Controversial Aspects in Sedative Techniques for Drug-Induced Sleep Endoscopy (DISE)—A Narrative Review
Abstract
1. Introduction
2. Methods: Literature Research
3. Main Controversies
3.1. Sedative Agent Selection: Propofol, Dexmedetomidine, or Midazolam?
3.2. Co-Sedatives: Utility and Risks
3.3. Sedation Protocols-Target-Controlled Infusion Devices
3.4. Combination of Sedation Regimens
3.5. Monitoring Sedation Depth
3.6. Standardization of Protocols
3.7. Special Considerations for Obese OSA Patients
3.8. Diagnostic Variability-Impact on Surgical Decision
3.9. Diagnostic Variability-Impact of Body Position on DISE Findings and Considerations Regarding Anatomic Airflow Limitation
3.10. Sedation Considerations for Patients with Comorbidities
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| DISE | Drug-Induced Sleep Endoscopy |
| OSA | Obstructive Sleep Apnea |
| TCI | Target-Controlled Infusion |
| PK–PD | Pharmacokinetic–Pharmacodynamic |
| BIS | Bispectral Index |
References
- Chang, J.L.; Goldberg, A.N.; Alt, J.A.; Mohammed, A.; Ashbrook, L.; Auckley, D.; Ayappa, I.; Bakhtiar, H.; Barrera, J.E.; Bartley, B.L.; et al. International Consensus Statement on Obstructive Sleep Apnea. Int. Forum Allergy Rhinol. 2023, 13, 1061–1482. [Google Scholar] [CrossRef]
- Chaudhry, R.A.; Zarmer, L.; West, K.; Chung, F. Obstructive Sleep Apnea and Risk of Postoperative Complications after Non-Cardiac Surgery. J. Clin. Med. 2024, 13, 2538. [Google Scholar] [CrossRef]
- Luzzi, V.; Mazur, M.; Guaragna, M.; Di Carlo, G.; Cotticelli, L.; Magliulo, G.; Marasca, B.; Pirro, V.; Di Giorgio, G.; Ndokaj, A.; et al. Correlations of Obstructive Sleep Apnea Syndrome and Daytime Sleepiness with the Risk of Car Accidents in Adult Working Population: A Systematic Review and Meta-Analysis with a Gender-Based Approach. J. Clin. Med. 2022, 11, 3971. [Google Scholar] [CrossRef]
- Eastwood, P.R.; Platt, P.R.; Shepherd, K.; Maddison, K.; Hillman, D.R. Collapsibility of the upper airway at different concentrations of propofol anesthesia. Anesthesiology 2005, 103, 470–477. [Google Scholar] [CrossRef] [PubMed]
- De Vito, A.; Carrasco Llatas, M.; Vanni, A.; Bosi, M.; Braghiroli, A.; Campanini, A.; de Vries, N.; Hamans, E.; Hohenhorst, W.; Kotecha, B.T.; et al. European position paper on drug-induced sedation endoscopy (DISE). Sleep Breath. 2014, 18, 453–465. [Google Scholar] [CrossRef] [PubMed]
- De Vito, A.; Carrasco Llatas, M.; Ravesloot, M.J.; Kotecha, B.; de Vries, N.; Hamans, E.; Maurer, J.; Bosi, M.; Blumen, M.; Heiser, C.; et al. European position paper on drug-induced sleep endoscopy: 2017 Update. Clin. Otolaryngol. 2018, 43, 1541–1552. [Google Scholar] [CrossRef] [PubMed]
- Olszewska, E.; De Vito, A.; Heiser, C.; Vanderveken, O.; O’Connor-Reina, C.; Baptista, P.; Kotecha, B.; Vicini, C. Consensus Statements among European Sleep Surgery Experts on Snoring and Obstructive Sleep Apnea: Part 3 Palatal Surgery, Outcomes and Follow-Up, Complications, and Post-Operative Management. J. Clin. Med. 2024, 13, 5438. [Google Scholar] [CrossRef]
- Vroegop, A.V.; Vanderveken, O.M.; Verbraecken, J.A. Drug-Induced Sleep Endoscopy: Evaluation of a Selection Tool for Treatment Modalities for Obstructive Sleep Apnea. Respiration 2020, 99, 451–457. [Google Scholar] [CrossRef]
