemical process | 95–99 | VOCs | This study |
Identified Compounds | REFi (TW1) [%] | REFi (TW2) [%] | REFi (TW3) [%] | REFi (TW4) [%] |
---|---|---|---|---|
Toluene | 55 | 80 | 78 | 90 |
Ethylbenzene | 84 | 91 | 86 | 94 |
Xylenes | 43 | 47 | 89 | 90 |
Chlorobenzene | 90 | 96 | 81 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szarka, A.; Mihová, V.; Horváth, G.; Hrouzková, S. Development of an Advanced Inspection of the Degradation of Volatile Organic Compounds in Electrochemical Water Treatment of Paint-Industrial Water Effluents. Appl. Sci. 2023, 13, 443. https://doi.org/10.3390/app13010443
Szarka A, Mihová V, Horváth G, Hrouzková S. Development of an Advanced Inspection of the Degradation of Volatile Organic Compounds in Electrochemical Water Treatment of Paint-Industrial Water Effluents. Applied Sciences. 2023; 13(1):443. https://doi.org/10.3390/app13010443
Chicago/Turabian StyleSzarka, Agneša, Veronika Mihová, Gabriel Horváth, and Svetlana Hrouzková. 2023. "Development of an Advanced Inspection of the Degradation of Volatile Organic Compounds in Electrochemical Water Treatment of Paint-Industrial Water Effluents" Applied Sciences 13, no. 1: 443. https://doi.org/10.3390/app13010443
APA StyleSzarka, A., Mihová, V., Horváth, G., & Hrouzková, S. (2023). Development of an Advanced Inspection of the Degradation of Volatile Organic Compounds in Electrochemical Water Treatment of Paint-Industrial Water Effluents. Applied Sciences, 13(1), 443. https://doi.org/10.3390/app13010443