Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = combined FDEM

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 7977 KiB  
Article
Unlocking Coastal Insights: An Integrated Geophysical Study for Engineering Projects—A Case Study of Thorikos, Attica, Greece
by Stavros Karizonis and George Apostolopoulos
Geosciences 2025, 15(6), 234; https://doi.org/10.3390/geosciences15060234 - 19 Jun 2025
Viewed by 320
Abstract
Urban expansion in coastal areas involves infrastructure development, industrial growth, and mining activities. These coastal environments face various environmental and geological hazards that require geo-engineers to devise solutions. An integrated geophysical approach aims to address such complex challenges as sea level rise, sea [...] Read more.
Urban expansion in coastal areas involves infrastructure development, industrial growth, and mining activities. These coastal environments face various environmental and geological hazards that require geo-engineers to devise solutions. An integrated geophysical approach aims to address such complex challenges as sea level rise, sea water intrusion, shoreline erosion, landslides and previous anthropogenic activity in coastal settings. In this study, the proposed methodology involves the systematic application of geophysical methods (FDEM, 3D GPR, 3D ERT, seismic), starting with a broad-scale survey and then proceeding to a localized exploration, in order to identify lithostratigraphy, bedrock depth, sea water intrusion and detect anthropogenic buried features. The critical aspect is to leverage the unique strengths and limitations of each method within the coastal environment, so as to derive valuable insights for survey design (extension and orientation of measurements) and data interpretation. The coastal zone of Throrikos valley, Attica, Greece, serves as the test site of our geophysical investigation methodology. The planning of the geophysical survey included three phases: The application of frequency-domain electromagnetic (FDEM) and 3D ground penetrating radar (GPR) methods followed by a 3D electrical resistivity tomography (ERT) survey and finally, using the seismic refraction tomography (SRT) and multichannel analysis of surface waves (MASW). The FDEM method confirmed the geomorphological study findings by revealing the paleo-coastline, superficial layers of coarse material deposits and sea water preferential flow due to the presence of anthropogenic buried features. Subsequently, the 3D GPR survey was able to offer greater detail in detecting the remains of an old marble pier inland and top layer relief of coarse material deposits. The 3D ERT measurements, deployed in a U-shaped grid, successfully identified the anthropogenic feature, mapped sea water intrusion, and revealed possible impermeable formation connected to the bedrock. ERT results cannot clearly discriminate between limestone or deposits, as sea water intrusion lowers resistivity values in both formations. Finally, SRT, in combination with MASW, clearly resolves this dilemma identifying the lithostratigraphy and bedrock top relief. The findings provide critical input for engineering decisions related to foundation planning, construction feasibility, and preservation of coastal infrastructure. The methodology supports risk-informed design and sustainable development in areas with both natural and cultural heritage sensitivity. The applied approach aims to provide a complete information package to the modern engineer when faced with specific challenges in coastal settings. Full article
(This article belongs to the Section Geophysics)
Show Figures

Figure 1

24 pages, 7485 KiB  
Article
Study on Dynamic Evolution of the Landslide–Anchorage Structure System Under Earthquake with the Combined Finite–Discrete Element Method
by Chenyu Xu, Yingguo Hu, Genquan Li, Chenyang Ma and Meishan Liu
Appl. Sci. 2025, 15(11), 6248; https://doi.org/10.3390/app15116248 - 2 Jun 2025
Viewed by 400
Abstract
The landslides caused by slope instability are very harmful and have a destructive effect on existing engineering structures such as tunnels, bridges, and houses. At present, the dynamic design of the anchorage structure is mainly based on traditional statics, which fails to fully [...] Read more.
The landslides caused by slope instability are very harmful and have a destructive effect on existing engineering structures such as tunnels, bridges, and houses. At present, the dynamic design of the anchorage structure is mainly based on traditional statics, which fails to fully consider the dynamic evolution process of landslide and its synergistic mechanism with anchorage structure. It is urgent to study the landslide–anchorage structure system considering both the catastrophic process and the evolution process. Based on the advanced combined finite–discrete element method (FDEM), the present study investigates the dynamic response characteristics and evolution process of the landslide–anchorage structure system by adding the dynamic strength reduction method considering the vibration deterioration effect of the structural plane and the combined one-dimensional and entity element model. The results show that the improved FDEM can accurately reproduce the characteristics of the dynamic response and the entire process of the landslide–anchorage structure system and can quantitatively evaluate the dynamic stability of the system. Through the setting of the two working conditions of unreinforced and reinforced slopes, it is verified that the addition of anchor cables can significantly reduce the dynamic response of the slopes. It is also found that the axial force is larger at the structural plane and the failure surface, and the PGA amplification factor positively correlates with the axial force of the anchor cables. The study reveals the dynamic response characteristics and evolution law of the landslide–anchorage structure system under earthquake, which can provide a scientific basis for the reasonable aseismic design of the landslide–anchorage structure system. Full article
(This article belongs to the Special Issue Trends and Prospects in Tunnel and Underground Construction)
Show Figures

