Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,445)

Search Parameters:
Keywords = communication equipment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 1406 KiB  
Proceeding Paper
Disaster-Based Mobile Learning System Using Technology Acceptance Model
by John A. Bacus
Eng. Proc. 2025, 103(1), 5; https://doi.org/10.3390/engproc2025103005 - 6 Aug 2025
Abstract
Recently, the usage of mobile phone-based games has increased due to the growing accessibility and convenience they provide. Using a descriptive-quantitative design, a disaster-based mobile application was developed in this study to enhance disaster literacy among the private senior high schools in science, [...] Read more.
Recently, the usage of mobile phone-based games has increased due to the growing accessibility and convenience they provide. Using a descriptive-quantitative design, a disaster-based mobile application was developed in this study to enhance disaster literacy among the private senior high schools in science, technology, engineering, and mathematics (STEM) education in Davao City, the Philippines. The developed application was provided together with survey questionnaires to 364 students randomly selected from different schools in Davao City usingF a simple random sampling method. The technology acceptance (TAM) model was used to explain how users accepted the new technology. The mobile application was designed with features in four disaster scenarios—fire, flood, volcano, and earthquake. The results revealed a high acceptance, with an average score of the perceived usefulness (PE) of 4.52, perceived ease of use (PEOU) of 4.44, and a behavioral intention (BI) of 4.12. The students accepted the application to enhance disaster risk reduction and management. Aligned with SDG 4 and SDG 11, the application can be used to equip users with the knowledge to respond to disasters and ensure community resilience. Full article
Show Figures

Figure 1

15 pages, 5856 KiB  
Article
Smart Personal Protective Equipment Hood Based on Dedicated Communication Protocol
by Mario Gazziro, Marcio Luís Munhoz Amorim, Marco Roberto Cavallari, João Paulo Carmo and Oswaldo Hideo Ando Júnior
Hardware 2025, 3(3), 8; https://doi.org/10.3390/hardware3030008 - 5 Aug 2025
Abstract
This project aimed to develop personal protective equipment (PPE) that provides full biological protection for the general public without the need for extensive training to use the equipment. With the proposal to develop a device guided by a smartphone monitoring application (to guide [...] Read more.
This project aimed to develop personal protective equipment (PPE) that provides full biological protection for the general public without the need for extensive training to use the equipment. With the proposal to develop a device guided by a smartphone monitoring application (to guide the user on the replacement of perishable components, ensuring their safety and biological protection in potentially contaminated places), the embedded electronics of this equipment were built, as well as their control system, including a smartphone app. Thus, a device was successfully developed to monitor and assist individuals in using an advanced PPE device. Full article
Show Figures

Figure 1

17 pages, 567 KiB  
Article
Bridging the Care Gap: Integrating Family Caregiver Partnerships into Healthcare Provider Education
by Jasneet Parmar, Tanya L’Heureux, Sharon Anderson, Michelle Lobchuk, Lesley Charles, Cheryl Pollard, Linda Powell, Esha Ray Chaudhuri, Joelle Fawcett-Arsenault, Sarah Mosaico, Cindy Sim, Paige Walker, Kimberly Shapkin, Carolyn Weir, Laurel Sproule, Megan Strickfaden, Glenda Tarnowski, Jonathan Lee and Cheryl Cameron
Healthcare 2025, 13(15), 1899; https://doi.org/10.3390/healthcare13151899 - 4 Aug 2025
Abstract
Background: Family caregivers are a vital yet often under-recognized part of the healthcare system. They provide essential emotional, physical, and logistical support to individuals with illness, disability, or frailty, and their contributions improve continuity of care and reduce system strain. However, many [...] Read more.
Background: Family caregivers are a vital yet often under-recognized part of the healthcare system. They provide essential emotional, physical, and logistical support to individuals with illness, disability, or frailty, and their contributions improve continuity of care and reduce system strain. However, many healthcare and social service providers are not equipped to meaningfully engage caregivers as partners. In Alberta, stakeholders validated the Caregiver-Centered Care Competency Framework and identified the need for a three-tiered education model—Foundational, Advanced, and Champion—to help providers recognize, include, and support family caregivers across care settings. This paper focuses on the development and early evaluation of the Advanced Caregiver-Centered Care Education modules, designed to enhance the knowledge and skills of providers with more experience working with family caregivers. The modules emphasize how partnering with caregivers benefits not only the person receiving care but also improves provider effectiveness and supports better system outcomes. Methods: The modules were co-designed with a 154-member interdisciplinary team and grounded in the competency framework. Evaluation used the first three levels of the Kirkpatrick–Barr health workforce education model. We analyzed pre- and post-surveys from the first 50 learners in each module using paired t-tests and examined qualitative feedback and SMART goals through inductive content analysis. Results: Learners reported a high level of satisfaction with the education delivery and the knowledge and skill acquisition. Statistically significant improvements were observed in 53 of 54 pre-post items. SMART goals reflected intended practice changes across all six competency domains, indicating learners saw value in engaging caregivers as partners. Conclusions: The Advanced Caregiver-Centered Care education improved providers’ confidence, knowledge, and skills to work in partnership with family caregivers. Future research will explore whether these improvements translate into real-world practice changes and better caregiver experiences in care planning, communication, and navigation. Full article
Show Figures