- Green, K.K.; Kent, D.T.; D’Agostino, M.A.; Hoff, P.T.; Lin, H.S.; Soose, R.J.; Boyd Gillespie, M.; Yaremchuk, K.L.; Carrasco-Llatas, M.; Tucker Woodson, B.; et al. Drug-Induced Sleep Endoscopy and Surgical Outcomes: A Multicenter Cohort Study. Laryngoscope 2019, 129, 761–770. [Google Scholar] [CrossRef]
- Bastier, P.L.; Gallet de Santerre, O.; Bartier, S.; De Jong, A.; Trzepizur, W.; Nouette-Gaulain, K.; Bironneau, V.; Blumen, M.; Chabolle, F.; de Bonnecaze, G.; et al. Guidelines of the French Society of ENT (SFORL): Drug-induced sleep endoscopy in adult obstructive sleep apnea syndrome. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 2022, 139, 216–225. [Google Scholar] [CrossRef]
- Qi, Y.; Zhao, Y.; Yan, Y.; Wu, D. Surgical failure guided by DISE in patients with obstructive sleep apnea: A systematic review and meta-analysis. Eur. Arch. Otorhinolaryngol. 2024, 281, 3333–3343. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, D.; Schall, C.; Harders, M.; Tollinche, L.; Tanios, M.; Alter, J.; Weidenbecher, M. Anesthesia for Drug Induced Sleep Endoscopy (DISE). Curr. Anesthesiol. Rep. 2024, 14, 469–474. [Google Scholar] [CrossRef]
- Shteamer, J.W.; Dedhia, R.C. Sedative choice in drug-induced sleep endoscopy: A neuropharmacology-based review. Laryngoscope 2017, 127, 273–279. [Google Scholar] [CrossRef]
- Yoon, B.W.; Hong, J.M.; Hong, S.L.; Koo, S.K.; Roh, H.J.; Cho, K.S. A comparison of dexmedetomidine versus propofol during drug-induced sleep endoscopy in sleep apnea patients. Laryngoscope 2016, 126, 763–767. [Google Scholar] [CrossRef] [PubMed]
- Wan, C.C.J.; Leung, Y.Y. Current Concepts of the Applications and Treatment Implications of Drug-Induced Sleep Endoscopy for the Management of Obstructive Sleep Apnoea. Diagnostics 2025, 15, 2614. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Capasso, R.; Rosa, T.; Tsou, D.Y.; Nekhendzy, V.; Drover, D.; Collins, J.; Zaghi, S.; Camacho, M. Variable Findings for Drug-Induced Sleep Endoscopy in Obstructive Sleep Apnea with Propofol versus Dexmedetomidine. Otolaryngol. Head Neck Surg. 2016, 154, 765–770. [Google Scholar] [CrossRef] [PubMed]
- Traxdorf, M.; Tschaikowsky, K.; Scherl, C.; Bauer, J.; Iro, H.; Angerer, F. Drug-Induced Sleep Endoscopy (DISE) with Target Controlled Infusion (TCI) and Bispectral Analysis in Obstructive Sleep Apnea. J. Vis. Exp. 2016, 118, 54739. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Heiser, C.; Fthenakis, P.; Hapfelmeier, A.; Berger, S.; Hofauer, B.; Hohenhorst, W.; Kochs, E.F.; Wagner, K.J.; Edenharter, G.M. Drug-induced sleep endoscopy with target-controlled infusion using propofol and monitored depth of sedation to determine treatment strategies in obstructive sleep apnea. Sleep Breath. 2017, 21, 737–744. [Google Scholar] [CrossRef]
- De Vito, A.; Agnoletti, V.; Zani, G.; Corso, R.M.; D’aGostino, G.; Firinu, E.; Marchi, C.; Hsu, Y.-S.; Maitan, S.; Vicini, C. The importance of drug-induced sedation endoscopy (D.I.S.E.) techniques in surgical decision making: Conventional versus target controlled infusion techniques—A prospective randomized controlled study and a retrospective surgical outcomes analysis. Eur. Arch. Oto-Rhino-Laryngol. 2017, 274, 2307–2317. [Google Scholar] [CrossRef]