Figure 1

21 pages, 11068 KiB  
Article
A Methodology for Assessing the Impact of In Situ Fractures on the Intensity of Blast-Induced Damage
by Omid Karimi, Marie-Helene Fillion and Philip Dirige
Mining 2025, 5(1), 7; https://doi.org/10.3390/mining5010007 - 7 Jan 2025
Viewed by 1268
Abstract
Drilling and blasting is the conventional method used for rock fragmentation in open pit mining. Blast-induced damage can reduce the level of stability of benches and pit slopes. To develop an optimal blast design, an adequate knowledge of the rock properties and in [...] Read more.
Drilling and blasting is the conventional method used for rock fragmentation in open pit mining. Blast-induced damage can reduce the level of stability of benches and pit slopes. To develop an optimal blast design, an adequate knowledge of the rock properties and in situ fractures is needed. Fractures are generally the paths of least resistance for explosive energy and can affect the intensity of blast-induced damage. Discrete Fracture Networks (DFNs) are 3D representations of joint systems used for estimating the distribution of in situ fractures in a rock mass. The combined finite/discrete element method (FDEM) can be used to simulate the complex rock breakage process during a blast. The objective of this paper is to develop a methodology for assessing the influence of in situ joints on post-blast fracturing and the associated wall damage in 2D bench blast scenarios. First, a simple one-blasthole scenario is analyzed with the FDEM software Irazu 2D and calibrated based on a laboratory-scale blasting experiment available from previous literature. Secondly, more complex scenarios consisting of one-blasthole models at the bench scale were simulated. A bench blast without DFN (base case) and one with DFN were numerically simulated. The model with DFN demonstrated that the growth path and intensity of blast-induced fractures were governed by pre-existing fractures, which led to a smaller wall damage area. The damage intensity for the base case scenario is about 82% higher than for the blast model with DFN included, which highlights the significance of in situ fractures in the resulting blast damage intensity. The methodology for developing the DFN-included blasting simulation provides a more realistic modeling process for blast-induced wall damage assessment. This results in a better characterization of the blast damage zone and can lead to improved slope stability analyses. Full article
Show Figures