Figure 1

23 pages, 2497 KiB  
Article
Biosphere Reserves in Spain: A Holistic Commitment to Environmental and Cultural Heritage Within the 2030 Agenda
by Juan José Maldonado-Briegas, María Isabel Sánchez-Hernández and José María Corrales-Vázquez
Heritage 2025, 8(8), 309; https://doi.org/10.3390/heritage8080309 - 2 Aug 2025
Viewed by 163
Abstract
Biosphere Reserves (BRs), designated by UNESCO, are uniquely positioned to serve as model territories for sustainable development, as they aim to harmonize biodiversity conservation with the socio-economic vitality and cultural identity of local communities. This work examines the commitment of the Spanish Network [...] Read more.
Biosphere Reserves (BRs), designated by UNESCO, are uniquely positioned to serve as model territories for sustainable development, as they aim to harmonize biodiversity conservation with the socio-economic vitality and cultural identity of local communities. This work examines the commitment of the Spanish Network of Biosphere Reserves to the United Nations 2030 Agenda and the Sustainable Development Goals (SDGs). Using a survey-based research design, this study assesses the extent to which the reserves have integrated the SDGs into their strategic frameworks and operational practices. It also identifies and analyses successful initiatives and best practices implemented across Spain that exemplify this integration. The findings highlight the need for enhanced awareness and understanding of the 2030 Agenda among stakeholders, alongside stronger mechanisms for participation, cooperation, and governance. The conclusion emphasises the importance of equipping all reserves with strategic planning tools and robust systems for monitoring, evaluation, and accountability. Moreover, the analysis of exemplary cases reveals the transformative potential of sustainability-oriented projects—not only in advancing environmental goals but also in revitalizing local economies and reinforcing cultural heritage. These insights contribute to a broader understanding of how BRs can act as dynamic laboratories for sustainable development and heritage preservation. Full article
(This article belongs to the Section Biological and Natural Heritage)
Show Figures

