Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = cold storage fires

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3894 KiB  
Article
Carbon in Woody Debris and Charcoal Layer in Cold Temperate Coniferous Forest 13 Years After a Severe Wildfire
by Yuanchun Peng, Lina Shi, Xingyu Hou and Yun Zhang
Forests 2025, 16(4), 685; https://doi.org/10.3390/f16040685 - 15 Apr 2025
Viewed by 322
Abstract
Pyrogenic carbon (PyC) is generated from the incomplete combustion of biomass and fossil fuels. Pyrogenic carbon is highly stable and is often referred to as a missing carbon sink. It plays a crucial role in global carbon cycling and climate change research. We [...] Read more.
Pyrogenic carbon (PyC) is generated from the incomplete combustion of biomass and fossil fuels. Pyrogenic carbon is highly stable and is often referred to as a missing carbon sink. It plays a crucial role in global carbon cycling and climate change research. We analyzed the storage of PyC and uncharred biological organic carbon (BOC) within woody debris (WD) and the charcoal layer, as well as the properties of PyC, across four forest types in the cold temperate coniferous forest of the Greater Khingan Mountains. Pyrogenic carbon in WD appears as charred, blackened material, while PyC in the charcoal layer was extracted through chemical oxidation using HF/HCl treatment. Our methodology included particle size separation through dry sieving, followed by the analysis of four size fractions (>2 mm, 2–1 mm, 1–0.5 mm and <0.5 mm) for elemental composition, and the chemical composition was analyzed using DRIFT. With respect to WD, PyC storage ranged from 0.040 to 0.179 Mg·ha−1, whereas BOC storage ranged from 3.1 to 16.8 Mg·ha−1. In the charcoal layer, PyC storage ranged from 7.9 to 44.3 Mg·ha−1, and BOC storage ranged from 3.8 to 11.6 Mg·ha−1. Pyrogenic carbon storage in the charcoal layer dominated (>99%) on the above-ground in each forest type. The DRIFT analysis confirmed that the coarse fraction (>2 mm) contain more polymeric aromatic structures, and most likely indicated the presence of benzene carboxylic compounds (1710 cm−1), which may originate from the charred plant material. Our research aims to enhance the understanding of the retention effects of recalcitrant carbon in WD and charcoal layer of cold temperate coniferous forest, thereby providing new insights into the impact of fire disturbances on carbon cycling within forest ecosystems. Full article
(This article belongs to the Section Forest Meteorology and Climate Change)
Show Figures

Figure 1

24 pages, 9112 KiB  
Article
High-Pressure Fine Water Mist Nozzle Retrofit Experiment and Numerical Simulation Study
by Xin-Zhi Yang, Chen-Yang Du, Yuan-Jun Liu, Yan Tang, Xi-Lin Dong and An-Chi Huang
Processes 2025, 13(3), 642; https://doi.org/10.3390/pr13030642 - 24 Feb 2025
Cited by 1 | Viewed by 1168
Abstract
Currently, the existing high-pressure water mist fire protection systems in cold storage facilities face challenges in achieving efficient atomization and uniform water mist distribution, which may limit their effectiveness in rapid cooling and flame suppression. The objective of this investigation is to improve [...] Read more.
Currently, the existing high-pressure water mist fire protection systems in cold storage facilities face challenges in achieving efficient atomization and uniform water mist distribution, which may limit their effectiveness in rapid cooling and flame suppression. The objective of this investigation is to improve the performance of high-pressure fine water mist nozzles by integrating a Venturi microbubble generator to improve mist atomization and distribution, particularly in the context of flames involving combustible polyurethane foam insulation materials. The gas–liquid two-phase flow characteristics within Venturi tubes were investigated through numerical simulations using ANSYS-Fluent 2022 R1 software. This study focused on critical parameters, including the water inlet pressure (1–9 MPa), pharynx diameter (8–12 mm), contraction angle (15–45°), and expansion angle (15–45°). The average water mist droplet diameters at 1, 3, and 9 MPa were 169.890, 150.002, and 115.606 μm, respectively, in the absence of the Venturi tube, according to the experimental results. A reduction of up to 16.7% was achieved by reducing the particulate sizes to 141.462, 139.142, and 109.525 μm using the Venturi tube. The fire-extinguishing time and water consumption were substantially reduced at higher pressures, such as 9 MPa. Under high-pressure conditions, the results indicated that the Venturi microbubble technology was significantly more effective in suppressing fires. The novelty of this study lies in the application of Venturi microbubble technology to improve fine water mist systems for fire protection in cold storage facilities. This enhanced system achieves better atomization, uniform water mist distribution, faster cooling, and more efficient flame suppression, making it a viable solution for improving fire protection in such environments. Full article
(This article belongs to the Special Issue Numerical Simulation and Optimization in Thermal Processes)
Show Figures