Figure 1

36 pages, 18495 KiB  
Article
Size-Dependent Mechanical Properties and Excavation Responses of Basalt with Hidden Cracks at Baihetan Hydropower Station through DFN–FDEM Modeling
by Changdong Ding, Zhenjiang Liu, Xiancheng Mei and Shaoming Ouyang
Appl. Sci. 2024, 14(19), 9069; https://doi.org/10.3390/app14199069 - 8 Oct 2024
Cited by 1 | Viewed by 1575
Abstract
Basalt is an important geotechnical material for engineering construction in Southwest China. However, it has complicated structural features due to its special origin, particularly the widespread occurrence of hidden cracks. Such discontinuities significantly affect the mechanical properties and engineering stability of basalt, and [...] Read more.
Basalt is an important geotechnical material for engineering construction in Southwest China. However, it has complicated structural features due to its special origin, particularly the widespread occurrence of hidden cracks. Such discontinuities significantly affect the mechanical properties and engineering stability of basalt, and related research is lacking and unsystematic. In this work, taking the underground caverns in the Baihetan Hydropower Station as the engineering background, the size-dependent mechanical behaviors and excavation responses of basalt with hidden cracks were systematically explored based on a synthetic rock mass (SRM) model combining the finite-discrete element method (FDEM) and discrete fracture network (DFN) method. The results showed that: (1) The DFN–FDEM model generated based on the statistical characteristics of the geometric parameters of hidden cracks can consider the real structural characteristics of basalt, whereby the mechanical behaviors found in laboratory tests and at the engineering site could be exactly reproduced. (2) The representative elementary volume (REV) size of basalt blocks containing hidden cracks was 0.5 m, and the mechanical properties obtained at this size were considered equivalent continuum properties. With an increase in the sample dimensions, the mechanical properties reflected in the stress–strain curves changed from elastic–brittle to elastic–plastic or ductile, the strength failure criterion changed from linear to nonlinear, and the failure modes changed from fragmentation failure to local structure-controlled failure and then to splitting failure. (3) The surrounding rock mass near the excavation face of underground caverns typically showed a spalling failure mode, mainly affected by the complex structural characteristics and high in situ stresses, i.e., a tensile fracture mechanism characterized by stress–structure coupling. The research findings not only shed new light on the failure mechanisms and size-dependent mechanical behaviors of hard brittle rocks represented by basalt but also further enrich the basic theory and technical methods for multi-scale analyses in geotechnical engineering, which could provide a reference for the design optimization, construction scheme formulation, and disaster prevention of deep engineering projects. Full article
(This article belongs to the Special Issue Advances in Failure Mechanism and Numerical Methods for Geomaterials)
Show Figures

Figure 1

28 pages, 6833 KiB  
Article
Multi-Scale Integrated Corrosion-Adjusted Seismic Fragility Framework for Critical Infrastructure Resilience
by Alon Urlainis, Gili Lifshitz Sherzer and Igal M. Shohet
Appl. Sci. 2024, 14(19), 8789; https://doi.org/10.3390/app14198789 - 29 Sep 2024
Cited by 2 | Viewed by 1427
Abstract
This study presents a novel framework for integrating corrosion effects into critical infrastructure seismic risk assessment, focusing on reinforced concrete (RC) structures. Unlike traditional seismic fragility curves, which often overlook time-dependent degradation such as corrosion, this methodology introduces an approach incorporating corrosion-induced degradation [...] Read more.
This study presents a novel framework for integrating corrosion effects into critical infrastructure seismic risk assessment, focusing on reinforced concrete (RC) structures. Unlike traditional seismic fragility curves, which often overlook time-dependent degradation such as corrosion, this methodology introduces an approach incorporating corrosion-induced degradation into seismic fragility curves. This framework combines time-dependent corrosion simulation with numerical modeling, using the finite–discrete element method (FDEM) to assess the reduction in structural capacity. These results are used to adjust the seismic fragility curves, capturing the increased vulnerability due to corrosion. A key novelty of this work is the development of a comprehensive risk assessment that merges the corrosion-adjusted fragility curves with seismic hazard data to estimate long-term seismic risk, introducing a cumulative risk ratio to quantify the total risk over the structure’s lifecycle. This framework is demonstrated through a case study of a one-story RC moment frame building, evaluating its seismic risk under various corrosion scenarios and locations. The simulation results showed a good fit, with a 3% to 14% difference between the case study and simulations up to 75 years. This fitness highlights the model’s accuracy in predicting structural degradation due to corrosion. Furthermore, the findings reveal a significant increase in seismic risk, particularly in moderate and intensive corrosion environments, by 59% and 100%, respectively. These insights emphasize the critical importance of incorporating corrosion effects into seismic risk assessments, offering a more accurate and effective strategy to enhance infrastructure resilience throughout its lifecycle. Full article
(This article belongs to the Special Issue Earthquake Engineering: Geological Impacts and Disaster Assessment)
Show Figures