Figure 1

29 pages, 830 KiB  
Review
Persistent Threats: A Comprehensive Review of Biofilm Formation, Control, and Economic Implications in Food Processing Environments
by Alexandra Ban-Cucerzan, Kálmán Imre, Adriana Morar, Adela Marcu, Ionela Hotea, Sebastian-Alexandru Popa, Răzvan-Tudor Pătrînjan, Iulia-Maria Bucur, Cristina Gașpar, Ana-Maria Plotuna and Sergiu-Constantin Ban
Microorganisms 2025, 13(8), 1805; https://doi.org/10.3390/microorganisms13081805 - 1 Aug 2025
Viewed by 128
Abstract
Biofilms are structured microbial communities that pose significant challenges to food safety and quality within the food-processing industry. Their formation on equipment and surfaces enables persistent contamination, microbial resistance, and recurring outbreaks of foodborne illness. This review provides a comprehensive synthesis of current [...] Read more.
Biofilms are structured microbial communities that pose significant challenges to food safety and quality within the food-processing industry. Their formation on equipment and surfaces enables persistent contamination, microbial resistance, and recurring outbreaks of foodborne illness. This review provides a comprehensive synthesis of current knowledge on biofilm formation mechanisms, genetic regulation, and the unique behavior of multi-species biofilms. The review evaluates modern detection and monitoring technologies, including PCR, biosensors, and advanced microscopy, and compares their effectiveness in industrial contexts. Real-world outbreak data and a global economic impact analysis underscore the urgency for more effective regulatory frameworks and sanitation innovations. The findings highlight the critical need for integrated, proactive biofilm management approaches to safeguard food safety, reduce public health risks, and minimize economic losses across global food sectors. Full article
Show Figures

Figure 1

20 pages, 3582 KiB  
Article
Design and Development of a Real-Time Pressure-Driven Monitoring System for In Vitro Microvasculature Formation
by Gayathri Suresh, Bradley E. Pearson, Ryan Schreiner, Yang Lin, Shahin Rafii and Sina Y. Rabbany
Biomimetics 2025, 10(8), 501; https://doi.org/10.3390/biomimetics10080501 - 1 Aug 2025
Viewed by 200
Abstract
Microfluidic platforms offer a powerful approach for ultimately replicating vascularization in vitro, enabling precise microscale control and manipulation of physical parameters. Despite these advances, the real-time ability to monitor and quantify mechanical forces—particularly pressure—within microfluidic environments remains constrained by limitations in cost [...] Read more.
Microfluidic platforms offer a powerful approach for ultimately replicating vascularization in vitro, enabling precise microscale control and manipulation of physical parameters. Despite these advances, the real-time ability to monitor and quantify mechanical forces—particularly pressure—within microfluidic environments remains constrained by limitations in cost and compatibility across diverse device architectures. Our work presents an advanced experimental module for quantifying pressure within a vascularizing microfluidic platform. Equipped with an integrated Arduino microcontroller and image monitoring, the system facilitates real-time remote monitoring to access temporal pressure and flow dynamics within the device. This setup provides actionable insights into the hemodynamic parameters driving vascularization in vitro. In-line pressure sensors, interfaced through I2C communication, are employed to precisely record inlet and outlet pressures during critical stages of microvasculature tubulogenesis. Flow measurements are obtained by analyzing changes in reservoir volume over time (dV/dt), correlated with the change in pressure over time (dP/dt). This quantitative assessment of various pressure conditions in a microfluidic platform offers insights into their impact on microvasculature perfusion kinetics. Data acquisition can help inform and finetune functional vessel network formation and potentially enhance the durability, stability, and reproducibility of engineered in vitro platforms for organoid vascularization in regenerative medicine. Full article
(This article belongs to the Section Biomimetic Design, Constructions and Devices)
Show Figures

