Application of the FDEM Based on the CZM in Simulating Three-Point Bending Test of Frozen Soil
Abstract
:1. Introduction
2. Numerical Simulation Methodology
2.1. The Basic Idea of the CZM
2.2. FDEM Model Based on the CZM of Three-Point Bending Test of Frozen Soil
3. The CZM Parameter Sensitivity Analysis
3.1. Sensitivity Analysis of the Normal Stiffness
3.2. Sensitivity Analysis of the Initial Damage Stress
3.3. Sensitivity Analysis of Fracture Energy
4. Numerical Simulation of the Three-Point Bending Tests of Frozen Soil
5. Discussion of the CZM Parameters with Specimen Temperature
6. Conclusions
- (1)
- The sensitivities of the numerical model to the CZM parameters were analyzed by the control variable method. It was found that the normal stiffness has good stability in the numerical model, which only influences the slope of the normal load-displacement curve before the damage to a certain extent; the initial damage stress has more influence on the peak stress; and the fracture energy has more influence on the residual strength after the specimen damage.
- (2)
- A series of simulations of three-point bending tests of frozen soil were established, and the CZM parameters were determined by the trial calculation method under the principle that the simulated normal load-displacement curves matched well with the tested ones, indicating that the FDEM based on the CZM has good adaptability in the numerical simulation of the three-point bending test of frozen soil.
- (3)
- The CZM parameters have a good linear relationship with the test temperature. Although the relationships between the CZM parameters and other material parameters, such as the material component, specimen’s density, and water content, are not discussed in this paper due to the limitation of the experimental data, the analysis results still indicate that, based on many numerical and practical tests, it is promising to directly establish the relationship between the CZM parameters and the physical parameters of the specimens. This work is expected to provide a new research method for the application of the FDEM in the fracture simulation of frozen soil.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, L.; Lai, Y.M.; Fortier, D.; Harris, S. Impacts of snow cover on the pattern and strength of mobile air flow in air convection embankment in Sub-Arctic regions. Renew. Energy 2022, 199, 1033–1046. [Google Scholar] [CrossRef]
- Chen, L.; Voss, C.I.; Fortier, D.; McKenzie, J.M. Surface energy balance of Sub-Arctic roads and highways in permafrost regions. Permafr. Periglac. Process. 2021, 32, 681–701. [Google Scholar] [CrossRef]
- Wang, Y.T.; Wang, D.Y.; Ma, W.; Wen, Z.; Chen, S.J.; Xu, X.T. Laboratory observation and analysis of frost heave progression in clay from the Qinghai-Tibet Plateau. Appl. Therm. Eng. 2018, 131, 381–389. [Google Scholar] [CrossRef]
- Xu, X.T.; Zhang, W.D.; Wang, Y.T. Measuring and modeling the dielectric constant of soil during freezing and thawing processes: An application on silty clay. Acta Geotech. 2022, 17, 3867–3886. [Google Scholar] [CrossRef]
- Wang, Y.T.; Hua, W.H.; Xu, X.T.; Zhang, W.D.; Wang, B.Y.; Ma, B.C. Moisture migration in the Qinghai-Tibet silty clay within an added quartz sand layer under one-dimensional freezing. Cold Reg. Sci. Technol. 2022, 202, 103627. [Google Scholar] [CrossRef]