Figure 1

21 pages, 15871 KiB  
Article
Tracking Forest Disturbance in Northeast China’s Cold-Temperate Forests Using a Temporal Sequence of Landsat Data
by Yueting Wang, Xiang Jia, Xiaoli Zhang, Lingting Lei, Guoqi Chai, Zongqi Yao, Shike Qiu, Jun Du, Jingxu Wang, Zheng Wang and Ran Wang
Remote Sens. 2024, 16(17), 3238; https://doi.org/10.3390/rs16173238 - 1 Sep 2024
Cited by 5 | Viewed by 2012
Abstract
Cold-temperate forests (CTFs) are not only an important source of wood but also provide significant carbon storage in China. However, under the increasing pressure of human activities and climate change, CTFs are experiencing severe disturbances, such as logging, fires, and pest infestations, leading [...] Read more.
Cold-temperate forests (CTFs) are not only an important source of wood but also provide significant carbon storage in China. However, under the increasing pressure of human activities and climate change, CTFs are experiencing severe disturbances, such as logging, fires, and pest infestations, leading to evident degradation trends. Though these disturbances impact both regional and global carbon budgets and their assessments, the disturbance patterns in CTFs in northern China remain poorly understood. In this paper, the Genhe forest area, which is a typical CTF region located in the Inner Mongolia Autonomous Region, Northeast China (with an area of about 2.001 × 104 km2), was selected as the study area. Based on Landsat historical archived data on the Google Earth Engine (GEE) platform, we used the continuous change detection and classification (CCDC) algorithm and considered seasonal features to detect forest disturbances over nearly 30 years. First, we created six inter-annual time series seasonal vegetation index datasets to map forest coverage using the maximum between-class variance algorithm (OTSU). Second, we used the CCDC algorithm to extract disturbance information. Finally, by using the ECMWF climate reanalysis dataset, MODIS C6, the snow phenology dataset, and forestry department records, we evaluated how disturbances relate to climate and human activities. The results showed that the disturbance map generated using summer (June–August) imagery and the enhanced vegetation index (EVI) had the highest overall accuracy (88%). Forests have been disturbed to the extent of 12.65% (2137.31 km2) over the last 30 years, and the disturbed area generally showed a trend toward reduction, especially after commercial logging activities were banned in 2015. However, there was an unusual increase in the number of disturbed areas in 2002 and 2003 due to large fires. The monitoring of potential widespread forest disturbance due to extreme drought and fire events in the context of climate change should be strengthened in the future, and preventive and salvage measures should be taken in a timely manner. Our results demonstrate that CTF disturbance can be robustly mapped by using the CCDC algorithm based on Landsat time series seasonal imagery in areas with complex meteorological conditions and spatial heterogeneity, which is essential for understanding forest change processes. Full article
Show Figures

