Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (11,964)

Search Parameters:
Keywords = commercial processes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
43 pages, 14687 KB  
Article
Three-Dimensional Scanning-Based Retrofitting of Ballast Water Treatment Systems for Enhanced Marine Environmental Protection
by Zoe Kanetaki, Giakouvakis Athanasios Iason, Panagiotis Karvounis, Gerasimos Theotokatos, Evangelos Boulougouris and Constantinos Stergiou
J. Mar. Sci. Eng. 2026, 14(2), 154; https://doi.org/10.3390/jmse14020154 - 11 Jan 2026
Abstract
This study investigates the integration of 3D laser scanning technology in the retrofitting of Ballast Water Treatment Systems (BWTS) on existing commercial vessels, addressing the global challenge of invasive aquatic species. The methodology combines a bibliometric analysis of keywords—indicating recent trends and knowledge [...] Read more.
This study investigates the integration of 3D laser scanning technology in the retrofitting of Ballast Water Treatment Systems (BWTS) on existing commercial vessels, addressing the global challenge of invasive aquatic species. The methodology combines a bibliometric analysis of keywords—indicating recent trends and knowledge gaps, a feasibility study, and detailed engineering design with on-site supervision. A case study is presented on a crude oil tanker, employing a multi-station 3D scanning strategy across the engine and pump rooms—performed using 63 and 45 scan positions, respectively. These data were processed with removal filters and integrated into specialized CAD software for detailed piping design. The implementation of high-fidelity point clouds served as the digital foundation for modeling the vessel’s existing piping infrastructure and retrofitting with the installation of an electrolysis-based BWTS. Results confirm that 3D scanning enables precise spatial analysis, minimizes retrofitting errors, reduces installation time, and ensures regulatory compliance with the IMO Ballast Water Management Convention. By digitally capturing complex onboard environments, the approach enhances accuracy, safety, and cost-effectiveness in maritime engineering projects. This work underscores the transition toward point cloud-based digital twins as a standard for sustainable and efficient ship conversions in the global shipping industry. Full article
(This article belongs to the Section Ocean Engineering)
16 pages, 896 KB  
Article
Off-the-Shelf Masked Ultrasonic Atomization for Hydrophilic Droplet Microarrays and Gradient Screening
by Xiaochen Lai, Xicheng Wang, Yanfei Sun, Yong Zhu and Mingpeng Yang
Appl. Sci. 2026, 16(2), 737; https://doi.org/10.3390/app16020737 (registering DOI) - 10 Jan 2026
Abstract
Droplet microarrays are increasingly used for miniaturized, high-throughput biochemical assays, yet their fabrication commonly relies on complex lithographic processes, custom masks, or specialized coatings. Here we present a simple method for generating hydrophilic arrays on hydrophobic plastic substrates by combining ultrasonic atomization with [...] Read more.
