Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,579)

Search Parameters:
Keywords = collapsibility

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 11154 KiB  
Article
The Pore Structure and Fractal Characteristics of Upper Paleozoic Coal-Bearing Shale Reservoirs in the Yangquan Block, Qinshui Basin
by Jinqing Zhang, Xianqing Li, Xueqing Zhang, Xiaoyan Zou, Yunfeng Yang and Shujuan Kang
Fractal Fract. 2025, 9(7), 467; https://doi.org/10.3390/fractalfract9070467 - 18 Jul 2025
Abstract
The investigation of the pore structure and fractal characteristics of coal-bearing shale is critical for unraveling reservoir heterogeneity, storage-seepage capacity, and gas occurrence mechanisms. In this study, 12 representative Upper Paleozoic coal-bearing shale samples from the Yangquan Block of the Qinshui Basin were [...] Read more.
The investigation of the pore structure and fractal characteristics of coal-bearing shale is critical for unraveling reservoir heterogeneity, storage-seepage capacity, and gas occurrence mechanisms. In this study, 12 representative Upper Paleozoic coal-bearing shale samples from the Yangquan Block of the Qinshui Basin were systematically analyzed through field emission scanning electron microscopy (FE-SEM), high-pressure mercury intrusion, and gas adsorption experiments to characterize pore structures and calculate multi-scale fractal dimensions (D1D5). Key findings reveal that reservoir pores are predominantly composed of macropores generated by brittle fracturing and interlayer pores within clay minerals, with residual organic pores exhibiting low proportions. Macropores dominate the total pore volume, while mesopores primarily contribute to the specific surface area. Fractal dimension D1 shows a significant positive correlation with clay mineral content, highlighting the role of diagenetic modification in enhancing the complexity of interlayer pores. D2 is strongly correlated with the quartz content, indicating that brittle fracturing serves as a key driver of macropore network complexity. Fractal dimensions D3D5 further unveil the synergistic control of tectonic activity and dissolution on the spatial distribution of pore-fracture systems. Notably, during the overmature stage, the collapse of organic pores suppresses mesopore complexity, whereas inorganic diagenetic processes (e.g., quartz cementation and tectonic fracturing) significantly amplify the heterogeneity of macropores and fractures. These findings provide multi-scale fractal theoretical insights for evaluating coal-bearing shale gas reservoirs and offer actionable recommendations for optimizing the exploration and development of Upper Paleozoic coal-bearing shale gas resources in the Yangquan Block of the Qinshui Basin. Full article
Show Figures