Figure 1

22 pages, 1470 KiB  
Article
An NMPC-ECBF Framework for Dynamic Motion Planning and Execution in Vision-Based Human–Robot Collaboration
by Dianhao Zhang, Mien Van, Pantelis Sopasakis and Seán McLoone
Machines 2025, 13(8), 672; https://doi.org/10.3390/machines13080672 - 1 Aug 2025
Viewed by 281
Abstract
To enable safe and effective human–robot collaboration (HRC) in smart manufacturing, it is critical to seamlessly integrate sensing, cognition, and prediction into the robot controller for real-time awareness, response, and communication inside a heterogeneous environment (robots, humans, and equipment). The proposed approach takes [...] Read more.
To enable safe and effective human–robot collaboration (HRC) in smart manufacturing, it is critical to seamlessly integrate sensing, cognition, and prediction into the robot controller for real-time awareness, response, and communication inside a heterogeneous environment (robots, humans, and equipment). The proposed approach takes advantage of the prediction capabilities of nonlinear model predictive control (NMPC) to execute safe path planning based on feedback from a vision system. To satisfy the requirements of real-time path planning, an embedded solver based on a penalty method is applied. However, due to tight sampling times, NMPC solutions are approximate; therefore, the safety of the system cannot be guaranteed. To address this, we formulate a novel safety-critical paradigm that uses an exponential control barrier function (ECBF) as a safety filter. Several common human–robot assembly subtasks have been integrated into a real-life HRC assembly task to validate the performance of the proposed controller and to investigate whether integrating human pose prediction can help with safe and efficient collaboration. The robot uses OptiTrack cameras for perception and dynamically generates collision-free trajectories to the predicted target interactive position. Results for a number of different configurations confirm the efficiency of the proposed motion planning and execution framework, with a 23.2% reduction in execution time achieved for the HRC task compared to an implementation without human motion prediction. Full article
(This article belongs to the Special Issue Visual Measurement and Intelligent Robotic Manufacturing)
Show Figures

Figure 1

25 pages, 10205 KiB  
Article
RTLS-Enabled Bidirectional Alert System for Proximity Risk Mitigation in Tunnel Environments
by Fatima Afzal, Farhad Ullah Khan, Ayaz Ahmad Khan, Ruchini Jayasinghe and Numan Khan
Buildings 2025, 15(15), 2667; https://doi.org/10.3390/buildings15152667 - 28 Jul 2025
Viewed by 267
Abstract
Tunnel construction poses significant safety challenges due to confined spaces, limited visibility, and the dynamic movement of labourers and machinery. This study addresses a critical gap in real-time, bidirectional proximity monitoring by developing and validating a prototype early-warning system that integrates real-time location [...] Read more.
Tunnel construction poses significant safety challenges due to confined spaces, limited visibility, and the dynamic movement of labourers and machinery. This study addresses a critical gap in real-time, bidirectional proximity monitoring by developing and validating a prototype early-warning system that integrates real-time location systems (RTLS) with long-range (LoRa) wireless communication and ultra-wideband (UWB) positioning. The system comprises Arduino nano microcontrollers, organic light-emitting diode (OLED) displays, and piezo buzzers to detect and signal proximity breaches between workers and equipment. Using an action research approach, three pilot case studies were conducted in a simulated tunnel environment to test the system’s effectiveness in both static and dynamic risk scenarios. The results showed that the system accurately tracked proximity and generated timely alerts when safety thresholds were crossed, although minor delays of 5–8 s and slight positional inaccuracies were noted. These findings confirm the system’s capacity to enhance situational awareness and reduce reliance on manual safety protocols. The study contributes to the tunnel safety literature by demonstrating the feasibility of low-cost, real-time monitoring solutions that simultaneously track labour and machinery. The proposed RTLS framework offers practical value for safety managers and informs future research into automated safety systems in complex construction environments. Full article
(This article belongs to the Special Issue AI in Construction: Automation, Optimization, and Safety)
Show Figures