Droplet microarrays are increasingly used for miniaturized, high-throughput biochemical assays, yet their fabrication commonly relies on complex lithographic processes, custom masks, or specialized coatings. Here we present a simple method for generating hydrophilic arrays on hydrophobic plastic substrates by combining ultrasonic atomization with off-the-shelf perforated masks. A fine mist of poly(vinyl alcohol) (PVA) solution is directed through commercial diamond sieves onto polypropylene (PP) sheets and polystyrene (PS) sheets, forming hydrophilic spots surrounded by the native hydrophobic background. Static contact angle measurements confirm a strong local contrast in wettability (from 100.85 ± 0.91° on untreated PP to 39.96 ± 0.71° on patterned spots, from 95.68 ± 3.61° on untreated PS to 52.00 ± 0.85° on patterned spots), while Image analysis shows droplet CVs of 6–8% in aqueous dye solutions for 1.2–2.0 mm masks; in complex media (LB), droplet uniformity decreases. By mounting the moving mask on a motorized stage, we generate one-dimensional reagent gradients simply by controlling the moving mask motion during atomization. We further demonstrate biological compatibility by culturing Escherichia coli in LB droplets containing resazurin, and by performing localized antibiotic screening using a moving mask-guided streptomycin gradient. The resulting droplet-wise viability data yield an on-chip dose–response curve with an IC50 of 5.1 µg · mL−1 (95% CI: 4.5–5.6 µg·mL−1), obtained from a single array. Covering droplets with Electronic Fluorinated Fluid maintains volumes within 5% of their initial value over 24 h. Compared with conventional droplet microarray fabrication, the proposed method eliminates custom mask production and cleanroom steps, is compatible with standard plastic labware, and intrinsically supports spatial gradients. These attributes make masked ultrasonic atomization a practical platform for high-throughput microfluidic assays, especially in resource-limited settings. Full article
(This article belongs to the Section Additive Manufacturing Technologies)
39 pages, 4702 KB  
Review
Biopolymer-Based Active and Intelligent Food Packaging: Recent Advances in Materials, Technologies, and Applications
by Shakila Parveen Asrafali, Thirukumaran Periyasamy and Jaewoong Lee
Polymers 2026, 18(2), 196; https://doi.org/10.3390/polym18020196 - 10 Jan 2026
Abstract
The food packaging industry is undergoing a paradigm shift from conventional petroleum-based materials toward sustainable biopolymer-based alternatives that offer enhanced functionality beyond mere containment and protection. This comprehensive review examines recent advances in the development of active and intelligent food packaging systems utilizing [...] Read more.
The food packaging industry is undergoing a paradigm shift from conventional petroleum-based materials toward sustainable biopolymer-based alternatives that offer enhanced functionality beyond mere containment and protection. This comprehensive review examines recent advances in the development of active and intelligent food packaging systems utilizing natural biopolymers including polysaccharides, proteins, and their composites. The integration of antimicrobial agents, natural colorimetric indicators, nanofillers, and advanced fabrication techniques has enabled the creation of multifunctional packaging materials capable of extending shelf life, monitoring food quality in real-time, and reducing environmental impact. This review organizes the current research on starch, chitosan-, cellulose-, pectin-, bacterial cellulose-, pullulan-, gelatin-, zein-, and dextran-based packaging systems, with particular emphasis on their physicochemical properties, functional performance, and practical applications for preserving various food products, including meat, fish, fruits, and other perishables. The challenges associated with mechanical strength, water resistance, scalability, and commercial viability are critically evaluated alongside emerging solutions involving chemical modifications, nanocomposite formulations, and innovative processing technologies. Future perspectives highlight the need for standardization, life cycle assessments, regulatory frameworks, and consumer acceptance studies to facilitate the transition from laboratory innovations to industrial-scale implementation of sustainable biopolymer packaging solutions. Full article
Show Figures

Figure 1

25 pages, 706 KB  
Article
Privacy-Preserving Set Intersection Protocol Based on SM2 Oblivious Transfer
by Zhibo Guan, Hai Huang, Haibo Yao, Qiong Jia, Kai Cheng, Mengmeng Ge, Bin Yu and Chao Ma
Computers 2026, 15(1), 44; https://doi.org/10.3390/computers15010044 (registering DOI) - 10 Jan 2026
Abstract
Private Set Intersection (PSI) is a fundamental cryptographic primitive in privacy-preserving computation and has been widely applied in federated learning, secure data sharing, and privacy-aware data analytics. However, most existing PSI protocols rely on RSA or standard elliptic curve cryptography, which limits their [...] Read more.