- Padiyara, T.V.; Bansal, S.; Jain, D.; Arora, S.; Gandhi, K. Dexmedetomidine versus propofol at different sedation depths during drug-induced sleep endoscopy: A randomized trial. Laryngoscope 2020, 130, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Carrasco Llatas, M.; Agostini Porras, G.; Cuesta González, M.T.; Rodrigo Sanbartolomé, A.; Giner Bayarri, P.; Gómez-Pajares, F.; Dalmau Galofre, J. Drug-induced sleep endoscopy: A two drug comparison and simultaneous polysomnography. Eur. Arch. Otorhinolaryngol. 2014, 271, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Carrasco-Llatas, M.; Matarredona-Quiles, S.; De Vito, A.; Chong, K.B.; Vicini, C. Drug-induced sleep endoscopy: Technique, indications, tips and pitfalls. Healthcare 2019, 7, 93. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Drover, D.R.; Chen, M.C.; Saxena, A.R.; Eagleman, S.L.; Nekhendzy, V.; Pritchard, A.; Capasso, R. EEG response of dexmedetomidine during drug induced sleep endoscopy. Front. Neurosci. 2023, 17, 1144141. [Google Scholar] [CrossRef]
- Li, C.; Fan, H.; Duan, Y.; Wang, D.; Lin, Y.; Xin, W.; Ma, R.; Wen, W.; Wu, Y. Effects of dexmedetomidine and propofol on the key endotypes of OSA: A randomized, single-blind, placebo-controlled, crossover trial. Sleep Med. 2025, 129, 132–139. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y.; Fang, X.; Weng, L.; Zhu, S.; Luo, N.; Huang, D.; Guo, Q.; Huang, C. Comparison of Remimazolam and Propofol for Drug-Induced Sleep Endoscopy: A Randomized Clinical Trial. Otolaryngol. Head Neck Surg. 2023, 169, 1356–1365. [Google Scholar] [CrossRef]
- Viana, A.; Zhao, C.; Rosa, T.; Couto, A.; Neves, D.D.; Araújo-Melo, M.H.; Capasso, R. The Effect of Sedating Agents on Drug-Induced Sleep Endoscopy Findings. Laryngoscope 2019, 129, 506–513. [Google Scholar] [CrossRef] [PubMed]
- Tănase, N.V.; Hainăroșie, R.; Brîndușe, L.A.; Cobilinschi, C.; Dutu, M.; Corneci, D.; Zainea, V. Study of Two Sedative Protocols for Drug-Induced Sleep Endoscopy: Propofol versus Propofol-Remifentanil Combination, Delivered in Target-Controlled Infusion Mode. Medicina 2024, 60, 1123. [Google Scholar] [CrossRef]
- Cho, J.S.; Soh, S.; Kim, E.J.; Cho Hju Shin, S.; Kim, H.J.; Koo, B.N. Comparison of three sedation regimens for drug-induced sleep endoscopy. Sleep Breath. 2015, 19, 711–717. [Google Scholar] [CrossRef]
- Kim, Y.; Park, H.; Shin, J.; Choi, J.H.; Park, S.W.; Kang, H.Y. Effect of remifentanil during drug-induced sleep endoscopy in patients with obstructive sleep apnea. Sleep Breath. 2018, 22, 919–923. [Google Scholar] [CrossRef] [PubMed]
- Šafránková, P.; Bruthans, J. Target-Controlled Infusion of Propofol: A Systematic Review of Recent Results. J. Med. Syst. 2025, 49, 54. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Marsh, B.; White, M.; Morton, N.; Kenny, G.N. Pharmacokinetic model driven infusion of propofol in children. Br. J. Anaesth. 1991, 67, 41–48. [Google Scholar] [CrossRef]
- Schnider, T.W.; Minto, C.F.; Gambus, P.L.; Andresen, C.; Goodale, D.B.; Shafer, S.L.; Youngs, E.J. The influence of method of administration and covariates on the pharmacoki-netics of propofol in adult volunteers. Anesthesiology 1998, 88, 1170–1182. [Google Scholar] [CrossRef]
- Eleveld, D.J.; Colin, P.; Absalom, A.R.; Struys, M.M.R.F. Pharmacokinetic-pharmacodynamic model for propofol for broad application in anaesthesia and sedation. Br. J. Anaesth. 2018, 120, 942–959. [Google Scholar] [CrossRef] [PubMed]