Figure 1

19 pages, 298 KiB  
Entry
Resilience, Adversity, and Social Supports in Childhood and Adolescence
by Val Livingston, Breshell Jackson-Nevels, Brandon D. Mitchell and Phillip M. Riddick
Encyclopedia 2025, 5(3), 108; https://doi.org/10.3390/encyclopedia5030108 - 28 Jul 2025
Viewed by 365
Definition
More than 50 years ago, children were viewed as naturally resilient and often labeled invulnerable or invincible. Resilience is now understood to be the result of dynamic interactions between individual, familial, social, and environmental systems, decentralizing the focus from the individual to the [...] Read more.
More than 50 years ago, children were viewed as naturally resilient and often labeled invulnerable or invincible. Resilience is now understood to be the result of dynamic interactions between individual, familial, social, and environmental systems, decentralizing the focus from the individual to the global society. Experiences with adversity may emanate from the youth’s family environment, their community, the school system, and larger structural challenges related to poverty, discrimination, health disparities, and educational inequities. Youth experiences with adversity, trauma, and tragedy have the potential to negatively impact youth well-being, with consequences manifesting across the lifespan. Children and adolescents generally hold limited power to change their circumstances and are often ill-equipped to resolve the adverse or traumatic experiences occurring within their ecosystem. The value of social supports in the young person’s ability to be resilient has been affirmed. This understanding is particularly important for children growing up in poverty or in Low- and Middle-Income Countries (LMICs) where significant challenges occur as a result of economic and social disadvantage. Resilience at the individual level is unlikely to eliminate macrolevel issues. Developing and deploying strategies to enhance the ability of youth to rebound from adversity represents a positive step at the micro level, but the larger issues of economic and social disadvantage are unlikely to change without macro-level interventions. Glancing toward the future, traumatized youth may grow into traumatized adults without appropriate interventions and changes in social policies, programs, and protections. Full article
(This article belongs to the Section Social Sciences)
19 pages, 1887 KiB  
Review
Comparative Analysis of Beamforming Techniques and Beam Management in 5G Communication Systems
by Cristina Maria Andras, Gordana Barb and Marius Otesteanu
Sensors 2025, 25(15), 4619; https://doi.org/10.3390/s25154619 - 25 Jul 2025
Viewed by 526
Abstract
The advance of 5G technology marks a significant evolution in wireless communications, characterized by ultra-high data rates, low latency, and massive connectivity across varied areas. A fundamental enabler of these capabilities is represented by beamforming, an advanced signal processing technique that focuses radio [...] Read more.
The advance of 5G technology marks a significant evolution in wireless communications, characterized by ultra-high data rates, low latency, and massive connectivity across varied areas. A fundamental enabler of these capabilities is represented by beamforming, an advanced signal processing technique that focuses radio energy to a specific user equipment (UE), thereby enhancing signal quality—crucial for maximizing spectral efficiency. The work presents a classification of beamforming techniques, categorized according to the implementation within 5G New Radio (NR) architectures. Furthermore, the paper investigates beam management (BM) procedures, which are essential Layer 1 and Layer 2 mechanisms responsible for the dynamic configuration, monitoring, and maintenance of optimal beam pair links between gNodeBs and UEs. The article emphasizes the spectral spectrogram of Synchronization Signal Blocks (SSBs) generated under various deployment scenarios, illustrating how parameters such as subcarrier spacing (SCS), frequency band, and the number of SSBs influence the spectral occupancy and synchronization performance. These insights provide a technical foundation for optimizing initial access and beam tracking in high-frequency 5G deployments, particularly within Frequency Range (FR2). Additionally, the versatility of 5G’s time-frequency structure is demonstrated by the spectrogram analysis of SSBs in a variety of deployment scenarios. These results provide insight into how different configurations affect the synchronization signals’ temporal and spectral occupancy, which directly affects initial access, cell identification, and energy efficiency. Full article
Show Figures

Figure 1

37 pages, 11546 KiB  
Review
Advances in Interferometric Synthetic Aperture Radar Technology and Systems and Recent Advances in Chinese SAR Missions
by Qingjun Zhang, Huangjiang Fan, Yuxiao Qin and Yashi Zhou
Sensors 2025, 25(15), 4616; https://doi.org/10.3390/s25154616 - 25 Jul 2025
Viewed by 445
Abstract
With advancements in radar sensors, communications, and computer technologies, alongside an increasing number of ground observation tasks, Synthetic Aperture Radar (SAR) remote sensing is transitioning from being theory and technology-driven to being application-demand-driven. Since the late 1960s, Interferometric Synthetic Aperture Radar (InSAR) theories [...] Read more.
With advancements in radar sensors, communications, and computer technologies, alongside an increasing number of ground observation tasks, Synthetic Aperture Radar (SAR) remote sensing is transitioning from being theory and technology-driven to being application-demand-driven. Since the late 1960s, Interferometric Synthetic Aperture Radar (InSAR) theories and techniques have continued to develop. They have been applied significantly in various fields, such as in the generation of global topography maps, monitoring of ground deformation, marine observations, and disaster reduction efforts. This article classifies InSAR into repeated-pass interference and single-pass interference. Repeated-pass interference mainly includes D-InSAR, PS-InSAR and SBAS-InSAR. Single-pass interference mainly includes CT-InSAR and AT-InSAR. Recently, China has made significant progress in the field of SAR satellite development, successfully launching several satellites equipped with interferometric measurement capabilities. These advancements have driven the evolution of spaceborne InSAR systems from single-frequency to multi-frequency, from low Earth orbit to higher orbits, and from single-platform to multi-platform configurations. These advancements have supported high precision and high-temporal-resolution land observation, and promoted the broader application of InSAR technology in disaster early warning, ecological monitoring, and infrastructure safety. Full article
Show Figures