Figure 1

23 pages, 5725 KiB  
Article
Estimation of the Aboveground Carbon Storage of Dendrocalamus giganteus Based on Spaceborne Lidar Co-Kriging
by Huanfen Yang, Zhen Qin, Qingtai Shu, Lei Xi, Cuifen Xia, Zaikun Wu, Mingxing Wang and Dandan Duan
Forests 2024, 15(8), 1440; https://doi.org/10.3390/f15081440 - 15 Aug 2024
Cited by 1 | Viewed by 1683
Abstract
Bamboo forests, as some of the integral components of forest ecosystems, have emerged as focal points in forestry research due to their rapid growth and substantial carbon sequestration capacities. In this paper, satellite-borne lidar data from GEDI and ICESat-2/ATLAS are utilized as the [...] Read more.
Bamboo forests, as some of the integral components of forest ecosystems, have emerged as focal points in forestry research due to their rapid growth and substantial carbon sequestration capacities. In this paper, satellite-borne lidar data from GEDI and ICESat-2/ATLAS are utilized as the main information sources, with Landsat 9 and DEM data as covariates, combined with 51 pieces of ground-measured data. Using random forest regression (RFR), boosted regression tree (BRT), k-nearest neighbor (KNN), Cubist, extreme gradient boosting (XGBoost), and Stacking-ridge regression (RR) machine learning methods, an aboveground carbon (AGC) storage model was constructed at a regional scale. The model evaluation indices were the coefficient of determination (R2), root mean square error (RMSE), and overall estimation accuracy (P). The results showed that (1) The best-fit semivariogram models for cdem, fdem, fndvi, pdem, and andvi were Gaussian models, while those for h1b7, h2b7, h3b7, and h4b7 were spherical models; (2) According to Pearson correlation analysis, the AGC of Dendrocalamus giganteus showed an extremely significant correlation (p < 0.01) with cdem and pdem from GEDI, and also showed an extremely significant correlation with andvi, h1b7, h2b7, h3b7, and h4b7 from ICESat-2/ATLAS; moreover, AGC showed a significant correlation (0.01 < p < 0.05) with fdem and fndvi from GEDI; (3) The estimation accuracy of the GEDI model was superior to that of the ICESat-2/ATLAS model; additionally, the estimation accuracy of the Stacking-RR model, which integrates GEDI and ICESat-2/ATLAS (R2 = 0.92, RMSE = 5.73 Mg/ha, p = 86.19%), was better than that of any single model (XGBoost, RFR, BRT, KNN, Cubist); (4) Based on the Stacking-RR model, the estimated AGC of Dendrocalamus giganteus within the study area was 1.02 × 107 Mg. The average AGC was 43.61 Mg/ha, with a maximum value of 76.43 Mg/ha and a minimum value of 15.52 Mg/ha. This achievement can serve as a reference for estimating other bamboo species using GEDI and ICESat-2/ATLAS remote sensing technologies and provide decision support for the scientific operation and management of Dendrocalamus giganteus. Full article
Show Figures