Private Set Intersection (PSI) is a fundamental cryptographic primitive in privacy-preserving computation and has been widely applied in federated learning, secure data sharing, and privacy-aware data analytics. However, most existing PSI protocols rely on RSA or standard elliptic curve cryptography, which limits their applicability in scenarios requiring domestic cryptographic standards and often leads to high computational and communication overhead when processing large-scale datasets. In this paper, we propose a novel PSI protocol based on the Chinese commercial cryptographic standard SM2, referred to as SM2-OT-PSI. The proposed scheme constructs an oblivious transfer-based Oblivious Pseudorandom Function (OPRF) using SM2 public-key cryptography and the SM3 hash function, enabling efficient multi-point OPRF evaluation under the semi-honest adversary model. A formal security analysis demonstrates that the protocol satisfies privacy and correctness guarantees assuming the hardness of the Elliptic Curve Discrete Logarithm Problem. To further improve practical performance, we design a software–hardware co-design architecture that offloads SM2 scalar multiplication and SM3 hashing operations to a domestic reconfigurable cryptographic accelerator (RSP S20G). Experimental results show that, for datasets with up to millions of elements, the presented protocol significantly outperforms several representative PSI schemes in terms of execution time and communication efficiency, especially in medium and high-bandwidth network environments. The proposed SM2-OT-PSI protocol provides a practical and efficient solution for large-scale privacy-preserving set intersection under national cryptographic standards, making it suitable for deployment in real-world secure computing systems. Full article
(This article belongs to the Special Issue Mobile Fog and Edge Computing)
25 pages, 882 KB  
Article
A BERT and NSGA-II Based Model for Workforce Resource Allocation Optimization in the Operational Stage of Commercial Buildings
by Xiangjun Li and Junhao Ma
Buildings 2026, 16(2), 289; https://doi.org/10.3390/buildings16020289 - 9 Jan 2026
Abstract
Existing experience-based methods cannot effectively assist commercial building operators in allocating workforce resources according to contracts and balance multiple workforce management objectives under resource constraints, leading to misaligned allocation strategies. To address this issue, this study develops a workforce resource allocation optimization model [...] Read more.
Existing experience-based methods cannot effectively assist commercial building operators in allocating workforce resources according to contracts and balance multiple workforce management objectives under resource constraints, leading to misaligned allocation strategies. To address this issue, this study develops a workforce resource allocation optimization model based on BERT and the NSGA-II. First, a natural language processing (NLP) model is trained to extract operational tasks from contracts and match required workforce types, thereby establishing the framework for workforce allocation schemes. Second, a mathematical optimization model for workforce allocation strategies is constructed with the objectives of minimizing workforce wage costs (B1), maximizing average service levels (B2), and maximizing average digital technology acceptance (B3). An algorithm based on NSGA-II is then designed to solve the model and obtain the optimal Pareto solution set of allocation schemes. Third, the CRITIC–VIKOR method evaluates the Pareto set and determines the final recommended schemes. A case study was conducted on a university campus in Shandong, China, to validate the model’s effectiveness. The results show that the NLP model successfully identified 14 operational tasks and 13 required workforce types from the contract. Compared with the operator’s expected values (B1 = 46,0000 CNY, B2 = 65 points, B3 = 50 points), the optimal allocation scheme calculated using NSGA-II and the CRITIC–VIKOR method reduces B1 by 10.79%, increases B2 by 18.02%, and improves the B3 by 16.79%. This study formulates the workforce allocation problem in the operation stage as a mathematical optimization model and, for the first time, incorporates the workforce’s digital technology acceptance as an optimization objective, thereby filling a theoretical gap in workforce management for commercial building operations. The proposed model provides operators with a semi-automated decision-support tool to enhance workforce management, thereby promoting the sustainable operation of commercial buildings. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
18 pages, 4180 KB  
Article
Machine Learning and SHapley Additive exPlanation-Based Interpretation for Predicting Mastitis in Dairy Cows
by Xiaojing Zhou, Yongli Qu, Chuang Xu, Hao Wang, Di Lang, Bin Jia and Nan Jiang
Animals 2026, 16(2), 204; https://doi.org/10.3390/ani16020204 - 9 Jan 2026
Abstract
SHapley Additive exPlanations (SHAP) analysis has been applied in disease diagnosis and treatment effect evaluation. However, its application in the prediction and diagnosis of dairy cow diseases remains limited. We investigated whether the variance and autocorrelation of deviations in daily activity, rumination time, [...] Read more.