Figure 1

21 pages, 1656 KiB  
Article
Metabolomic Profiling of Desiccation Response in Recalcitrant Quercus acutissima Seeds
by Haiyan Chen, Fenghou Shi, Boqiang Tong, Yizeng Lu and Yongbao Shen
Agronomy 2025, 15(7), 1738; https://doi.org/10.3390/agronomy15071738 - 18 Jul 2025
Abstract
Quercus acutissima seeds exhibit high desiccation sensitivity, posing significant challenges for long-term preservation. This study investigates the physiological and metabolic responses of soluble osmoprotectants—particularly soluble proteins and proline—during the desiccation process. Seeds were sampled at three critical moisture content levels: 38.8%, 26.8%, and [...] Read more.
Quercus acutissima seeds exhibit high desiccation sensitivity, posing significant challenges for long-term preservation. This study investigates the physiological and metabolic responses of soluble osmoprotectants—particularly soluble proteins and proline—during the desiccation process. Seeds were sampled at three critical moisture content levels: 38.8%, 26.8%, and 14.8%, corresponding to approximately 99%, 52%, and 0% germination, respectively. We measured germination ability, soluble protein content, and proline accumulation, and we performed untargeted metabolomic profiling using LC-MS. Soluble protein levels increased early but declined later during desiccation, while proline levels continuously increased for sustained osmotic adjustment. Metabolomics analysis identified a total of 2802 metabolites, with phenylpropanoids and polyketides (31.12%) and lipids and lipid-like molecules (29.05%) being the most abundant. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed that differentially expressed metabolites were mainly enriched in key pathways such as amino acid metabolism, energy metabolism, and nitrogen metabolism. Notably, most amino acids decreased in content, except for proline, which showed an increasing trend. Tricarboxylic acid cycle intermediates, especially citric acid and isocitric acid, showed significantly decreased levels, indicating energy metabolism imbalance due to uncoordinated consumption without effective replenishment. The reductions in key amino acids such as glutamic acid and aspartic acid further reflected metabolic network disruption. In summary, Q. acutissima seeds fail to establish an effective desiccation tolerance mechanism. The loss of soluble protein-based protection, limited capacity for proline-mediated osmotic regulation, and widespread metabolic disruption collectively lead to irreversible cellular damage. These findings highlight the inherent metabolic vulnerabilities of recalcitrant seeds and suggest potential preservation strategies, such as supplementing critical metabolites (e.g., TCA intermediates) during storage to delay metabolic collapse and mitigate desiccation-induced damage. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
14 pages, 217 KiB  
Article
Eco-Spiritual Threads: Karma, Dharma, and Ecosystem in Amitav Ghosh’s Gun Island
by Muhammad Hafeez ur Rehman
Religions 2025, 16(7), 931; https://doi.org/10.3390/rel16070931 - 18 Jul 2025
Abstract
This paper examines Amitav Ghosh’s Gun Island through a Hindu eco-spiritual framework to explore how ancient cosmological concepts illuminate contemporary environmental crises. Building upon the legend of Bonduki Sadagar and Manasa Devi, Ghosh narrates the rupture of sacred human–nature relationships in both colonial [...] Read more.
This paper examines Amitav Ghosh’s Gun Island through a Hindu eco-spiritual framework to explore how ancient cosmological concepts illuminate contemporary environmental crises. Building upon the legend of Bonduki Sadagar and Manasa Devi, Ghosh narrates the rupture of sacred human–nature relationships in both colonial and postcolonial contexts. This study employs a tripartite conceptual lens of karma, dharma, and ecosystem drawn from Hindu philosophy to analyze how the novel frames environmental degradation, human moral failure, and ecological interconnectedness. Karma, as the law of cause and effect, is used to depict the consequences of human exploitation through natural disasters, climate migration, and the collapse of ecosystems. Dharma emerges as a principle advocating ecological responsibility and symbiosis between humans and nonhuman life. This paper argues that Ghosh tactfully intertwines Hindu metaphysics with contemporary ecological science to critique capitalist modernity’s environmental violence. The novel’s depiction of floods, the sinking of Venice, and the global refugee crisis dramatizes karmic consequences, while its evocation of myth–science convergence offers a vision of sacred interdependence. Ultimately, this paper concludes that Gun Island provides an urgent eco-spiritual model for reimagining planetary ethics and responding to the Anthropocene through humility, relationality, and spiritual responsibility. Full article
(This article belongs to the Special Issue Postcolonial Literature and Ecotheology)
26 pages, 1859 KiB  
Article
Impact of Reinforcement Corrosion on Progressive Collapse Behavior of Multi-Story RC Frames
by Luchuan Ding, Xiaodi Dai, Yiping Gan and Yihua Zeng
Buildings 2025, 15(14), 2534; https://doi.org/10.3390/buildings15142534 - 18 Jul 2025
Abstract
The progressive collapse performance of reinforced concrete (RC) building structures has been extensively investigated using the alternate load path method. However, most studies have focused on newly designed structures, with limited attention given to existing buildings. Since progressive collapse can occur at any [...] Read more.
The progressive collapse performance of reinforced concrete (RC) building structures has been extensively investigated using the alternate load path method. However, most studies have focused on newly designed structures, with limited attention given to existing buildings. Since progressive collapse can occur at any point during a structure’s service life and at various locations within the structural system, this study examines the progressive collapse behavior of deteriorated RC frames subjected to simulated reinforcement corrosion. This paper presents an investigation into the system-level progressive collapse responses of deteriorated RC frames, which extends the current state of the art in this field. The influence of different material deteriorations, different corrosion locations, different column removal scenarios, and dynamic effects on structural response is explored. According to the results obtained in this research, a significant reduction in progressive collapse resistance can be resulted in with increasing corrosion levels. Notably, only reinforcement corrosion in the beams located directly above the removed column (i.e., within the directly affected part) for the investigated RC frame had a substantial impact on structural performance. In contrast, corrosion in other regions and concrete deterioration exhibited minimal influence in this work. An increased number of corroded floors further reduced collapse resistance. Dynamic progressive collapse resistance was found to be considerably lower than its static counterpart and decreased at a slightly faster rate as corrosion progressed. Additionally, the energy-based method was shown to provide a reasonable approximation of the maximum dynamic responses at different corrosion levels, offering a computationally efficient alternative to full dynamic analysis. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
22 pages, 46566 KiB  
Article
The Impact of Spring Ligament Injuries on Flatfoot Deformity: An Exploratory Study of Morphological and Radiographic Changes in 198 Patients
by Roxa Ruiz, Roman Susdorf and Beat Hintermann
J. Clin. Med. 2025, 14(14), 5109; https://doi.org/10.3390/jcm14145109 - 18 Jul 2025
Abstract
Background: Spring ligament (SL) injuries are primarily associated with progressive collapsing flatfoot deformity, but can also occur due to trauma. It remains unclear whether the morphological changes following trauma differ from those caused by chronic overload. The aim of this study was [...] Read more.
Background: Spring ligament (SL) injuries are primarily associated with progressive collapsing flatfoot deformity, but can also occur due to trauma. It remains unclear whether the morphological changes following trauma differ from those caused by chronic overload. The aim of this study was (1) to analyze whether a relationship exists between the injury pattern and foot deformity and (2) to evaluate whether there is a distinction between trauma-related and non-trauma-related injuries. Method: We prospectively enrolled 198 patients with a median age of 57 years (range, 13 to 86 years; female, 127 (64%); male, 71 (36%)) who had a clinically diagnosed, surgically confirmed, and classified SL injury. We used weight-bearing standard X-rays to assess foot deformity. The control group consisted of 30 patients (median age 51 years, range, 44–66; female, 21 (70.0%); male, 9 (30.0%)) with no foot deformities or prior foot surgeries. Results: A 41.9% incidence of trauma was identified as the cause of these injuries, accounting for 16 (20.8%) of isolated injuries to the SL, 30 (42.9%) of SL injury accompanied by a posterior tibial (PT) tendon avulsion, and 37 (72.5%) of SL injury alongside a bony avulsion at the navicular injuries. The odds of being post-traumatic decreased with each year of age by a factor of 0.97 (95% CI: 0.95–0.99). Conclusions: While all radiographic measurements for flatfoot deformity became pathological after an injury to the SL, they did not accurately predict the injury patterns of the SL and distal PT tendon. Generally, post-traumatic cases exhibited lower severity of foot deformity, suggesting that other structures beyond the SL may contribute to the development of flatfoot deformity. Full article
(This article belongs to the Special Issue Foot and Ankle Surgery: Current Advances and Prospects)
Show Figures

