Fabrication and Characterization of PLA-Based Ceramic Composite Filaments for FDM 3D Printing
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Material Mixture Preparation
2.2. Filament Fabrication and 3D Printing (FDM and 3D Pen)
2.3. Filament Manufacturing and FDM Printing
3. Results
3.1. Mixing Process
3.2. Filament Extrusion
3.3. Additive Manufacturing
3.4. Rheological Tests
3.5. Thermal Analysis
3.6. Determining the Optimal Printing Temperature
4. Summary and Conclusions
- Boron and silicon carbide affect the brittleness of the filaments, making them considerably more difficult to print. Printing requires higher temperatures than pure PLA extrusion to produce ceramic-containing filaments.
- The viscosity of the fabricated filaments was investigated to optimize the printing parameters. During the analysis, two groups of samples were distinguished according to multiple remelting of the filaments. In the case of B4C additives, rheological tests clearly indicated a higher viscosity of the double-melted filaments than that of the single-melted filaments. Single-melted filaments exhibit a lower viscosity than pure PLA. The opposite was observed for the SiC samples.
- Thermal analysis using TG measurements and high-temperature microscopy was used to determine the optimal FDM processing conditions. The results indicated that the optimal printing temperature range for the analyzed ceramic composite filaments is 200–270 °C, with the highest thermal stability observed up to approximately 260 °C.
- As the proportion of ceramic increased, the oxidation reaction of boron carbide to heavier boron oxide (B2O3) and the simultaneous evaporation of the polymer intensified, resulting in cumulative weight loss. This can have a negative impact on printing at elevated temperatures, causing shape distortion, the occurrence of voids, and disruption of layer connections during printing.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hassanin, H.; Essa, K.; Elshaer, A.; Imbaby, M.; El-Mongy, H.H.; El-Sayed, T.A. Micro-fabrication of ceramics: Additive manufacturing and conventional technologies. J. Adv. Ceram. 2021, 10, 1–27. [Google Scholar] [CrossRef]
- Pelz, J.S.; Ku, N.; Shoulders, W.T.; Meyers, M.A.; Vargas-Gonzalez, L.R. Multi-material additive manufacturing of functionally graded carbide ceramics via active, in-line mixing. Addit. Manuf. 2021, 37, 101647. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Z.; Gu, H.; Cui, C.; Hao, J. Improved mechanical properties of 3D-printed SiC/PLA composite parts by microwave heating. J. Mater. Res. 2019, 34, 3412–3419. [Google Scholar] [CrossRef]
- Gyekenyesi, A.P.; Ranaiefar, M.; Halbig, M.C.; Singh, M. Design of Experiments Methodology for Fused Filament Fabrication of Silicon-Carbide-Particulate-Reinforced Polylactic Acid Composites. Macromol 2025, 5, 60. [Google Scholar] [CrossRef]
- Kovalev, D.Y.; Konovalihin, S.V. Boron Carbide; Elsevier: Amsterdam, The Netherlands, 2017; pp. 42–44. [Google Scholar] [CrossRef]
- Gosset, D. Basic Properties of Boron Carbide. In Comprehensive Nuclear Materials, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 539–553. [Google Scholar] [CrossRef]
- Miao, W.-J.; Wang, S.-Q.; Wang, Z.-H.; Wu, F.-B.; Zhang, Y.-Z.; Ouyang, J.-H.; Wang, Y.-M.; Zou, Y.-C. Additive manufacturing of advanced structural ceramics for tribological applications: Principles, techniques, microstructures, and properties. Lubricants 2025, 13, 112. [Google Scholar] [CrossRef]