SHapley Additive exPlanations (SHAP) analysis has been applied in disease diagnosis and treatment effect evaluation. However, its application in the prediction and diagnosis of dairy cow diseases remains limited. We investigated whether the variance and autocorrelation of deviations in daily activity, rumination time, and milk electrical conductivity, along with daily milk yield, could be used to predict clinical mastitis in dairy cows using popular machine learning (ML) algorithms and identifying key predictive features using SHAP analysis. Quantile regression (QR) with second- or third-order polynomial models with the median or upper quantiles was used to process raw data from mastitic and healthy cows. Nine variables from the 14-day period preceding mastitis onset were identified as significantly associated with mastitis through logistic regression. These variables were used to train and validate prediction models using eleven classical ML algorithms. Among them, the partial least squares model demonstrated superior performance, achieving an AUC of 0.789, sensitivity of 0.500, specificity of 0.947, accuracy of 0.793, precision of 0.833, and F1-score of 0.625. SHAP analysis results revealed positive contributions of three features to mastitis prediction, whereas two features had negative contributions. These findings provide a theoretical basis for developing clinical decision-support tools in commercial farming settings. Full article
(This article belongs to the Section Cattle)
Show Figures

Figure 1

56 pages, 3043 KB  
Review
Interdisciplinary Applications of LiDAR in Forest Studies: Advances in Sensors, Methods, and Cross-Domain Metrics
by Nadeem Fareed, Carlos Alberto Silva, Izaya Numata and Joao Paulo Flores
Remote Sens. 2026, 18(2), 219; https://doi.org/10.3390/rs18020219 - 9 Jan 2026
Abstract
Over the past two decades, Light Detection and Ranging (LiDAR) technology has evolved from early National Aeronautics and Space Administration (NASA)-led airborne laser altimetry into commercially mature systems that now underpin vegetation remote sensing across scales. Continuous advancements in laser engineering, signal processing, [...] Read more.
Over the past two decades, Light Detection and Ranging (LiDAR) technology has evolved from early National Aeronautics and Space Administration (NASA)-led airborne laser altimetry into commercially mature systems that now underpin vegetation remote sensing across scales. Continuous advancements in laser engineering, signal processing, and complementary technologies—such as Inertial Measurement Units (IMU) and Global Navigation Satellite Systems (GNSS)—have yielded compact, cost-effective, and highly sophisticated LiDAR sensors. Concurrently, innovations in carrier platforms, including uncrewed aerial systems (UAS), mobile laser scanning (MLS), Simultaneous Localization and Mapping (SLAM) frameworks, have expanded LiDAR’s observational capacity from plot- to global-scale applications in forestry, precision agriculture, ecological monitoring, Above Ground Biomass (AGB) modeling, and wildfire science. This review synthesizes LiDAR’s cross-domain capabilities for the following: (a) quantifying vegetation structure, function, and compositional dynamics; (b) recent sensor developments encompassing ALS discrete-return (ALSD) and ALS full-waveform (ALSFW), photon-counting LiDAR (PCL), emerging multispectral LiDAR (MSL), and hyperspectral LiDAR (HSL) systems; and (c) state-of-the-art data processing and fusion workflows integrating optical and radar datasets. The synthesis demonstrates that many LiDAR-derived vegetation metrics are inherently transferable across domains when interpreted within a unified structural framework. The review further highlights the growing role of artificial-intelligence (AI)-driven approaches for segmentation, classification, and multitemporal analysis, enabling scalable assessments of vegetation dynamics at unprecedented spatial and temporal extents. By consolidating historical developments, current methodological advances, and emerging research directions, this review establishes a comprehensive state-of-the-art perspective on LiDAR’s transformative role and future potential in monitoring and modeling Earth’s vegetated ecosystems. Full article
(This article belongs to the Special Issue Digital Modeling for Sustainable Forest Management)
16 pages, 3648 KB  
Article
Fabrication and Characterization of PLA-Based Ceramic Composite Filaments for FDM 3D Printing
by Dawid Kozień, Krzysztof Malata, Zuzanna Krysińska, Krystian Misieńko, Jurij Delihowski, Wojciech Banaś, Zuzanna Seweryn, Alan Wilmański, Łukasz Wójcik, Dejen Seyoum Abera, Nwajei Precious Oghogho and Zbigniew Pędzich
Crystals 2026, 16(1), 46; https://doi.org/10.3390/cryst16010046 - 9 Jan 2026
Viewed by 32
Abstract
This study investigated the fabrication and characterization of polylactic acid (PLA)-based ceramic composite filaments for fused deposition modeling (FDM) 3D printing. Boron carbide (B4C) and silicon carbide (SiC) were incorporated into PLA at various weight fractions (1–40 wt. % for B [...] Read more.