- Vellinga, R.; Eleveld, D.J.; Struys, M.M.R.F.; van den Berg, J.P. General purpose models for intravenous anesthetics, the next generation for target-controlled infusion and total intravenous anesthesia? Curr. Opin. Anaesthesiol. 2023, 36, 602–607. [Google Scholar] [CrossRef] [PubMed]
- Tănase, N.-V.; Hainăroșie, R.; Brîndușe, L.-A.; Corneci, D.; Voiosu, C.; Rusescu, A.; Cobilinschi, C.; Stanciu Găvan, C.; Zainea, V. A Clinical Comparative Study of Schnider and Eleveld Pharmacokinetic–Pharmacodynamic Models for Propofol Target-Controlled Infusion Sedation in Drug-Induced Sleep Endoscopy. Biomedicines 2025, 13, 822. [Google Scholar] [CrossRef]
- Elkalla, R.S.; El Mourad, M.B. Respiratory and hemodynamic effects of three different sedative regimens for drug induced sleep endoscopy in sleep apnea patients. A prospective randomized study. Minerva Anestesiol. 2020, 86, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Yongping, Z.; Xinyi, L.; Aming, S.; Qiang, X.; Tianqi, Z.; Mengmeng, S.; Xiong, C.; Xuemin, S. The safety and efficacy of esketamine in comparison to dexmedetomidine during drug-induced sleep endoscopy in children with obstructive sleep apnea hypopnea syndrome: A randomized, controlled and prospective clinical trial. Front. Pharmacol. 2022, 13, 1036509. [Google Scholar] [CrossRef] [PubMed Central]
- Chen, Y.T.; Sun, C.K.; Wu, K.Y.; Chang, Y.J.; Chiang, M.H.; Chen, I.W.; Liao, S.W.; Hung, K.C. The Use of Propofol versus Dexmedetomidine for Patients Receiving Drug-Induced Sleep Endoscopy: A Meta-Analysis of Randomized Controlled Trials. J. Clin. Med. 2021, 10, 1585. [Google Scholar] [CrossRef] [PubMed Central]
- Kandil, A.; Subramanyam, R.; Hossain, M.M.; Ishman, S.; Shott, S.; Tewari, A.; Mahmoud, M. Comparison of the combination of dexmedetomidine and ketamine to propofol or propofol/sevoflurane for drug-induced sleep endoscopy in children. Pediatr. Anesth. 2016, 26, 742–751. [Google Scholar] [CrossRef] [PubMed]
- Ehsan, Z.; Mahmoud, M.; Shott, S.R.; Amin, R.S.; Ishman, S.L. The effects of anesthesia and opioids on the upper airway: A systematic review. Laryngoscope 2016, 126, 270–284. [Google Scholar] [CrossRef] [PubMed]
- Lo, Y.L.; Ni, Y.L.; Wang, T.Y.; Lin, T.Y.; Li, H.Y.; White, D.P.; Lin, J.R.; Kuo, H.P. Bispectral Index in Evaluating Effects of Sedation Depth on Drug-Induced Sleep Endoscopy. J. Clin. Sleep Med. 2015, 11, 1011–1020. [Google Scholar] [CrossRef] [PubMed]
- Nieuwenhuijs, D.; Coleman, E.L.; Douglas, N.J.; Drummond, G.B.; Dahan, A. Bispectral index values and spectral edge frequency at different stages of physiologic sleep. Anesth. Analg. 2002, 94, 125–129. [Google Scholar] [CrossRef]
- Stierer, T.L.; Ishman, S.L. Bispectral Index in Evaluating Effects of Sedation Depth on Drug-Induced Sleep Endoscopy: DISE or No Dice. J. Clin. Sleep Med. 2015, 11, 965–966. [Google Scholar] [CrossRef] [PubMed]
- Rasulo, F.A.; Hopkins, P.; Lobo, F.A.; Pandin, P.; Matta, B.; Carozzi, C.; Romagnoli, S.; Absalom, A.; Badenes, R.; Bleck, T.; et al. Processed Electroencephalogram-Based Monitoring to Guide Sedation in Critically Ill Adult Patients: Recommendations from an International Expert Panel-Based Consensus. Neurocrit. Care 2023, 38, 296–311. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hight, D.; Kreuzer, M.; Ugen, G.; Schuller, P.; Stüber, F.; Sleigh, J.; Kaiser, H.A. Five commercial ‘depth of anaesthesia’ monitors provide discordant clinical recommendations in response to identical emergence-like EEG signals. Br. J. Anaesth. 2023, 130, 536–545. [Google Scholar] [CrossRef] [PubMed]