- Mazur, J.; Sobczak, P.; Panasiewicz, M.; Łusiak, P.; Krajewska, M.; Findura, P.; Obidziński, S.; Żukiewicz-Sobczak, W. Mechanical properties and biodegradability of samples obtained by 3D printing using FDM technology from PLA filament with by-products. Sci. Rep. 2025, 15, 5847. [Google Scholar] [CrossRef]
- Iqbal, H.; Fernandes, Q.; Idoudi, S.; Basineni, R.; Billa, N. Status of Polymer Fused Deposition Modeling (FDM)-Based Three-Dimensional Printing (3DP) in the Pharmaceutical Industry. Polymers 2024, 16, 386. [Google Scholar] [CrossRef] [PubMed]
- Elsonbaty, A.A.; MRashad, A.; Abass, O.Y.; Abdelghany, T.Y.; MAlfauiomy, A. A Survey of Fused Deposition Modeling (FDM) Technology in 3D Printing. J. Eng. Res. Rep. 2024, 26, 304–312. [Google Scholar] [CrossRef]
- Zhao, D.; Bi, G.; Chen, J.; Quach, W.; Feng, R.; Salminen, A.; Niu, F. A critical review of direct laser additive manufacturing ceramics. Int. J. Miner. Met. Mater. 2024, 31, 2607–2626. [Google Scholar] [CrossRef]
- Dadkhah, M.; Tulliani, J.-M.; Saboori, A.; Iuliano, L. Additive manufacturing of ceramics: Advances, challenges, and outlook” Additive manufacturing of ceramics: Advances, challenges, and outlook. J. Eur. Ceram. Soc. 2023, 43, 15. [Google Scholar] [CrossRef]
- Winarso, R.; Anggoro, P.; Ismail, R.; Jamari, J.; Bayuseno, A. Application of fused deposition modeling (FDM) on bone scaffold manufacturing process: A review. Heliyon 2022, 8, e11701. [Google Scholar] [CrossRef]
- Izak, P. Rheology of Ceramic Suspensions; AGH Publishing House: Krakow, Poland, 2012. [Google Scholar]
- Liew, L.-A.; Liu, Y.; Luo, R.; Cross, T.; An, L.; Bright, V.M.; Dunn, M.L.; Daily, J.W.; Raj, R. Fabrication of SiCN MEMS by photopolymerization of pre-ceramic polymer. Sens. Actuators A Phys. 2002, 95, 120–134. [Google Scholar] [CrossRef]
- Zerankeshi, M.M.; Sayedain, S.S.; Tavangarifard, M.; Alizadeh, R. Developing a novel technique for the fabrication of PLA-graphite composite filaments using FDM 3D printing process. Ceram. Int. 2022, 48, 31850–31858. [Google Scholar] [CrossRef]
- Liu, W.; Wu, N.; Pochiraju, K. Shape recovery characteristics of SiC/C/PLA composite filaments and 3D printed parts. Compos. Part A Appl. Sci. Manuf. 2018, 108, 1–11. [Google Scholar] [CrossRef]
- Jin, Y.; Wan, Y.; Zhang, B.; Liu, Z. Modeling of the chemical finishing process for polylactic acid parts in fused deposition modeling and investigation of its tensile properties. J. Mech. Work. Technol. 2017, 240, 233–239. [Google Scholar] [CrossRef]
- Jiang, D.; Ning, F.; Wang, Y. Additive manufacturing of biodegradable iron-based particle reinforced polylactic acid composite scaffolds for tissue engineering. J. Mech. Work. Technol. 2021, 289, 116952. [Google Scholar] [CrossRef]
- Haq, R.H.A.; bin Wahab, S.; Jaimi, N.I. Fabrication Process of Polymer Nano-Composite Filament for Fused Deposition Modeling. Appl. Mech. Mater. 2013, 465–466, 8–12. [Google Scholar] [CrossRef]
- Özden, I.; Iveković, A.; Kocjan, A. Additive manufacturing of ceramics from thermoplastic feedstocks. Open Ceram. 2021, 6, 100129. [Google Scholar] [CrossRef]
- Vidakis, N.; Petousis, M.; Velidakis, E.; Mountakis, N.; Tzounis, L.; Liebscher, M.; Grammatikos, S.A. Enhanced Mechanical, Thermal and Antimicrobial Properties of Additively Manufactured Polylactic Acid with Optimized Nano Silica Content. Nanomaterials 2021, 11, 1012. [Google Scholar] [CrossRef]