- Barsch, D. Permafrost creep and rockglaciers. Permafr. Periglac. Process. 1992, 3, 175–188. [Google Scholar] [CrossRef]
- Buchli, T.; Laue, J.; Springman, S.M. Amendments to interpretations of SAAF inclinometer data from the furggwanghorn rock glacier, Turtmann Valley, Switzerland: Results from 2010 to 2012. Vadose Zone J. 2016, 15, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Roer, I.; Haeberli, W.; Avian, M.; Kaufmann, V.; Kääb, A. Observations and Considerations on Destabilizing Active Rock Glaciers in the European Alps. In Proceedings of the Ninth International Conference on Permafrost, Fairbanks, AK, USA, 29 June–3 July 2008; pp. 1505–1510. [Google Scholar]
- Delaloye, R.; Lambiel, C.; Gärtner, R.I. Overview of rock glacier kinematics research in the Swiss Alps. Geogr. Helv. 2010, 65, 135–145. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Springman, S.M. Three- and four-point bending tests on artificial frozen soil samples at temperatures close to 0 °C. Cold Reg. Sci. Technol. 2017, 134, 20–32. [Google Scholar] [CrossRef] [Green Version]
- Granet, S.; Fabrie, P.; Lemonnier, P.; Quintard, M. A two-phase flow simulation of a fractured reservoir using a new fissure element method. J. Pet. Sci. Eng. 2001, 32, 35–52. [Google Scholar] [CrossRef]
- Chen, S.; Yue, Z.Q.; Tham, L.G. Digital image based approach for three-dimensional mechanical analysis of heterogeneous rocks. Rock Mech. Rock Eng. 2007, 40, 145. [Google Scholar] [CrossRef]
- Chen, S.; Yue, Z.Q.; Tham, L.G. Digital image-based numerical modeling method for prediction of inhomogeneous rock failure. Int. J. Rock Mech. Min. Sci. 2004, 41, 939–957. [Google Scholar] [CrossRef]
- Pan, E.; Chen, C.S.; Amadei, B. A BEM formulation for anisotropic half-plane problems. Eng. Anal. Bound. Elem. 1997, 20, 185–195. [Google Scholar] [CrossRef]
- Saez, A.; Domınguez, J. Dynamic crack problems in three-dimensional transversely isotropic solids. Eng. Anal. Bound. Elem. 2001, 25, 203–210. [Google Scholar] [CrossRef]
- Liang, Z.Z.; Tang, C.A.; Li, H.X.; Zhang, Y.B. Numerical simulation of 3-d failure process in heterogeneous rocks. Int. J. Rock Mech. Min. Sci. 2004, 41, 419. [Google Scholar] [CrossRef]
- Zhu, W.C.; Tang, C.A. Numerical simulation of Brazilian disk rock failure under static and dynamic loading. Int. J. Rock Mech. Min. Sci. 2006, 43, 236–252. [Google Scholar] [CrossRef]
- Liu, H.Y.; Roquete, M.; Kou, S.Q.; Lindqvist, P.A. Characterization of rock heterogeneity and numerical verification. Eng. Geol. 2004, 72, 89–119. [Google Scholar] [CrossRef]
- Cho, N.; Martin, C.D.; Sego, D.C. A clumped particle model for rock. Int. J. Rock Mech. Min. Sci. 2007, 44, 997–1010. [Google Scholar] [CrossRef]
- Yang, S.Q.; Tian, W.L.; Huang, Y.H. Failure mechanical behavior of pre-holed granite specimens after elevated temperature treatment by particle flow code. Geothermics 2018, 72, 124–137. [Google Scholar] [CrossRef]
- Jiao, Y.Y.; Zhang, H.Q.; Tang, H.M.; Zhang, X.L.; Adoko, A.C.; Tian, H.N. Simulating the process of reservoir-impoundment-induced landslide using the extended DDA method. Eng. Geol. 2014, 182, 37–48. [Google Scholar] [CrossRef]
- Shi, G.H.; Goodman, R.E. Two dimensional discontinuous deformation analysis. Int. J. Numer. Anal. Methods Geomech. 2010, 9, 541–556. [Google Scholar] [CrossRef]