Figure 1

15 pages, 4991 KiB  
Article
Vulnerability of Thermal Energy Storage Lining Material to Erosion Induced by Particulate Flow in Concentrated Solar Power Tower Systems
by Zeyad Al-Suhaibani, Nader S. Saleh, Shaker Alaqel, Rageh Saeed, Eldwin Djajadiwinata, Syed Noman Danish, Hany Al-Ansary, Abdelrahman El-Leathy and Sheldon Jeter
Materials 2024, 17(7), 1480; https://doi.org/10.3390/ma17071480 - 24 Mar 2024
Cited by 1 | Viewed by 1227
Abstract
Researchers from all around the world have been paying close attention to particle-based power tower technologies. On the King Saud University campus in the Kingdom of Saudi Arabia, the first integrated gas turbine–solar particle heating hybrid system has been realized. In this study, [...] Read more.
Researchers from all around the world have been paying close attention to particle-based power tower technologies. On the King Saud University campus in the Kingdom of Saudi Arabia, the first integrated gas turbine–solar particle heating hybrid system has been realized. In this study, two different types of experiments were carried out to examine how susceptible prospective liner materials for thermal energy storage tanks were to erosion. An accelerated direct-impact test with high particulate temperature was the first experiment. A low-velocity mass-flow test was the second experiment, and it closely mimicked the flow circumstances in a real thermal energy storage tank. The tests were conducted on bare insulating fire bricks (IFBs) and IFBs coated with Tuffcrete 47, Matrigun 25 ACX, and Tuffcrete 60 M. The latter three lining materials were high-temperature-resilient materials made by Allied Mineral Products Inc. (AMP) (Columbus, OH, USA). The results showed that although IFBs coated with AMP materials worked well in this test, the accelerated direct-impact test significantly reduced the bulk of the bare IFB. As a result, lining substances must be added to the surface of IFBs to increase their strength and protection because they cannot be used in situations where particles directly impact their surface. On the other hand, the findings of the 60 h cold-particle mass-flow test revealed that the IFBs were not significantly eroded. Additionally, it was discovered that the degree of erosion on the samples of bare IFB was unaffected by the height of the particle bed. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

22 pages, 1331 KiB  
Review
The Allam Cycle: A Review of Numerical Modeling Approaches
by Fabrizio Reale
Energies 2023, 16(22), 7678; https://doi.org/10.3390/en16227678 - 20 Nov 2023
Cited by 6 | Viewed by 4178
Abstract
In recent years supercritical CO2 power plants have seen a growing interest in a wide range of applications (e.g., nuclear, waste heat recovery, solar concentrating plants). The Allam Cycle, also known as the Allam-Fetvedt or NET Power cycle, seems to be one [...] Read more.
In recent years supercritical CO2 power plants have seen a growing interest in a wide range of applications (e.g., nuclear, waste heat recovery, solar concentrating plants). The Allam Cycle, also known as the Allam-Fetvedt or NET Power cycle, seems to be one of the most interesting direct-fired sCO2 cycles. It is a semi-closed loop, high-pressure, low-pressure ratio, recuperated, direct-fired with oxy-combustion, trans-critical Brayton cycle. Numerical simulations play a key role in the study of this novel cycle. For this reason, the aim of this review is to offer the reader a wide array of modeling solutions, emphasizing the ones most frequently employed and endeavoring to provide guidance on which choices seem to be deemed most appropriate. Furthermore, the review also focuses on the system’s performance and on the opportunities related to the integration of the Allam cycle with a series of processes, e.g., cold energy storage, LNG regasification, biomass or coal gasification, and ammonia production. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