- Vaes, D.; Van Puyvelde, P. Semi-crystalline feedstock for filament-based 3D printing of polymers. Prog. Polym. Sci. 2021, 118, 101411. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Gong, H.; Yu, J.; Zhao, J.; Zhang, Z.; Zhang, Y. Microwave-assisted sol–gel synthesis of neutron-absorbed nano-sized 10B-enriched B4C powders. J. Sol-Gel Sci. Technol. 2016, 80, 683–689. [Google Scholar] [CrossRef]
- Provin, C.; Monneret, S.; Gall, H.L.; Corbel, S. Three-Dimensional Ceramic Microcomponents Made Using Microstereolithography. Adv. Mater. 2003, 15, 994–997. [Google Scholar] [CrossRef]
- Passinger, S.; Saifullah, M.S.M.; Reinhardt, C.; Subramanian, K.R.V.; Chichkov, B.N.; Welland, M.E. Direct 3D Patterning of TiO2 Using Femtosecond Laser Pulses. Adv. Mater. 2007, 19, 1218–1221. [Google Scholar] [CrossRef]
- Pham, T.A.; Kim, D.; Lim, T.; Park, S.; Yang, D.; Lee, K. Three-Dimensional SiCN Ceramic Microstructures via Nano-Stereolithography of Inorganic Polymer Photoresists. Adv. Funct. Mater. 2006, 16, 1235–1241. [Google Scholar] [CrossRef]
- Salminen, J.; Sairanen, H.; Patel, S.; Ojanen-Saloranta, M.; Kajastie, H.; Palkova, Z.; Heinonen, M. Effects of Sample Handling and Transportation on the Moisture Content of Biomass Samples. Int. J. Thermophys. 2018, 39, 66. [Google Scholar] [CrossRef]
- Mendonça, J.; Brau, H.-P.; Nogues, D.; Candeias, A.; Podor, R. Development of a microfurnace dedicated to in situ scanning electron microscope observation up to 1300 °C. II. Study of the thermal response of samples. Rev. Sci. Instrum. 2024, 95, 053705. [Google Scholar] [CrossRef] [PubMed]












| PLA | SiC | PLA | B4C |
|---|---|---|---|
| 99 | 1 | 99 | 1 |
| 98 | 2 | 98 | 2 |
| 97 | 3 | 97 | 3 |
| 96 | 4 | 96 | 4 |
| 95 | 5 | 95 | 5 |
| 94 | 6 | 94 | 6 |
| 93 | 7 | 93 | 7 |
| 92 | 8 | 92 | 8 |
| 91 | 9 | 91 | 9 |
| 90 | 10 | 90 | 10 |
| 89 | 11 | 89 | 11 |
| 88 | 12 | 88 | 12 |
| 87 | 13 | 87 | 13 |
| 86 | 14 | 86 | 14 |
| 85 | 15 | 85 | 15 |
| 84 | 16 | 84 | 16 |
| 83 | 17 | 83 | 17 |
| 82 | 18 | 82 | 18 |
| 81 | 19 | 81 | 19 |
| 80 | 20 | 80 | 20 |
| 70 | 30 | ||
| 60 | 40 |
| Sample | Temperature [°C] | ||
|---|---|---|---|
| Thermal Softening | Melting | Floating | |
| 1% | 59 | 60 | 245 |
| 5% | 60 | 61 | 241 |
| 6% | 61 | 62 | 252 |
| 11% | 37 | 39 | 244 |
| 13% | 37 | 39 | 245 |
| 17% | 47 | 48 | 244 |
| 18% | 75 | 76 | 248 |
| 40% | 82 | 83 | 239 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Kozień, D.; Malata, K.; Krysińska, Z.; Misieńko, K.; Delihowski, J.; Banaś, W.; Seweryn, Z.; Wilmański, A.; Wójcik, Ł.; Abera, D.S.; et al. Fabrication and Characterization of PLA-Based Ceramic Composite Filaments for FDM 3D Printing. Crystals 2026, 16, 46. https://doi.org/10.3390/cryst16010046
Kozień D, Malata K, Krysińska Z, Misieńko K, Delihowski J, Banaś W, Seweryn Z, Wilmański A, Wójcik Ł, Abera DS, et al. Fabrication and Characterization of PLA-Based Ceramic Composite Filaments for FDM 3D Printing. Crystals. 2026; 16(1):46. https://doi.org/10.3390/cryst16010046
Chicago/Turabian StyleKozień, Dawid, Krzysztof Malata, Zuzanna Krysińska, Krystian Misieńko, Jurij Delihowski, Wojciech Banaś, Zuzanna Seweryn, Alan Wilmański, Łukasz Wójcik, Dejen Seyoum Abera, and et al. 2026. "Fabrication and Characterization of PLA-Based Ceramic Composite Filaments for FDM 3D Printing" Crystals 16, no. 1: 46. https://doi.org/10.3390/cryst16010046
APA StyleKozień, D., Malata, K., Krysińska, Z., Misieńko, K., Delihowski, J., Banaś, W., Seweryn, Z., Wilmański, A., Wójcik, Ł., Abera, D. S., Oghogho, N. P., & Pędzich, Z. (2026). Fabrication and Characterization of PLA-Based Ceramic Composite Filaments for FDM 3D Printing. Crystals, 16(1), 46. https://doi.org/10.3390/cryst16010046