This study investigated the fabrication and characterization of polylactic acid (PLA)-based ceramic composite filaments for fused deposition modeling (FDM) 3D printing. Boron carbide (B4C) and silicon carbide (SiC) were incorporated into PLA at various weight fractions (1–40 wt. % for B4C and 1–20 wt. % for SiC) to produce composite filaments using a commercial extruder. The rheological properties, thermal stability, and printability of the filaments were evaluated. Filaments with low ceramic content exhibited satisfactory quality, whereas those with higher loadings required reprocessing to improve their dimensional stability and surface morphology. Successful printing was achieved with SiC contents of up to 8 wt. % using single-extruded filaments and up to 20 wt. % using double-extruded filaments. Rheological tests revealed that filaments with low ceramic content exhibited shear-thinning behavior, whereas those with higher loadings displayed nearly Newtonian-like behavior. Thermal analysis using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) determined the optimal processing temperature range for the composite filaments to be between 200 °C and 270 °C. High-temperature microscopy was used to study the temperature behavior of the B4C-containing filaments and set the optimum printing temperature. The results demonstrate the feasibility of producing PLA-based ceramic composite filaments for FDM 3D printing with the potential to tailor the thermal and functional properties of the printed parts for specific applications. Full article
(This article belongs to the Section Crystal Engineering)
Show Figures

Figure 1

17 pages, 3313 KB  
Article
Carbon Filters Modified with Synthesized TiO2, Fe3O4 and CaO via Mechanical Milling for Methylene Blue Adsorption
by Fatima Pamela Lara-Castillo, Jorge Carlos Ríos-Hurtado, Sergio Enrique Flores-Villaseñor, Alejandro Pérez-Alvarado, Rumualdo Servin-Castañeda, Gloria I. Dávila-Pulido and Adrián A. González-Ibarra
ChemEngineering 2026, 10(1), 10; https://doi.org/10.3390/chemengineering10010010 - 8 Jan 2026
Viewed by 58
Abstract
Although carbon filters (CF) can exhibit limited adsorption/selectivity for certain emerging pollutants and operating conditions, incorporating carbon–metal-oxide composites provides a platform to study how surface chemistry, charge distribution and oxide dispersion influence adsorption behavior. This study investigates the incorporation of metal oxides (Fe [...] Read more.
Although carbon filters (CF) can exhibit limited adsorption/selectivity for certain emerging pollutants and operating conditions, incorporating carbon–metal-oxide composites provides a platform to study how surface chemistry, charge distribution and oxide dispersion influence adsorption behavior. This study investigates the incorporation of metal oxides (Fe3O4, TiO2 and CaO) into a commercial carbon filter via mechanical milling, focusing on fundamental changes in surface properties and methylene blue (MB) adsorption mechanisms. The synthesized oxides were characterized by X-ray diffraction and scanning electron microscopy, confirming crystalline structures with crystalline sizes between 11 and 23 nm. Composite filters with varying oxide contents (10–30 wt%) were evaluated for point of zero charge (PZC), surface charge distribution and methylene blue (MB) adsorption. The kinetic experiments were adjusted to pseudo-second order (PSO). Although the maximum adsorption capacity (2.75 mg·g−1 for CaO-modified filters) is lower than commercially activated carbons, this work clarifies how oxide type and dispersion control adsorption performance and interaction mechanisms. Langmuir and Freundlich models revealed monolayer adsorption with favorable dye-surface interactions. These models provide key insights into the role of oxide type and pH in the dye removal process. Full article
14 pages, 4275 KB  
Article
Modification of Commercial Pt/C via Deep Eutectic Solvent-Assisted Solvothermal Strategy for Efficient Selective Hydrogenation of Furfural Under Mild Conditions
by Tianran Kong, Annan Zhao, Yinghui Zhang, Zongxuan Bai, Hongying Lü and Kaixuan Yang
Processes 2026, 14(2), 223; https://doi.org/10.3390/pr14020223 - 8 Jan 2026
Viewed by 81
Abstract
Efficient conversion of biomass-based platform molecules into high-value derivatives is recognized as one formidable challenge in biomass upgrading. In this work, a one-pot deep eutectic solvents-assisted solvothermal method was developed for the modification of the commercial Pt/C catalysts by introducing a secondary metal [...] Read more.