Figure 1

30 pages, 2228 KiB  
Article
Controlling Industrial Robotic Arms Using Gyroscopic and Gesture Inputs from a Smartwatch
by Carmen-Cristiana Cazacu, Mihail Hanga, Florina Chiscop, Dragos-Alexandru Cazacu and Costel Emil Cotet
Appl. Sci. 2025, 15(15), 8297; https://doi.org/10.3390/app15158297 - 25 Jul 2025
Viewed by 221
Abstract
This paper presents a novel interface that leverages a smartwatch for controlling industrial robotic arms. By harnessing the gyroscope and advanced gesture recognition capabilities of the smartwatch, our solution facilitates intuitive, real-time manipulation that caters to users ranging from novices to seasoned professionals. [...] Read more.
This paper presents a novel interface that leverages a smartwatch for controlling industrial robotic arms. By harnessing the gyroscope and advanced gesture recognition capabilities of the smartwatch, our solution facilitates intuitive, real-time manipulation that caters to users ranging from novices to seasoned professionals. A dedicated application is implemented to aggregate sensor data via an open-source library, providing a streamlined alternative to conventional control systems. The experimental setup consists of a smartwatch equipped with a data collection application, a robotic arm, and a communication module programmed in Python. Our aim is to evaluate the practicality and effectiveness of smartwatch-based control in a real-world industrial context. The experimental results indicate that this approach significantly enhances accessibility while concurrently minimizing the complexity typically associated with automation systems. Full article
Show Figures

Figure 1

21 pages, 2834 KiB  
Article
Modeling Radiofrequency Electromagnetic Field Wearable Distributed (Multi-Location) Measurements System for Evaluating Electromagnetic Hazards in the Work Environment
by Krzysztof Gryz, Jolanta Karpowicz and Patryk Zradziński
Sensors 2025, 25(15), 4607; https://doi.org/10.3390/s25154607 - 25 Jul 2025
Viewed by 266
Abstract
The investigations examined a potential reduction in discrepancies between the values of the unperturbed radiofrequency (RF) electromagnetic field (EMF) and values of the EMF measured by wearable equipment (personal exposure meters) impacted by the proximity of the human body. This was done by [...] Read more.
The investigations examined a potential reduction in discrepancies between the values of the unperturbed radiofrequency (RF) electromagnetic field (EMF) and values of the EMF measured by wearable equipment (personal exposure meters) impacted by the proximity of the human body. This was done by modelling distributed wearable (multi-location, with up to seven simultaneously locations) measurements. The performed numerical simulations mimicked distributed measurements in 24 environmental exposure scenarios (recognized as virtual measurements) covered: the horizontal or vertical propagation of the EMF and electric field vector polarization corresponding to typical conditions of far-field exposure from wireless communication systems (at a frequency of 100–3600 MHz). Physical tests using three EMF probes for simultaneous measurements have been also performed. Studies showed that the discrepancy in assessing EMF exposure by an on-body equipment and the parameters of the unperturbed EMF in the location under inspection (mimicking the contribution to measurement uncertainty from the human body proximity) may be significantly reduced by the appropriate use of a distributed measurement system. The use of averaged values, from at least three simultaneous measurements at relevant locations on the body, may reduce the uncertainty approximately threefold. Full article
(This article belongs to the Special Issue Feature Papers in the 'Sensor Networks' Section 2025)
Show Figures