Figure 1

15 pages, 1588 KiB  
Article
Seismic Fragility and Loss Assessment of a Multi-Story Steel Frame with Viscous Damper in a Corrosion Environment
by Wenwen Qiu, Haibo Wen, Chenhui Gong, Zhenkai Zhang, Wenjing Li and Shuo Li
Buildings 2025, 15(14), 2515; https://doi.org/10.3390/buildings15142515 - 17 Jul 2025
Abstract
Corrosion can accelerate the deterioration of the mechanical properties of steel structures. However, few studies have systematically evaluated its impact on seismic performance, particularly with respect to seismic economic losses. In this paper, the seismic fragility and loss assessment of a multi-story steel [...] Read more.
Corrosion can accelerate the deterioration of the mechanical properties of steel structures. However, few studies have systematically evaluated its impact on seismic performance, particularly with respect to seismic economic losses. In this paper, the seismic fragility and loss assessment of a multi-story steel frame with viscous dampers (SFVD) building are investigated through experimental and numerical analysis. Based on corrosion and tensile test results, OpenSees software 3.3.0 was used to model the SFVD, and the effect of corrosion on the seismic fragility was evaluated via incremental dynamic analysis (IDA). Then, the economic losses of the SFVD during different seismic intensities were assessed at various corrosion times based on fragility analysis. The results show that as the corrosion time increases, the mass and cross-section loss rate of steel increase, causing a decrease in mechanical property indices, and theprobability of exceedance of the SFVD in the limit state increases gradually with increasing corrosion time, with an especially significant impact on the collapse prevention (CP) state. Furthermore, the economic loss assessment based on fragility curves indicates that the economic loss increases with corrosion time. Thus, the aim of this paper is to provide guidance for the seismic design and risk management of steel frame buildings in coastal regions throughout their life cycle. Full article
Show Figures