18 pages, 5260 KiB  
Article
Structure and Operation Optimization of a Form-Stable Carbonate/Ceramic-Based Electric Thermal Storage Device for Space Heating
by Xinyu Pan, Mengdi Yuan, Guizhi Xu, Xiao Hu, Zhirong Liao and Chao Xu
Energies 2023, 16(11), 4506; https://doi.org/10.3390/en16114506 - 3 Jun 2023
Viewed by 1317
Abstract
The escalating demand for heating and the widespread use of CO2-emitting fossil fuels during cold seasons have imposed significant pressure on our natural resources. As a promising alternative to coal-fired boilers, electrical thermal storage devices (ETSDs) for space heating are gaining [...] Read more.
The escalating demand for heating and the widespread use of CO2-emitting fossil fuels during cold seasons have imposed significant pressure on our natural resources. As a promising alternative to coal-fired boilers, electrical thermal storage devices (ETSDs) for space heating are gaining popularity. However, designing ETSDs for space heating involves significant challenges, which involve their storage rate and operational stability. In contrast to the research of directly developing mid-temperature ETSDs to manage heat release during long heating hours, this study proposed a new ETSD that uses K2CO3–Na2CO3 for high-temperature storage to match the off-peak hours and thereby gain potential economic benefits. This study used experimental and simulation methods to investigate the ETSD’s temperature distribution. An operational strategy was also proposed to achieve more efficient temperature distribution and higher economic benefits. The ETSD with two steel plates and two insulation layers with a power rating of 1.6 kW was found to be the optimum structure, due to its improved heat storage rate (2.1 °C/min), uniform temperature, and material heat resistance (<750 °C). An energy analysis, economic analysis, and a 7-day cycling operation performance of the device were then conducted by comparing the proposed ETSD with a traditional electric heater. The results revealed that the proposed ETSD released 53.4% of the stored energy in the room, and stored 48.6% of it during valley electric time. The total cost of the proposed ETSD was consistently lower than the traditional electric heater in the second heating season (by the 213th day). The efficiency of its valley heat storage for users was 37.2%. Overall, this study provides valuable insights into the development and practical applications of ETSD systems for space heating. Full article
Show Figures

Figure 1

12 pages, 5236 KiB  
Article
Feasibility Study of Fine Water Mist Applied to Cold Storage Fire Protection
by Xiao-Yu Yin, Tao Liu, Ye-Cheng Liu, Yan Tang, An-Chi Huang, Xi-Lin Dong and Yuan-Jun Liu
Processes 2022, 10(8), 1533; https://doi.org/10.3390/pr10081533 - 5 Aug 2022
Cited by 12 | Viewed by 2628
Abstract
The self-built fine water mist fire extinguishing platform studied the fire extinguishing effect of ultra-fine water mist in cold storage fires. The combustible material selected for our experiments is the cold storage insulation material—polystyrene insulation foam board. The combustion characteristics of the insulation [...] Read more.
The self-built fine water mist fire extinguishing platform studied the fire extinguishing effect of ultra-fine water mist in cold storage fires. The combustible material selected for our experiments is the cold storage insulation material—polystyrene insulation foam board. The combustion characteristics of the insulation board were studied by pyrolysis analysis. We analyzed the temperature, smoke, and other characteristics of the fire scene when a fire occurs in the cold storage and then manipulated the water mist to carry out the fire extinguishing experiment. Experiments aim to change the particle size and pressure of water mist and study the fire extinguishing efficiency of water mist under different conditions. A thorough analysis was used to determine the particle size range of fine water mist most suited for extinguishing fires in cold storage to offer a theoretical foundation for fire protection design. Full article
Show Figures

Figure 1

17 pages, 6778 KiB  
Article
Predicting the Fire Source Location by Using the Pipe Hole Network in Aspirating Smoke Detection System
by Young Man Lee, Ha Thien Khieu, Dong Woo Kim, Ji Tae Kim and Hong Sun Ryou
Appl. Sci. 2022, 12(6), 2801; https://doi.org/10.3390/app12062801 - 9 Mar 2022
Viewed by 4014
Abstract
The aspirating smoke detector (ASD) is one of the most critical pieces of equipment for detecting smoke in a protected area when a fire occurs. It has more advantages than a conventional smoke detector because it can be used in extreme conditions, such [...] Read more.
The aspirating smoke detector (ASD) is one of the most critical pieces of equipment for detecting smoke in a protected area when a fire occurs. It has more advantages than a conventional smoke detector because it can be used in extreme conditions, such as cold storage facilities or hot aisle containment areas. ASD uses a fan to draw air from the protected area into the pipe network system via pipe holes. The sucked air is transported into the sensing chamber to detect smoke. If the obscuration in the sensing chamber is greater than the setpoint, the ASD will sound an alarm so that people realize there is a fire. For this reason, investigating the effect of the pipe hole network on obscuration in the ASD is critical. In this study, a Pipe Hole Network Program was developed to consider the pipe flow parameter. A numerical study based on the program and an experimental study was performed. The results showed that the numerical results had the same trend as the experimental study. The further the location of the fire source was, the lower the obscuration was. In addition, the correlation between the obscuration parameter and the fire source distance was also derived. It could be used to predict the fire source location in the aspirating smoke detection system. Full article
(This article belongs to the Special Issue Advanced Analysis and Technology in Fire Science and Engineering)
Show Figures