Figure 1

17 pages, 2001 KiB  
Article
A Methodological Route for Teaching Vocabulary in Spanish as a Foreign Language Using Oral Tradition Stories: The Witches of La Jagua and Colombia’s Linguistic and Cultural Diversity
by Daniel Guarín
Educ. Sci. 2025, 15(8), 949; https://doi.org/10.3390/educsci15080949 - 23 Jul 2025
Viewed by 362
Abstract
Oral tradition stories hold a vital place in language education, offering rich repositories of linguistic, cultural, and historical knowledge. In the Spanish as a Foreign Language (SFL) context, their inclusion provides dynamic opportunities to explore diversity, foster critical and creative thinking, and challenge [...] Read more.
Oral tradition stories hold a vital place in language education, offering rich repositories of linguistic, cultural, and historical knowledge. In the Spanish as a Foreign Language (SFL) context, their inclusion provides dynamic opportunities to explore diversity, foster critical and creative thinking, and challenge dominant epistemologies. Despite their pedagogical potential, these narratives remain largely absent from formal curricula, with most SFL textbooks still privileging canonical works, particularly those from the Latin American Boom or European literary texts. This article aims to provide practical guidance for SFL instructors on designing effective, culturally responsive materials for the teaching of vocabulary. Drawing on a methodological framework for material design and a cognitive approach to vocabulary learning, I present original pedagogical material based on a Colombian oral tradition story about the witches of La Jagua (Huila, Colombia) to inspire educators to integrate oral tradition stories into their classrooms. As argued throughout, oral narratives not only support vocabulary acquisition and intercultural competence but also offer students meaningful engagement with the values, worldviews, and linguistic diversity that shape Colombian culture. This approach redefines language teaching through a more descriptive, contextualized, and culturally grounded lens, equipping learners with pragmatic, communicative, and intercultural skills essential for the 21st century. My goal with this article is to advocate for teacher agency in material creation, emphasizing that educators are uniquely positioned to design pedagogical resources that reflect their own cultural realities and local knowledge and to adapt them meaningfully to their students’ needs. Full article
Show Figures

Figure 1

14 pages, 6060 KiB  
Article
Text Typing Using Blink-to-Alphabet Tree for Patients with Neuro-Locomotor Disabilities
by Seungho Lee and Sangkon Lee
Sensors 2025, 25(15), 4555; https://doi.org/10.3390/s25154555 - 23 Jul 2025
Viewed by 255
Abstract
Lou Gehrig’s disease, also known as ALS, is a progressive neurodegenerative condition that weakens muscles and can lead to paralysis as it progresses. For patients with severe paralysis, eye-tracking devices such as eye mouse enable communication. However, the equipment is expensive, and the [...] Read more.
Lou Gehrig’s disease, also known as ALS, is a progressive neurodegenerative condition that weakens muscles and can lead to paralysis as it progresses. For patients with severe paralysis, eye-tracking devices such as eye mouse enable communication. However, the equipment is expensive, and the calibration process is very difficult and frustrating for patients to use. To alleviate this problem, we propose a simple and efficient method to type texts intuitively with graphical guidance on the screen. Specifically, the method detects patients’ eye blinks in video frames to navigate through three sequential steps, narrowing down the choices from 9 letters, to 3 letters, and finally to a single letter (from a 26-letter alphabet). In this way, a patient is able to rapidly type a letter of the alphabet by blinking a minimum of three times and a maximum of nine times. The proposed method integrates an API of large language model (LLM) to further accelerate text input and correct sentences in terms of typographical errors, spacing, and upper/lower case. Experiments on ten participants demonstrate that the proposed method significantly outperforms three state-of-the-art methods in both typing speed and typing accuracy, without requiring any calibration process. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

Back to TopTop