Figure 1

18 pages, 4030 KiB  
Article
The Cyclic Peptide Cyclo-zp80r Controls Salmonella enterica and Listeria monocytogenes Replication in Non-Concentrated (NFC) Orange Juice: Antibacterial Effects and Mechanisms of Action
by Zhouxia Wang, Ping Zeng, Jinhui Lu, Sharon Shui Yee Leung and Lanhua Yi
Foods 2025, 14(14), 2506; https://doi.org/10.3390/foods14142506 - 17 Jul 2025
Abstract
The market for non-concentrated (NFC) orange juice is increasing rapidly due to consumer demand for nutrients and flavor. However, it encounters challenges in microbial safety, particularly from Salmonella enterica and Listeria monocytogenes. This study aimed to exploit a bio-preservative for NFC orange juice. [...] Read more.
The market for non-concentrated (NFC) orange juice is increasing rapidly due to consumer demand for nutrients and flavor. However, it encounters challenges in microbial safety, particularly from Salmonella enterica and Listeria monocytogenes. This study aimed to exploit a bio-preservative for NFC orange juice. Results showed that the cyclic peptide cyclo-zp80r had good antibacterial activity, with minimum inhibitory concentration values of 2–8 μM against S. enterica and L. monocytogenes. It exhibited bactericidal action against S. enterica and bacteriostatic action against L. monocytogenes at a concentration of 128 μM. This study explored the effect of cyclo-zp80r on the pathogenicity of S. enterica and L. monocytogenes. The mortality rate of Galleria mellonella exposed to these pathogens in NFC orange juice decreased from 100% to 60% after cyclo-zp80r treatment, surpassing the effectiveness of nisin. Cyclo-zp80r exhibited depolarization effects on S. enterica and L. monocytogenes. It increased outer membrane permeability and damaged the membrane structure of S. enterica. Cyclo-zp80r also caused distinct morphological changes, mainly cell collapse in S. enterica and localized bubble-like protrusions in L. monocytogenes. It induced reactive oxygen species production and DNA binding. The species diversity and abundance in NFC orange juice were also reduced by cyclo-zp80r, particularly in the genera Pantoea, Aeromonas, Pseudomonas, and Erwinia. Additionally, cyclo-zp80r exhibited excellent stability at high temperature (121 °C, 5 min) and in fresh orange juice. These results suggest that cyclo-zp80r could be developed as an effective food bio-preservative. Full article
Show Figures

Figure 1

15 pages, 1982 KiB  
Review
Stellar Evolution Through the Red Supergiant Phase
by Sylvia Ekström and Cyril Georgy
Galaxies 2025, 13(4), 81; https://doi.org/10.3390/galaxies13040081 - 17 Jul 2025
Abstract
Massive stars less massive than ∼30 M evolve into a red supergiant after the main sequence. Given a standard IMF, this means about 80% of all single massive stars will experience this phase. RSGs are dominated by convection, with a radius that [...] Read more.
Massive stars less massive than ∼30 M evolve into a red supergiant after the main sequence. Given a standard IMF, this means about 80% of all single massive stars will experience this phase. RSGs are dominated by convection, with a radius that may extend up to thousands of solar radii. Their low temperature and gravity make them prone to losing large amounts of mass, either through pulsationally driven wind or through mass-loss outburst. RSGs are the progenitors of the most common core-collapse supernovae, type II. In the present review, we give an overview of our theoretical understanding about this spectacular phase of massive star evolution. Full article
(This article belongs to the Special Issue The Red Supergiants: Crucial Signposts for the Fate of Massive Stars)
Show Figures

Figure 1

15 pages, 1808 KiB  
Article
The Initial Assessment of Fire Safety of a Plane Steel Frame According to System Reliability Analysis
by Katarzyna Kubicka
Appl. Sci. 2025, 15(14), 7947; https://doi.org/10.3390/app15147947 - 17 Jul 2025
Abstract
The purpose of this research was to indicate the importance of an efficient design of steel frame structures, taking into account the fire design situation. In the case of steel frame structures, the typical mechanisms of failure (sway, beam, and mixed) are well [...] Read more.
The purpose of this research was to indicate the importance of an efficient design of steel frame structures, taking into account the fire design situation. In the case of steel frame structures, the typical mechanisms of failure (sway, beam, and mixed) are well known. Using this knowledge, combined with a reliability assessment of single nodes, may let designers reduce both the amount of material used for a structure and the total cost of the structure. In this article, one-story, single-nave frames with different loads were analyzed. Two types of loads were analyzed: symmetrical and unsymmetrical. Both cases resulted in different failure paths. The static analysis of the structure in the following minutes of the fire duration was carried out in the Robot Structural Analysis programme. The temperature load was computed according to the Eurocode recommendation with the assumption that the temperature of fire gases is described by the standard fire curve. Afterward, the system reliability analysis for the selected failure paths was conducted. Additionally, the displacement analysis was performed in the following minutes of the fire. The biggest challenge in the proposed method is that there are many potential failure paths, and checking all of them is very time-consuming, even when using advanced computers. Therefore, only selected collapse modes were analyzed. Full article
Show Figures