Figure 1

16 pages, 5704 KiB  
Article
Risk Assessment of Industrial Fires for Surrounding Vulnerable Facilities Using a Multi-Criteria Decision Support Approach and GIS
by Saadet Alkış, Ercüment Aksoy and Kudret Akpınar
Fire 2021, 4(3), 53; https://doi.org/10.3390/fire4030053 - 25 Aug 2021
Cited by 8 | Viewed by 5321
Abstract
The fires encountered in the buildings and facilities of industrial areas make up quite a small proportion of all fire cases. However, in terms of the heat release rate, size of the burned area, damage, and impact zone, such fires have a large [...] Read more.
The fires encountered in the buildings and facilities of industrial areas make up quite a small proportion of all fire cases. However, in terms of the heat release rate, size of the burned area, damage, and impact zone, such fires have a large impact as compared to other fire cases. All fires have risk in terms of propagation. However, since fires in industrial structures and plants have rather high levels, qualitatively and quantitatively, compared to residential fires and other types of fires, it should be regarded as necessary to research them extensively. In this study, fires that have broken out in various places around Turkey, such as in factories, cold storage plants, and manufacturing facilities, were investigated. We aimed to determine the level of risk of the occurrence of these fires in the environment. A large amount of detailed information gathered about these fires was analyzed. This information includes data about the causes of the fires, deformation data of various materials, data on technical problems, data on financial damage levels, and data on fire patterns. We found 40 of these fire cases in total, and the case data were used to calculate the risk scores with the Geographic Information System (GIS), Analytical Hierarchy Process (AHP), and Inverse Distance Weight (IDW) methods. For each fire case, places sensitive to damage and losses were assessed according to six main criteria. Buffer analysis maps were generated for the 40 fire cases, and the cases were ordered based on their overall risk scores. In this ordering, fire case number 21 was found in the riskiest region, and fire cases 32, 17, and 31 were found in the low-risk region. Fire case number 21 occurred in a factory used for manufacturing fabric. This factory works with high volumes of acrylic, polyester, and other raw materials. In addition, there are some structures in very close proximity. It was observed that fire cases could be well differentiated depending on the selected criteria in the model applied. Full article
(This article belongs to the Special Issue Fire in Human Landscapes)
Show Figures

Figure 1

31 pages, 9532 KiB  
Article
Study on the Passive Heating System of a Heated Cooking Wall in Dwellings: A Case Study of Traditional Dwellings in Southern Shaanxi, China
by Simin Yang, Bart J. Dewancker and Shuo Chen
Int. J. Environ. Res. Public Health 2021, 18(7), 3745; https://doi.org/10.3390/ijerph18073745 - 3 Apr 2021
Cited by 3 | Viewed by 3437
Abstract
In China, research on winter heating and energy saving for residential buildings mainly focuses on urban residences rather than rural ones. According to the 2018 China Building Energy Consumption Research Report, rural residential buildings emit about 423 million tons of carbon, accounting for [...] Read more.
In China, research on winter heating and energy saving for residential buildings mainly focuses on urban residences rather than rural ones. According to the 2018 China Building Energy Consumption Research Report, rural residential buildings emit about 423 million tons of carbon, accounting for 21% of the country’s total carbon emissions. According to the research on China’s greenhouse gas inventory, the main sources of carbon emissions in rural areas are from cooking and the burning of fuelwood and biomass for heating in winter. In this study, the southern Shaanxi area, which is hot in summer and cold in winter, was selected as the research site, and a fire wall system was planned that combines cooking and heating facilities in residential buildings. The system uses the heat generated by cooking and the heat storage capacity of the wall, as well as the principle of thermal radiation and heat convection, to increase the indoor temperature. The advantage is that the hot air generated is mainly concentrated in the inside of the wall, which reduces the direct contact with the cold outdoor air and avoids excess heat loss. In this study, in addition to considering the influence of the cooking fire wall system on the indoor temperature, the difference in the outer wall with or without solar thermal radiation was also considered. The research results show that the use of a cooking fire wall heating system reduces the annual heat load of the building to 440.8318 KW·h, which is a reduction rate of 7.91%. When there is solar radiation on the outer wall, the annual thermal load of the building is reduced by 1104.723 kW·h, and the reduction rate is 19.84%. Full article
(This article belongs to the Special Issue Engineering for Sustainable Environment)
Show Figures