- Bartier, S.; Blumen, M.; Chabolle, F. Is image interpretation in drug-induced sleep endoscopy that reliable? Sleep Breath. 2020, 24, 677–685. [Google Scholar] [CrossRef] [PubMed]
- Vlad, A.M.; Stefanescu, C.D.; Stefan, I.; Zainea, V.; Hainarosie, R. Comparative Efficacy of Velopharyngeal Surgery Techniques for Obstructive Sleep Apnea: A Systematic Review. Medicina 2023, 59, 1147. [Google Scholar] [CrossRef]
- Di Bari, M.; Colombo, G.; Giombi, F.; Leone, F.; Bianchi, A.; Colombo, S.; Salamanca, F.; Cerasuolo, M. The effect of drug-induced sleep endoscopy on surgical outcomes for obstructive sleep apnea: A systematic review. Sleep Breath. 2024, 28, 859–867. [Google Scholar] [CrossRef]
- Askar, S.M.; Khazbak, A.O.; Mobasher, M.A.; Abd Al Badea, A.M.; Abu Sharkh, A.A.; Awad, A.M. Role of DISE in the surgical outcome for patients with obstructive sleep apnea. Am. J. Otolaryngol. 2023, 44, 103869. [Google Scholar] [CrossRef]
- Lisan, Q.; Baudouin, R.; Lechien, J.R.; Hans, S.; Blumen, M. Is drug-induced sleep endoscopy associated with better outcomes after soft tissue surgery for sleep apnea? A systematic review and meta-analysis. Clin. Otolaryngol. 2023, 48, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Dijemeni, E.; D’Amone, G. Is sedation administration strategy and analysis during drug-induced sedation endoscopy objective and systematic? Sleep Breath. 2018, 22, 181–182. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.T.; Shih, C.W.; Chen, N.; Lu, H.T.; Chu, W.C.; Chen, K.C. Eliminating the Need for Anesthesia in Sleep Endoscopy: A Comparative Study of Traditional Nasopharyngoscope Design Versus NasoLens. Bioengineering 2025, 12, 572. [Google Scholar] [CrossRef]
- Messineo, L.; Bakker, J.P.; Cronin, J.; Yee, J.; White, D.P. Obstructive sleep apnea and obesity: A review of epidemiology, pathophysiology and the effect of weight-loss treatments. Sleep Med. Rev. 2024, 78, 101996. [Google Scholar] [CrossRef]
- Esmaeili, N.; Gell, L.; Taranto-Montemurro, L.; Messineo, L.; Imler, T.; Sands, S.A.; Yee, J.; Cronin, J.; Wellman, A.; White, D.P.; et al. Prevalence of obesity in obstructive sleep apnea within a large community-based cohort of middle-aged/older adults. Sleep 2024, 47, A372. [Google Scholar] [CrossRef]
- Simons, J.C.; Pierce, E.; Diaz-Gil, D.; Malviya, S.A.; Meyer, M.J.; Timm, F.P.; Stokholm, J.B.; Rosow, C.E.; Kacmarek, R.M.; Eikermann, M. Effects of Depth of Propofol and Sevoflurane Anesthesia on Upper Airway Collapsibility, Respiratory Genioglossus Activation, and Breathing in Healthy Volunteers. Anesthesiology 2016, 125, 525–534. [Google Scholar] [CrossRef]
- Mitsikas, D.; Jakob, B.; Janjic, V.; Hasler, C.; Tschopp, S. Interrater reliability of different scoring systems for drug-induced sleep endoscopy. Sleep Breath. 2024, 29, 27. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Friedman, N.R.; Parikh, S.R.; Ishman, S.L.; Ruiz, A.G.; El-Hakim, H.; Ulualp, S.O.; Wootten, C.T.; Koltai, P.J.; Chan, D.K. The current state of pediatric drug-induced sleep endoscopy. Laryngoscope 2017, 127, 266–272. [Google Scholar] [CrossRef] [PubMed]