Efficient conversion of biomass-based platform molecules into high-value derivatives is recognized as one formidable challenge in biomass upgrading. In this work, a one-pot deep eutectic solvents-assisted solvothermal method was developed for the modification of the commercial Pt/C catalysts by introducing a secondary metal (M = Sn, Bi, Ge, Sb, Pb). The structural and electronic properties of the catalysts were precisely tuned. Among the screened metals, the addition of Sn yielded the most significant improvement in catalytic activity. The optimized PtSn0.5/C-140 catalyst achieved superior furfural (FAL) conversion and furfuryl alcohol (FOL) selectivity under mild conditions (20 °C, 2 MPa H2). Comprehensive characterizations, including XRD, HRTEM, XPS, and H2-TPD, confirmed the formation of Pt-Sn solid-solution phase. Furthermore, Characterization and reaction results revealed that the electronic and geometric effects induced by Sn modulated Pt active sites, significantly enhancing the adsorption of the active H species. Additionally, the SnOx species adjacent to the Pt-Sn sites served as hydrogen spillover acceptors, further accelerating the hydrogenation process. The synergy between the Pt-Sn solid-solution phase and SnOx species is identified as the origin of the superior performance at room temperature. These findings provide a new strategy for the design of high-performance biomass conversion catalysts by upgrading commercial noble metal catalysts. Full article
Show Figures

Graphical abstract

15 pages, 1524 KB  
Article
Dynamic Changes in Gut Microbiota Composition and Function over Time in Suckling Raccoon Dogs
by Shaochen Yu, Weixiao Nan, Zhipeng Li, Chongshan Yuan and Chao Xu
Animals 2026, 16(2), 188; https://doi.org/10.3390/ani16020188 - 8 Jan 2026
Viewed by 60
Abstract
Raccoon dog fur is a commercially valuable animal product. As the scale of raccoon dog breeding continues to expand, ensuring the health of these animals has become an urgent priority. The gut microbiota plays a central role in regulating animal health; however, current [...] Read more.