Figure 1

20 pages, 267 KiB  
Article
A Systems Thinking Approach to Political Polarization and Encounters of Dysrecognition
by Gregory A. Thompson and Soren Pearce
Humans 2025, 5(3), 17; https://doi.org/10.3390/humans5030017 - 17 Jul 2025
Abstract
In this article, we employ a Batesonian systems thinking approach to analyze politically polarized and politically polarizing encounters in the contemporary United States. We bring together Bateson’s concepts of schismogenesis, double binds, metacommunication, and transcontextualism with recent work on recognition and resonance in [...] Read more.
In this article, we employ a Batesonian systems thinking approach to analyze politically polarized and politically polarizing encounters in the contemporary United States. We bring together Bateson’s concepts of schismogenesis, double binds, metacommunication, and transcontextualism with recent work on recognition and resonance in order to show how these encounters create moments of transcontextual double binds that produce mutual dysrecognition. We show how these moments of mutual dysrecognition become both animating forces of political polarization in the moment while also becoming constitutive poetic resonances for making sense of future events. When these moments of dysrecognition are considered alongside the removal of mechanisms that restrain schismogenesis, the United States body politic is becoming increasingly schizophrenic—split in two with both parts incommunicado with the other such that the whole system is veering towards collapse. We close by briefly considering the kind of deutero-learning, to use Bateson’s term, that might help to stave off such a collapse. Full article
20 pages, 3914 KiB  
Article
Simulation and Experimental Analysis of Shelf Temperature Effects on the Primary Drying Stage of Cordyceps militaris Freeze-Drying
by Phuc Nguyen Van and An Nguyen Nguyen
Processes 2025, 13(7), 2269; https://doi.org/10.3390/pr13072269 - 16 Jul 2025
Viewed by 71
Abstract
This study employs advanced numerical simulation to investigate the influence of shelf temperature on the freeze-drying kinetics and product quality of Cordyceps militaris. Emphasis is placed on the glass transition and structural collapse mechanisms during the primary drying stage. A detailed computational [...] Read more.
This study employs advanced numerical simulation to investigate the influence of shelf temperature on the freeze-drying kinetics and product quality of Cordyceps militaris. Emphasis is placed on the glass transition and structural collapse mechanisms during the primary drying stage. A detailed computational model was developed to predict temperature profiles, glass transition temperature, collapse temperature, and moisture distribution under varying process conditions. Simulation results indicate that maintaining the shelf temperature below 10 °C minimizes the risk of structural collapse and volume shrinkage while improving drying efficiency and product stability. Based on the model, an optimal freeze-drying protocol is proposed: shelf heating at 0 °C, condenser plate at −32 °C, and chamber pressure at 35 Pa. Experimental validation confirmed the feasibility of this regime, yielding a shrinkage of 9.52%, a color difference (ΔE) of 4.86, water activity of 0.364 ± 0.018, and a rehydration ratio of 55.14 ± 0.789%. Key bioactive compounds, including adenosine and cordycepin, were well preserved. These findings underscore the critical role of simulation in process design and optimization, contributing to the development of efficient and high-quality freeze-dried functional food products. Full article
Show Figures