- Mladoňová, M.; Fedorová, K.; Jor, O.; Slonková, J.; Kondé, A.; Komínek, P.; Matoušek, P. The role of positional changes in optimizing OSA treatment: Evidence from DISE. Eur. Arch. Otorhinolaryngol. 2025, 282, 2709–2717. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Safiruddin, F.; Koutsourelakis, I.; de Vries, N. Upper airway collapse during drug induced sleep endoscopy: Head rotation in supine position compared with lateral head and trunk position. Eur. Arch. Otorhinolaryngol. 2015, 272, 485–488. [Google Scholar] [CrossRef] [PubMed]
- Landry, S.A.; Beatty, C.; Thomson, L.D.J.; Wong, A.M.; Edwards, B.A.; Hamilton, G.S.; Joosten, S.A. A review of supine position related obstructive sleep apnea: Classification, epidemiology, pathogenesis and treatment. Sleep Med. Rev. 2023, 72, 101847. [Google Scholar] [CrossRef] [PubMed]
- Harkins, T.; Tangutur, A.; Keenan, B.T.; Seay, E.G.; Thuler, E.; Dedhia, R.C.; Schwartz, A.R. Pharyngeal Manometry and Upper Airway Collapse During Drug-Induced Sleep Endoscopy. JAMA Otolaryngol. Head Neck Surg. 2024, 150, 869–876. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Garcia, G.J.M.; Woodson, B.T. The collapsing anatomical structure is not always the primary site of flow limitation in obstructive sleep apnea. J. Clin. Sleep Med. 2020, 16, 345–346. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schwartz, A.R.; Barnes, M.; Hillman, D.; Malhotra, A.; Kezirian, E.; Smith, P.L.; Hoegh, T.; Parrish, D.; Eastwood, P.R. Acute upper airway responses to hypoglossal nerve stimulation during sleep in obstructive sleep apnea. Am. J. Respir. Crit. Care Med. 2012, 185, 420–426. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fox, C.; Liu, H.; Yarborough, M.; Fox, M.E.; Kaye, A.D. High-risk patients: Sedation considerations in coexisting disease. In Moderate and Deep Sedation in Clinical Practice; Cambridge University Press: Cambridge, UK, 2012; pp. 120–134. [Google Scholar]
- Masui, K. How to select a PK/PD model. In Total Intravenous Anesthesia and Target Controlled Infusions—A Comprehensive Global Anthology; Absalom, A.R., Mason, K.P., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 171–187. [Google Scholar]


| Characteristic | Propofol | Dexmedetomidine | Midazolam |
|---|---|---|---|
| Onset of sedation | Rapid—~1 min to effect; ideal for quick titration. | Slower—~5–10 min infusion for full effect; titrate gradually. | Moderate—~2–3 min to initial effect (IV); slower peak. |
| Recovery time | Short—quick offset when infusion stopped (metabolized rapidly). | Longer—sedation may linger; patients need longer monitoring. | Intermediate to long–sedative effect can persist (active metabolites). |
| Airway muscle effects | Marked relaxation; dose-dependent reduction in pharyngeal muscle tone and reflexes. High doses can induce collapsibility beyond natural sleep levels. | Mild relaxation; sedation mimics natural sleep stages. Preserves greater muscle tone, resulting in less airway collapse at equivalent sedation levels. | Moderate relaxation; similar propensity for airway obstruction as propofol at moderate sedation. It can significantly depress airway reflexes with increasing dose. |