Figure 1

24 pages, 12757 KiB  
Article
Finite–Discrete Element Method Simulation Study on Development of Water-Conducting Fractures in Fault-Bearing Roof under Repeated Mining of Extra-Thick Coal Seams
by Longquan Mai and Hao Li
Sustainability 2024, 16(12), 5177; https://doi.org/10.3390/su16125177 - 18 Jun 2024
Cited by 3 | Viewed by 1389
Abstract
The formation of water-conducting fractures in overlying strata caused by underground coal mining not only leads to roof water inrush disasters, but also water-conducting fractures penetrate the aquifer, resulting in the occurrence of a mine-water-inrush disaster and the loss of water resources. It [...] Read more.
The formation of water-conducting fractures in overlying strata caused by underground coal mining not only leads to roof water inrush disasters, but also water-conducting fractures penetrate the aquifer, resulting in the occurrence of a mine-water-inrush disaster and the loss of water resources. It destroys the sustainability of surface water and underground aquifers. This phenomenon is particularly significant in extra-thick coal seams and fault-bearing areas. Numerical simulation is an effective method to predict the failure range of mining overburden rock with low cost and high efficiency. The key to its accuracy lies in a reasonable constitutive model and simulation program. In this study, considering that the three parts of penetrating cracks, non-penetrating cracks, and intact rock blocks are often formed after rock failure, the contact state criterion and shear friction relationship of discrete rock blocks and the mixed fracture displacement–damage–load relationship are established, respectively. Combined with the Mohr–Coulomb criterion, the constitutive model of mining rock mass deformation–discrete block motion and interaction is formed. On this basis, according to the engineering geological conditions of Yushupo Coal Mine, a numerical model for the development of water-conducting cracks in the roof with faults under repeated mining of extra-thick coal seams is established. The results show the following: The constitutive relation of the continuous deformation–discrete block interaction of overlying strata and the corresponding finite element–discrete element FDEM numerical program and VUSDFLD multi-coal seam continuous mining subroutine can numerically realize the formation process of faults and water flowing fractures in overlying strata under continuous mining of extra-thick multi-coal seams. The toughness of sand mudstone is low, and the fracture will be further developed under the repeated disturbance of multi-thick coal seam mining. Finally, it is stabilized at 216–226 m, and the ratio of fracture height to mining thickness is 14.1. When the working face advances to the fault, the stress concentration occurs in the fault and its overlying rock, which leads to the local fracture of the roof rock mass and the formation of cracks. The fault group makes this phenomenon more obvious. The results have been preliminarily applied and tested in Ningwu mining area, which provides theoretical support for further development of roof water disaster control under the condition of an extra-thick coal seam and avoids the loss of water resources in surface water and underground aquifers. Full article
Show Figures

Figure 1

20 pages, 3024 KiB  
Article
Predicting Stick-Slips in Sheared Granular Fault Using Machine Learning Optimized Dense Fault Dynamics Data
by Weihan Huang, Ke Gao and Yu Feng
J. Mar. Sci. Eng. 2024, 12(2), 246; https://doi.org/10.3390/jmse12020246 - 30 Jan 2024
Cited by 2 | Viewed by 1723
Abstract
Predicting earthquakes through reasonable methods can significantly reduce the damage caused by secondary disasters such as tsunamis. Recently, machine learning (ML) approaches have been employed to predict laboratory earthquakes using stick-slip dynamics data obtained from sheared granular fault experiments. Here, we adopt the [...] Read more.
Predicting earthquakes through reasonable methods can significantly reduce the damage caused by secondary disasters such as tsunamis. Recently, machine learning (ML) approaches have been employed to predict laboratory earthquakes using stick-slip dynamics data obtained from sheared granular fault experiments. Here, we adopt the combined finite-discrete element method (FDEM) to simulate a two-dimensional sheared granular fault system, from which abundant fault dynamics data (i.e., displacement and velocity) during stick-slip cycles are collected at 2203 “sensor” points densely placed along and inside the gouge. We use the simulated data to train LightGBM (Light Gradient Boosting Machine) models and predict the gouge-plate friction coefficient (an indicator of stick-slips and the friction state of the fault). To optimize the data, we build the importance ranking of input features and select those with top feature importance for prediction. We then use the optimized data and their statistics for training and finally reach a LightGBM model with an acceptable prediction accuracy (R2 = 0.94). The SHAP (SHapley Additive exPlanations) values of input features are also calculated to quantify their contributions to the prediction. We show that when sufficient fault dynamics data are available, LightGBM, together with the SHAP value approach, is capable of accurately predicting the friction state of laboratory faults and can also help pinpoint the most critical input features for laboratory earthquake prediction. This work may shed light on natural earthquake prediction and open new possibilities to explore useful earthquake precursors using artificial intelligence. Full article
Show Figures