Figure 1

20 pages, 1859 KiB  
Article
Disenchantment and Preservation of Monastic Discipline: A Study of the Buddhist Monastic Robe Reform Debates in Republican China (1912–1949)
by Yanzhou Jiang
Religions 2025, 16(7), 920; https://doi.org/10.3390/rel16070920 - 16 Jul 2025
Viewed by 55
Abstract
The Republican era of China witnessed three primary positions regarding Buddhist monastic robe reform. Taixu advocated preserving canonical forms (法服) for ritual garments while adapting regular robes (常服) to contemporary needs; Dongchu proposed diminishing ritual distinctions by establishing a tripartite hierarchical system—virtue-monk robes [...] Read more.
The Republican era of China witnessed three primary positions regarding Buddhist monastic robe reform. Taixu advocated preserving canonical forms (法服) for ritual garments while adapting regular robes (常服) to contemporary needs; Dongchu proposed diminishing ritual distinctions by establishing a tripartite hierarchical system—virtue-monk robes (德僧服), duty-monk robes (職僧服), and scholar-monk robes (學僧服); and Lengjing endorsed the full secularization of monastic robes. As a reformist leader, Taixu pursued reforms grounded in both doctrinal authenticity and contextual responsiveness. His initial advocacy for robe modifications, however, rendered him a target for traditionalists like Cihang, who conflated his measured approach with the radicalism of Dongchu’s faction. Ultimately, the broader Buddhist reform collapsed, with robe controversies serving as a critical lens into its failure. The reasons for its failure include not only wartime disruption and inadequate governmental support, but also the structural disadvantages of the reformists compared to the traditionalists, which proved decisive. This was due to the fact that the traditionalists mostly controlled monastic economies, wielded institutional authority, and commanded discursive hegemony, reinforced by lay Buddhist alignment. These debates crystallize the core tension in Buddhist modernization—the dialectic between “disenchantment” and “preservation of monastic discipline”. This dynamic of negotiated adjustment offers a vital historical framework for navigating contemporary Buddhism’s engagement with modernity. Full article
(This article belongs to the Special Issue Monastic Lives and Buddhist Textual Traditions in China and Beyond)
Show Figures

Figure 1

14 pages, 985 KiB  
Article
Forefoot Centre of Pressure Patterns in Black Male African Recreational Runners with Pes Planus
by Jodie Dickson, Glen James Paton and Yaasirah Mohomed Choonara
J. Funct. Morphol. Kinesiol. 2025, 10(3), 273; https://doi.org/10.3390/jfmk10030273 - 16 Jul 2025
Viewed by 60
Abstract
Background: Pes planus is a condition where the arch of the foot collapses, resulting in the entire sole contacting the ground. The biomechanical implications of pes planus on gait have been widely studied; however, research specific to Black African populations, particularly recreational runners, [...] Read more.
Background: Pes planus is a condition where the arch of the foot collapses, resulting in the entire sole contacting the ground. The biomechanical implications of pes planus on gait have been widely studied; however, research specific to Black African populations, particularly recreational runners, is scarce. Aim: This study aimed to describe the forefoot centre of pressure (CoP) trajectory during the barefoot gait cycle among Black African recreational runners with pes planus. Methods: A prospective explorative and quantitative study design was employed. Participants included Black African male recreational runners aged 18 to 45 years diagnosed with pes planus. A Freemed™ 6050 force plate was used to collect gait data. Statistical analysis included cross-tabulations to identify patterns. Results: This study included 104 male participants across seven weight categories, with the majority in the 70-to-79 kg range (34.6%, n = 36). Most participants with pes planus showed a neutral foot posture (74.0%, n = 77) on the foot posture index 6 (FPI-6) scale. Flexible pes planus (94.2%, n = 98) was much more common than rigid pes planus (5.8%, n = 6). Lateral displacement of the CoP was observed in the right forefoot (90.4%, n = 94) and left forefoot (57.7%, n = 60). Load distribution patterns differed between feet, with the right foot favouring the medial heel, arch, and metatarsal heads, while the left foot favoured the lateral heel, medial heel, and lateral arch. No statistical significance was found in the cross-tabulations, but notable lateral CoP displacement in the forefoot was observed. Conclusions: The findings challenge the traditional view of pes planus causing overpronation and highlight the need for clinicians to reconsider standard diagnostic and management approaches. Further research is needed to explore the implications of these findings for injury prevention and management in this population. Full article
(This article belongs to the Special Issue Biomechanical Analysis in Physical Activity and Sports—2nd Edition)
Show Figures