Raccoon dog fur is a commercially valuable animal product. As the scale of raccoon dog breeding continues to expand, ensuring the health of these animals has become an urgent priority. The gut microbiota plays a central role in regulating animal health; however, current research on the composition of raccoon dog gut microbiota remains limited. This study aimed to characterize changes in the gut microbiota of suckling raccoon dogs across different stages, providing a foundation for future scientific feeding practices. Fecal samples of eight lactating raccoon dogs were collected and tested for microbiota on days 14, 21, and 45. Our results showed that the richness and diversity of microbiota increased with age in suckling raccoon dogs, peaking on the 45th day. Significant separation between groups was observed in both PCoA and NMDS analyses. UPGMA analysis indicated temporal fluctuations in gut microbiota composition. At the phylum level, Firmicutes and Bacteroidetes were the dominant taxa across all stages. LEfSe analysis at the genus level showed that Bacteroides was the most enriched taxon on the 14th day, Fusobacterium on the 21st day, and Prevotella_9 on the 45th day. Tax4Fun and PICRUSt analyses identified metabolism and genetic information processing as the primary functional roles of the gut microbiota. Further investigation suggested that the microbiota may benefit raccoon dogs through membrane transport, carbohydrate metabolism, amino acid metabolism, and energy metabolism. These findings establish a theoretical basis for improving the survival rate of suckling raccoon dogs and developing scientifically informed feeding and management protocols. Full article
(This article belongs to the Special Issue Nutritional Regulation of Gut Microbiota in Animals)
24 pages, 3732 KB  
Article
Impact of Unregulated Parking Behaviors on Street and Sidewalk Infrastructure: Investigating Residential Districts with Apartment Zones in Jeddah, Saudi Arabia
by Nawaf Alhajaj, Amer Habibullah and Abdullah Alshanbri
Buildings 2026, 16(2), 272; https://doi.org/10.3390/buildings16020272 - 8 Jan 2026
Viewed by 60
Abstract
In the 21st century, Saudi cities have witnessed a high rate of private car ownership, averaging 1.38 vehicles per family. This has significantly increased demand for parking in residential areas, leading to unregulated parking behaviors that negatively affect street and sidewalk infrastructure. Although [...] Read more.
In the 21st century, Saudi cities have witnessed a high rate of private car ownership, averaging 1.38 vehicles per family. This has significantly increased demand for parking in residential areas, leading to unregulated parking behaviors that negatively affect street and sidewalk infrastructure. Although some research has been conducted in Saudi Arabia on illegal parking in commercial streets, research on unregulated parking in residential streets remains underexplored. This study investigates the impact of unregulated parking behavior on street and sidewalk infrastructure in residential districts with apartment zones in Jeddah, Saudi Arabia, determining the extent to which current sidewalk strips have been modified to extend on-street parking, create front setbacks for parking, and provide access to ground-floor private parking and residential building entrances. We selected six typical apartment building zones and mapped parking behavior through direct observations, processing collected data through ArcGIS. Our findings reveal negative impacts, resulting in significant parts of sidewalks, front setbacks, and streets being used for parking, thereby creating unhealthy and unsafe residential areas for walking and other physical activities. This study offers a comprehensive understanding of the unregulated parking problem and its subsequent impact on residents’ quality of life, particularly in terms of walking accessibility and safety. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
16 pages, 1943 KB  
Article
Evaluation of the Sensory and Textural Properties of Cheese-Containing Frankfurters Available on the Polish Market
by Kacper Kozłowski, Michał Piątek, Mirosława Krzywdzińska-Bartkowiak and Agnieszka Bilska
Foods 2026, 15(2), 226; https://doi.org/10.3390/foods15020226 - 8 Jan 2026
Viewed by 110
Abstract
The increasing trend in the consumption of milk and dairy products, as well as meat and meat-derived products, may be one of the factors contributing to the growing popularity of cheese-added frankfurters, which combine these two product categories. The aim of this study [...] Read more.
The increasing trend in the consumption of milk and dairy products, as well as meat and meat-derived products, may be one of the factors contributing to the growing popularity of cheese-added frankfurters, which combine these two product categories. The aim of this study was to compare the textural, colour, and sensory properties of commercially available cheese-containing frankfurters using instrumental measurements and descriptive sensory analysis. The study focused on ready-to-eat products with naturally varying formulations to identify measurable differences in quality attributes and explore potential associations between composition and product characteristics. Instrumental methods were applied, including texture profile analysis (TPA), the Warner–Bratzler shear force test (WBSF), and CIE L*a*b* colour measurement, along with quantitative descriptive analysis. The results confirmed significant differences between the samples in terms of texture and flavour. Notably, Sample B showed the highest shear force (2.91 N), while Sample C exhibited the lowest (1.82 N). Samples A and D, both containing 12% processed cheddar cheese, had the highest b* values (30.1 and 22.4, respectively), which corresponded to their more intense yellow colour and higher scores for cheese flavour. The addition of cheese had a beneficial effect on product acceptability; however, the final outcome depended on the form and amount of cheese, as well as other ingredients. These findings suggest that cheese may serve as a valuable additive to homogenised meat products, enhancing sensory appeal without compromising technological quality. Future studies will compare different cheese types and concentrations and include consumer testing on a larger sample. Full article
Show Figures

Figure 1

13 pages, 646 KB  
Article
Quality Assessment and Physicochemical Characteristics of Commercial Frozen Vegetable Blends Available on the Polish Market
by Joanna Markowska, Anna Drabent and Natalia Grzybowska
Foods 2026, 15(2), 224; https://doi.org/10.3390/foods15020224 - 8 Jan 2026
Viewed by 76
Abstract
Frozen vegetables are increasingly valued for their nutritional stability and year-round availability. This study provides a comprehensive assessment of twenty commercially available frozen vegetable blends obtained from retail markets in Poland. Analyses included physicochemical parameters, instrumental measurements of texture, color (CIEL*a*b*), and evaluation [...] Read more.