| Respiratory effects | Respiratory depressant—risk of apnea at deeper levels. Requires airway monitoring/support. | Minimal respiratory depression—maintains spontaneous breathing; lower risk of apnea. | Respiratory depressant—can cause hypoventilation especially if combined with opioids. Unpredictable at higher doses. |
| Hemodyn amic profile | Reduces systemic vascular resistance—may cause hypotension; mild myocardial depression. Heart rate can increase or decrease (varies). | Stable with bradycardia—can cause bradycardia and modest BP reductions (central sympatholysis) Generally preserves hemodynamics well, few stress responses. | Typically mild BP reduction; can cause hypotension especially in frail patients. Reduced control can lead to sudden drops if oversedated. |
| Diagnostic reliability | Well-studied; widely used in DISE. If titrated to moderate sedation, provides collapse patterns similar to natural sleep. Over-sedation can cause false collapse. | Sedation state very close to physiologic sleep; tends to show true collapse sites without excessive relaxation. Might under-represent the most severe collapses (no REM atonia). | Can reproduce OSA collapse patterns in Stage N2 sleep. Agreement with propofol observed. Depth must be controlled to avoid missing events or over-relaxing airway. |
| Advantages for DISE | Fast on/off, easily titrated (especially with TCI). Extensive experience and evidence base. Short duration suits outpatient DISE. | Natural sleep-like sedation, minimal interference with breathing, analgesic properties. Good for patients with respiratory risk (severe OSA, obesity hypoventilation). Has reversal agent (atipamezole) if needed. | Widely available, familiar. Provides amnesia. Has an antagonist (flumazenil) for reversal. Can be given in settings without infusion pumps. |
| Limitations for DISE | Narrow margin between adequate and excessive sedation—risk of airway collapse from drug effect. Requires anesthesiology support. No reversal agent. | Slow onset and longer recovery—less efficient workflow. Requires an infusion pump. Cost can be higher. Bradycardia in some patients. Limited data on long-term outcomes. | Harder to fine-tune level—risk of over- or under-sedation. Respiratory depression, especially with co-sedatives. Longer hangover sedation. Not ideal for precise depth control (TCI is not widely available). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Tănase, N.-V.; Voiosu, C.; Gherasie, L.-M. Controversial Aspects in Sedative Techniques for Drug-Induced Sleep Endoscopy (DISE)—A Narrative Review. Med. Sci. 2026, 14, 58. https://doi.org/10.3390/medsci14010058
Tănase N-V, Voiosu C, Gherasie L-M. Controversial Aspects in Sedative Techniques for Drug-Induced Sleep Endoscopy (DISE)—A Narrative Review. Medical Sciences. 2026; 14(1):58. https://doi.org/10.3390/medsci14010058
Chicago/Turabian StyleTănase, Narcis-Valentin, Catalina Voiosu, and Luana-Maria Gherasie. 2026. "Controversial Aspects in Sedative Techniques for Drug-Induced Sleep Endoscopy (DISE)—A Narrative Review" Medical Sciences 14, no. 1: 58. https://doi.org/10.3390/medsci14010058
APA StyleTănase, N.-V., Voiosu, C., & Gherasie, L.-M. (2026). Controversial Aspects in Sedative Techniques for Drug-Induced Sleep Endoscopy (DISE)—A Narrative Review. Medical Sciences, 14(1), 58. https://doi.org/10.3390/medsci14010058