Figure 1

16 pages, 6384 KiB  
Article
Resultant Normal Contact Force-Based Contact Friction Model for the Combined Finite-Discrete Element Method and Its Validation
by He Liu, Zuliang Shao, Qibin Lin, Yiming Lei, Chenglei Du and Yucong Pan
Mathematics 2023, 11(19), 4197; https://doi.org/10.3390/math11194197 - 8 Oct 2023
Cited by 4 | Viewed by 2128
Abstract
In the conventional FDEM (Combined Finite and Discrete Element Method), each contact pair might have multiple contact points where friction forces are applied, leading to non-unique friction force assignments and potentially introducing computational errors. This study introduces a new contact friction algorithm for [...] Read more.
In the conventional FDEM (Combined Finite and Discrete Element Method), each contact pair might have multiple contact points where friction forces are applied, leading to non-unique friction force assignments and potentially introducing computational errors. This study introduces a new contact friction algorithm for FDEM based on the resultant normal contact force. This method necessitates determining the friction force at a unique equivalent contact point, thereby significantly simplifying the computational flow and reducing memory usage. A series of numerical tests are performed to validate the effectiveness of the proposed contact model. Using collision and block sliding tests, the proposed contact friction model is verified to be able to accurately capture the frictional effect between discrete bodies and circumvent the problematic kinetic energy dissipation issue associated with the original contact friction algorithm. For the Brazilian splitting and uniaxial compression tests, the simulated results closely align with those generated using the original contact friction algorithm and match the experimental measurements well, demonstrating the applicability of the proposed algorithm in fracturing analysis. Furthermore, by using the proposed contact friction algorithm, a computational efficiency enhancement of 8% in contact force evaluation can be achieved. Full article
Show Figures

Figure 1

21 pages, 6866 KiB  
Article
Failure Mechanism of Anti-Dip Layered Soft Rock Slope under Rainfall and Excavation Conditions
by Jun Jia, Xiangjun Pei, Gang Liu, Guojun Cai, Xiaopeng Guo and Bo Hong
Sustainability 2023, 15(12), 9398; https://doi.org/10.3390/su15129398 - 12 Jun 2023
Cited by 10 | Viewed by 2660
Abstract
The phenomenon of toppling deformation and failure is common in slopes with anti-dip structures, especially in soft metamorphic rock slopes. This paper aims to explore the instability mechanism of anti-dip layered soft metamorphic rock landslides. Taking the slope of a mining area in [...] Read more.
The phenomenon of toppling deformation and failure is common in slopes with anti-dip structures, especially in soft metamorphic rock slopes. This paper aims to explore the instability mechanism of anti-dip layered soft metamorphic rock landslides. Taking the slope of a mining area in the southern Qinling Mountains of China as a geological prototype, a large-scale centrifuge model test and a numerical simulation based on the combined finite and discrete element method (FDEM) were performed. The deformation and failure process, failure mode, and failure path of the slope under rainfall and excavation conditions were simulated. The results show that both the physical centrifuge model test and the new numerical model test can simulate the instability process of anti-dip layered soft metamorphic rock slopes, and the phenomena simulated by the two methods are also very close. Rainfall mainly weakens the mechanical properties of rock, while the excavation at the slope toe mainly changes the stress field distribution and provides space for slope deformation, both of which accelerate the instability of the anti-dip soft metamorphic rock slope. The failure process of an anti-dip layered soft rock slope can be described as follows: bending of the rock layer–tensile fracture along the layer–flexural toppling and cracking perpendicular to the rock layer–extension and penetration of the tensile fracture surface–sliding and instability of the slope. Full article
(This article belongs to the Special Issue Sustainable Study on Landslide Disasters and Restoration)
Show Figures

Figure 1

12 pages, 3161 KiB  
Article
Application of the FDEM Based on the CZM in Simulating Three-Point Bending Test of Frozen Soil
by Yongtao Wang, Baicong Ma, Weihang Hua, Wei Wang, Luxing Ma, Boyuan Wang and Zijian Mei
Atmosphere 2022, 13(12), 2083; https://doi.org/10.3390/atmos13122083 - 10 Dec 2022
Cited by 2 | Viewed by 1751
Abstract
The combined finite–discrete element method (FDEM) based on the cohesive zone model (the CZM) achieves cracking simulation by inserting cohesive elements between solid elements. In this study, three-point bending fracture tests of frozen soil were simulated by using the FDEM based on the [...] Read more.
The combined finite–discrete element method (FDEM) based on the cohesive zone model (the CZM) achieves cracking simulation by inserting cohesive elements between solid elements. In this study, three-point bending fracture tests of frozen soil were simulated by using the FDEM based on the CZM. Firstly, the sensitivity of the cohesive model parameters was analyzed. Secondly, through a series of simulations of the three-point bending test of frozen soil, it was found that the model with reasonable values of the CZM parameters had a good adaptability to the three-point bending cracking test of frozen soil, as the model not only reflects the load-displacement curve, but also has good correspondence with the fracture pattern compared with the test. Finally, the relationship between the CZM parameters and the specimens’ temperature under two loading rates of 1 mm/min and 0.1 mm/min was analyzed, and it was found that the CZM parameters had a good linear relationship with the specimens’ temperature. This paper is expected to provide a new possibility for the numerical simulation of frozen soil cracking. Full article
(This article belongs to the Special Issue Interactions of Atmosphere and Permafrost)
Show Figures