- Lan, H.; Martin, C.D.; Hu, B. Effect of heterogeneity of brittle rock on micromechanical extensile behavior during compression loading. J. Geophys. Res. 2010, 115, B01202. [Google Scholar] [CrossRef]
- Morris, J.P.; Rubin, M.B.; Blair, S.C.; Glenn, L.A.; Heuze, F.E. Simulations of underground structures subjected to dynamic loading using the distinct element method. Eng. Comput. 2004, 21, 384–408. [Google Scholar] [CrossRef] [Green Version]
- Whittaker, B.N.; Singh, R.N.; Sun, G. Rock Fracture Mechanics: Principles, Design, and Applications; Elsevier: Amsterdam, The Netherlands, 1992. [Google Scholar]
- Barenblatt, G.I. The mechanical theory of equilibrium cracks in brittle fracture. Adv. Appl. Mech. 1962, 7, 55–129. [Google Scholar] [CrossRef]
- Tijssens, M.G.A.; Sluys, B.L.J.; Giessen, E.V.D. Numerical simulation of quasi-brittle fracture using damaging cohesive surfaces. Eur. J. Mech. 2000, 19, 761–779. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Ma, L.; Fan, L. Investigation of the characteristics of rock fracture process zone using coupled FEM/DEM method. Eng. Fract. Mech. 2018, 200, 355–374. [Google Scholar] [CrossRef]
- Xie, H.; Chen, S.B.; Huang, Y.L.; Sun, X.T.; Han, J.; Cao, Y.X. Mesh size and parameter sensitivity analysis based on cohesive zone model. J. Shandong Univ. Eng. Sci. 2021, 51, 111–118, 128. [Google Scholar] [CrossRef]
- Camanho, P.P.; Davila, C.G. Mixed-Mode Decohesion Finite Elements for the Simulation of Delamination in Composite Materials; NASA/TM-2002-21173; NASA Langley Research Center: Hampton, VA, USA, 1 June 2002.
- Mahabadi, O.K.; Lisjak, A.; Munjiza, A.; Grasselli, G. Y-Geo: New combined finite-discrete element numerical code for geomechanical applications. Int. J. Geomech. 2012, 12, 676–688. [Google Scholar] [CrossRef]
Test Number | Loading Rate /(mm/min) | Specimen’s Temperature /°C | /(N/m3) | /MPa | /(MJ/mm2) |
---|---|---|---|---|---|
B3 | 1.0 | −3.2 | 6.0 × 1012 | 124 | 2.5 |
B6 | 1.0 | −2.66 | 5.8 × 1012 | 122 | 2.4 |
B8 | 1.0 | −1.7 | 5.3 × 1012 | 114 | 2.3 |
B13 | 1.0 | −0.97 | 5.0 × 1012 | 107 | 2.1 |
B9 | 0.1 | −2.89 | 7.5 × 1012 | 50 | 23 |
B11 | 0.1 | −1.72 | 7.2 × 1012 | 42 | 24 |
B17 | 0.1 | −1.56 | 7.1 × 1012 | 37 | 24 |
B14 | 0.1 | −0.53 | 7.0 × 1012 | 26 | 27 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Ma, B.; Hua, W.; Wang, W.; Ma, L.; Wang, B.; Mei, Z. Application of the FDEM Based on the CZM in Simulating Three-Point Bending Test of Frozen Soil. Atmosphere 2022, 13, 2083. https://doi.org/10.3390/atmos13122083
Wang Y, Ma B, Hua W, Wang W, Ma L, Wang B, Mei Z. Application of the FDEM Based on the CZM in Simulating Three-Point Bending Test of Frozen Soil. Atmosphere. 2022; 13(12):2083. https://doi.org/10.3390/atmos13122083
Chicago/Turabian StyleWang, Yongtao, Baicong Ma, Weihang Hua, Wei Wang, Luxing Ma, Boyuan Wang, and Zijian Mei. 2022. "Application of the FDEM Based on the CZM in Simulating Three-Point Bending Test of Frozen Soil" Atmosphere 13, no. 12: 2083. https://doi.org/10.3390/atmos13122083
APA StyleWang, Y., Ma, B., Hua, W., Wang, W., Ma, L., Wang, B., & Mei, Z. (2022). Application of the FDEM Based on the CZM in Simulating Three-Point Bending Test of Frozen Soil. Atmosphere, 13(12), 2083. https://doi.org/10.3390/atmos13122083