Frozen vegetables are increasingly valued for their nutritional stability and year-round availability. This study provides a comprehensive assessment of twenty commercially available frozen vegetable blends obtained from retail markets in Poland. Analyses included physicochemical parameters, instrumental measurements of texture, color (CIEL*a*b*), and evaluation of technological quality. The pH values ranged from 4.40 to 7.46, total acidity from 0.034 to 0.322 g/100 g, and dry matter content from 5.02 to 42.97%. The observed variability was mainly attributable to vegetable type and remained consistent with values reported for fresh produce, indicating that industrial freezing largely preserves chemical characteristics. Texture differed markedly between vegetable types, with hardness values ranging from 6 to nearly 100 N, while color parameters remained within typical ranges for blanched and frozen vegetables, suggesting effective pigment stability and enzyme inactivation. In contrast, substantial variability was observed in technological quality. Mechanical fragmentation exceeded acceptable limits in 30% of samples, and complete clumping of vegetable pieces (100%) was observed. Additional defects included frostbite and color deviations, and health-condition defects were observed. These results highlight considerable heterogeneity in frozen vegetable blends and emphasize the need for stricter control of raw materials, processing conditions, and cold-chain management to ensure consistent quality and consumer safety. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

22 pages, 7905 KB  
Article
Optimized Conditions for Extracting Native Type-I Collagen from Discarded Fish Skin Using Hydrochloric Acid to Overcome the Drawbacks of Acetic Acid
by S.T. Gonapinuwala, J.R. Jones, S. Kirk, M.D.S.T. de Croos and J.E. Bronlund
Mar. Drugs 2026, 24(1), 28; https://doi.org/10.3390/md24010028 - 8 Jan 2026
Viewed by 52
Abstract
Fish skin, a by-product of commercial fish processing, represents a viable source of type I collagen. Acetic acid has been widely used for the extraction of collagen from fish skin because it can preserve the native structure. However, it requires an extraction time [...] Read more.
Fish skin, a by-product of commercial fish processing, represents a viable source of type I collagen. Acetic acid has been widely used for the extraction of collagen from fish skin because it can preserve the native structure. However, it requires an extraction time of more than 72 h and complex and time-consuming dialysis steps to remove acetic acid residues from the extracted collagen which can otherwise cause inferior structural modifications. Therefore, this study describes a simple time- and cost-effective method to extract collagen using hydrochloric acid. The experiments focused on understanding the behavior of fish skin and changes in the extraction medium. The extraction procedure developed in this study includes treatment with a 0.01 M hydrochloric acid solution at a 1:20 mass to volume ratio for 5 h, followed by homogenization. The native triple-helical structure of collagen was confirmed by ATR-FTIR and circular dichroism spectroscopy. Thermal stability was confirmed by differential scanning calorimetry. This study also provides guidelines for the application of this knowledge to skin of any fish species of interest: (i) an upper limit of pH 4 during collagen extraction; (ii) a manageable viscosity of the collagen extract solution; and (iii) as few undissolved skin pieces as possible after homogenization. Full article
Show Figures

Figure 1

Back to TopTop