Figure 1

20 pages, 14136 KiB  
Article
FDEM Simulation on the Failure Behavior of Historic Masonry Heritages Subjected to Differential Settlement
by Weibing Ou, Xudong Chen, Andrew Chan, Yingyao Cheng and Hongfan Wang
Buildings 2022, 12(10), 1592; https://doi.org/10.3390/buildings12101592 - 2 Oct 2022
Cited by 18 | Viewed by 2453
Abstract
Historic masonry heritages, such as cathedrals, colonnades, and arch bridges, were constructed with individual components (e.g., stones, bricks, other materials) bound together with, e.g., mortar, and they are very vulnerable to foundation settlement, especially differential settlement which occurs frequently in engineering practice. These [...] Read more.
Historic masonry heritages, such as cathedrals, colonnades, and arch bridges, were constructed with individual components (e.g., stones, bricks, other materials) bound together with, e.g., mortar, and they are very vulnerable to foundation settlement, especially differential settlement which occurs frequently in engineering practice. These masonry structures are discontinuous, and therefore, their behavior under differential settlement is highly nonlinear and complex. In this study, the combined finite-discrete element method (FDEM) is employed to simulate the failure behavior of historic masonry heritages subjected to support differential settlement. In the FDEM models, structures are discretized into elements where FE formulation is incorporated, resulting in an accurate estimate of structural deformation and interaction forces. In addition, a fracture model is employed for masonry blocks. Numerical examples are given and compared with results from the literature, showing that the FDEM is applicable and reliable in simulating the failure behavior of historic masonry heritages. Further analyses including block fracture reveal that fracturing can decrease the capacity against settlement significantly. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

22 pages, 5491 KiB  
Article
Numerical Analysis of Motion Characteristics of Sliding or Rolling and Saltation of Sediment Particles under Turbulent Flow
by Bangwen Zhang, Anjun Deng, Dangwei Wang, Yang Shi and Xianyong Dong
Water 2022, 14(9), 1506; https://doi.org/10.3390/w14091506 - 7 May 2022
Cited by 2 | Viewed by 2689
Abstract
The processes of sediment particle movement were studied through numerical simulation using a coupled method with focus on discussing the characteristics of sliding or rolling and saltation sediment particles, respectively. Turbulent flow was simulated using large eddy simulation (LES). The sediment particle was [...] Read more.
The processes of sediment particle movement were studied through numerical simulation using a coupled method with focus on discussing the characteristics of sliding or rolling and saltation sediment particles, respectively. Turbulent flow was simulated using large eddy simulation (LES). The sediment particle was simulated using the combined finite-discrete element method (FDEM). The interaction forces of turbulent flow and sediment particle were calculated using the immersed boundary method (IBM). It indicated that the collisions of saltating particle with low concentration increase the saltation length and flight time. In response, sediment particle velocity also increases. The particle angular velocity is largest at the takeoff moment, and decreases gradually in the saltation progress. The drag and lift forces near the bed are large, and away from the bed decrease and trend to be a stable value, gradually. From the relative magnitudes of the drag and lift forces, the lift force plays a more important role than the drag force in the sediment saltation. The relative magnitudes of drag and lift forces influence the incident and takeoff angles. The sediment transport rate calculated based on the characteristics of saltation sediment particles is overestimated, ignoring the effect of sliding or rolling sediment particles and inter-particle collisions. Full article
Show Figures