Figure 1

11 pages, 3627 KiB  
Article
The Influence of Traps on the Self-Heating Effect and THz Response of GaN HEMTs
by Huichuan Fan, Xiaoyun Wang, Xiaofang Wang and Lin Wang
Photonics 2025, 12(7), 719; https://doi.org/10.3390/photonics12070719 - 16 Jul 2025
Viewed by 91
Abstract
This study systematically investigates the effects of trap concentration on self-heating and terahertz (THz) responses in GaN HEMTs using Sentaurus TCAD. Traps, inherently unavoidable in semiconductors, can be strategically introduced to engineer specific energy levels that establish competitive dynamics between the electron momentum [...] Read more.
This study systematically investigates the effects of trap concentration on self-heating and terahertz (THz) responses in GaN HEMTs using Sentaurus TCAD. Traps, inherently unavoidable in semiconductors, can be strategically introduced to engineer specific energy levels that establish competitive dynamics between the electron momentum relaxation time and the carrier lifetime. A simulation-based exploration of this mechanism provides significant scientific value for enhancing device performance through self-heating mitigation and THz response optimization. An AlGaN/GaN heterojunction HEMT model was established, with trap concentrations ranging from 0 to 5×1017 cm3. The analysis reveals that traps significantly enhance channel current (achieving 3× gain at 1×1017 cm3) via new energy levels that prolong carrier lifetime. However, elevated trap concentrations (>1×1016 cm3) exacerbate self-heating-induced current collapse, reducing the min-to-max current ratio to 0.9158. In THz response characterization, devices exhibit a distinct DC component (Udc) under non-resonant detection (ωτ1). At a trap concentration of 1×1015 cm3, Udc peaks at 0.12 V when VgDC=7.8 V. Compared to trap-free devices, a maximum response attenuation of 64.89% occurs at VgDC=4.9 V. Furthermore, Udc demonstrates non-monotonic behavior with concentration, showing local maxima at 4×1015 cm3 and 7×1015 cm3, attributed to plasma wave damping and temperature-gradient-induced electric field variations. This research establishes trap engineering guidelines for GaN HEMTs: a concentration of 4×1015 cm3 optimally enhances conductivity while minimizing adverse impacts on both self-heating and the THz response, making it particularly suitable for high-sensitivity terahertz detectors. Full article
Show Figures

Figure 1

13 pages, 3483 KiB  
Article
The “Double-Row Shoelace” Capsulodesis: A Novel Technique for the Repair and Reconstruction of the Scapholunate Ligament of the Wrist
by Adriano Cannella, Rocco De Vitis, Arturo Militerno, Giuseppe Taccardo, Vitale Cilli, Lorenzo Rocchi, Giulia Maria Sassara and Marco Passiatore
Surgeries 2025, 6(3), 57; https://doi.org/10.3390/surgeries6030057 - 16 Jul 2025
Viewed by 51
Abstract
Introduction: The scapholunate interosseus ligament (SLIL) is critical for wrist stability, with injuries causing carpal instability and potential scapholunate advanced collapse (SLAC). This technical note presents a novel ligament-sparing surgical technique for treating SLIL tears ranging from grade 2 to 4 of the [...] Read more.
Introduction: The scapholunate interosseus ligament (SLIL) is critical for wrist stability, with injuries causing carpal instability and potential scapholunate advanced collapse (SLAC). This technical note presents a novel ligament-sparing surgical technique for treating SLIL tears ranging from grade 2 to 4 of the Garcia-Elias classification. Materials and Methods: A retrospective study was performed on ten patients treated with this novel technique. The technique involves a dorsal approach to the wrist through a 5–7 cm incision ulnar to Lister’s tubercle. After exposing the scapholunate joint, reduction is performed using Kirschner wires (K-wires) as joysticks, followed by stabilisation with three K-wires through the scapholunate, scapho-capitate, and radio-lunate joints. Two 2.3 mm suture anchors with double sutures are placed where the reduction K-wires were removed. One pair of sutures connects the anchors and any remaining SLIL tissue, while the second pair create a shoelace-like capsulodesis. Post-operative care includes staged K-wire removal at one and two months, with progressive rehabilitation before returning to weight-bearing activities at six months. Results: All patients improved in pain and function. The technique addresses SLIL injuries by restoring both coronal alignment through ligament repair and sagittal alignment via dorsal capsulodesis. The use of suture anchors and direct repair preserves the native tissue while reinforcing the dorsal capsule–scapholunate septum complex, avoiding the need for tendon grafts or extensive bone tunnelling. Conclusions: This ligament-sparing technique offers several advantages, including absence of donor site morbidity, minimal damage to carpal cartilage and vascularity, and preservation of surgical options should revision be necessary. The procedure effectively addresses both components of scapholunate instability while maintaining a relatively straightforward surgical approach. Full article
(This article belongs to the Section Hand Surgery and Research)
Show Figures

Figure 1

Back to TopTop