Figure 1

20 pages, 6538 KiB  
Review
The State of the Art and New Insight into Combined Finite–Discrete Element Modelling of the Entire Rock Slope Failure Process
by Huaming An, Yuqing Fan, Hongyuan Liu, Yinyao Cheng and Yushan Song
Sustainability 2022, 14(9), 4896; https://doi.org/10.3390/su14094896 - 19 Apr 2022
Cited by 7 | Viewed by 3446
Abstract
The stability of rock slopes is of significance, as even the slightest slope failure can result in damage to infrastructure and catastrophes for human beings. Thus, this article focuses on the review of the current techniques available for rock slope stability analysis. The [...] Read more.
The stability of rock slopes is of significance, as even the slightest slope failure can result in damage to infrastructure and catastrophes for human beings. Thus, this article focuses on the review of the current techniques available for rock slope stability analysis. The rock slope stability techniques can be classified as conventional methods and numerical methods. The advantages and limitations of the conventional method are briefly reviewed. The numerical methods mainly included three types, i.e., continuum methods, discontinuum methods, and the combined/hybrid continuum–discontinuum methods. This article pays more attention to the last type. The combined/hybrid finite–discrete element method (FDEM), which might be the most widely used continuum–discontinuum method, is introduced and we illustrated its abilities in modelling the entire rock slope failure process. The fundamental principles of FDEM, i.e., the contact interaction of the discrete bodies and the transition from continuum to discontinuum, are introduced in detail. The abilities of the FDEM in modelling the rock slope failure process are calibrated by modelling the entire typical rock slope failure process. Then, the application of the FDEM in the analysis of slope stability is introduced and discussed. Finally, the authors give insight into the GPGUP-parallelized FDEM modelling of the high rock slope failure process by the implementation of the strength reduction method (SRM). It is concluded that the FDEM can effectively model the entire rock slope failure process, even without the implantation of any slope modes, and the GPGUP-parallelized FDEM is a promising tool in the study and application of rock slope stabilities. Full article
(This article belongs to the Special Issue Advances in Rock Mechanics and Geotechnical Engineering)
Show Figures

Figure 1

20 pages, 6027 KiB  
Article
3D Numerical Analysis Method for Simulating Collapse Behavior of RC Structures by Hybrid FEM/DEM
by Gyeongjo Min, Daisuke Fukuda and Sangho Cho
Appl. Sci. 2022, 12(6), 3073; https://doi.org/10.3390/app12063073 - 17 Mar 2022
Cited by 8 | Viewed by 2828
Abstract
Recent years have seen an increase in demand for the demolition of obsolete and potentially hazardous structures, including reinforced concrete (RC) structures, using blasting techniques. However, because the risk of failure is significantly higher when applying blasting to demolish RC structures than mechanical [...] Read more.
Recent years have seen an increase in demand for the demolition of obsolete and potentially hazardous structures, including reinforced concrete (RC) structures, using blasting techniques. However, because the risk of failure is significantly higher when applying blasting to demolish RC structures than mechanical dismantling, it is critical to achieve the optimal demolition design and conditions using blasting by taking into account the major factors affecting a structure’s demolition. To this end, numerical analysis techniques have frequently been used to simulate the progressive failure resulting in the collapse of structures. In this study, the three-dimensional (3D) combined finite discrete element method (FDEM), which is accelerated by a parallel computation technique incorporating a general-purpose graphics processing unit (GPGPU), was coupled with the one-dimensional (1D) reinforcing bar (rebar) model as a numerical simulation tool for simulating the process of RC structure demolition by blasting. Three-point bending tests on the RC beams were simulated to validate the developed 3D FDEM code, including the calibration of 3D FDEM input parameters to simulate the concrete fracture in the RC beam accurately. The effect of the elements size for the concrete part on the RC beam’s fracture process was also discussed. Then, the developed 3D FDEM code was used to model the blasting demolition of a small-scale RC structure. The numerical simulation results for the progressive collapse of the RC structure were compared to the actual experimental results and found to be highly consistent. Full article
(This article belongs to the Special Issue Dynamics of Building Structures)
Show Figures

Figure 1

Back to TopTop