Figure 1

13 pages, 2494 KiB  
Article
Pre- and Postharvest Factors Control the Disease Incidence of Superficial Scald in the New Fire Blight Tolerant Apple Variety “Ladina”
by Laura Juliana Dällenbach, Thomas Eppler, Simone Bühlmann-Schütz, Markus Kellerhals and Andreas Bühlmann
Agronomy 2020, 10(4), 464; https://doi.org/10.3390/agronomy10040464 - 27 Mar 2020
Cited by 4 | Viewed by 4519
Abstract
Superficial scald is a physiological disorder that develops during cold storage affecting apples and causes substantial market losses. Malus × domestica cv. Ladina, a new scab resistant and fire blight tolerant variety, commercialized in 2012, shows a physiological disorder similar to superficial scald [...] Read more.
Superficial scald is a physiological disorder that develops during cold storage affecting apples and causes substantial market losses. Malus × domestica cv. Ladina, a new scab resistant and fire blight tolerant variety, commercialized in 2012, shows a physiological disorder similar to superficial scald after storage. Here, we used different pre- and postharvest approaches to characterize the occurrence of these superficial scald symptoms in Malus × domestica cv. Ladina. Over a period of seven years, fruits from multiple orchards were stored for five to seven months and the occurrence of superficial scald was assessed in fruits after cold storage and controlled atmosphere (CA) storage. Apples picked at different stages of ripeness within the same year differed in superficial scald development. Additionally, superficial scald differed significantly between years and locations, strongly suggesting that maturity at harvest, weather during the growing season, and orchard management play important roles in scald occurrence. Treatment with 1-methylcyclopropene (1-MCP) after harvest, and storage in a dynamically controlled atmosphere (DCA) significantly reduced the occurrence of superficial scald, whereas storage under ultralow oxygen concentrations (ULO) showed mild but not significant effects. Low calcium concentrations in the fruit flesh and peel were associated with stronger superficial scald occurrence. Full article
Show Figures

Figure 1

23 pages, 5953 KiB  
Article
Analysis of a Hybrid Solar-Assisted Trigeneration System
by Elisa Marrasso, Carlo Roselli, Maurizio Sasso and Francesco Tariello
Energies 2016, 9(9), 705; https://doi.org/10.3390/en9090705 - 1 Sep 2016
Cited by 28 | Viewed by 7469
Abstract
A hybrid solar-assisted trigeneration system is analyzed in this paper. The system is composed of a 20 m2 solar field of evacuated tube collectors, a natural gas fired micro combined heat and power system delivering 12.5 kW of thermal power, an absorption [...] Read more.
A hybrid solar-assisted trigeneration system is analyzed in this paper. The system is composed of a 20 m2 solar field of evacuated tube collectors, a natural gas fired micro combined heat and power system delivering 12.5 kW of thermal power, an absorption heat pump (AHP) with a nominal cooling power of 17.6 kW, two storage tanks (hot and cold) and an electric auxiliary heater (AH). The plant satisfies the energy demand of an office building located in Naples (Southern Italy). The electric energy of the cogenerator is used to meet the load and auxiliaries electric demand; the interactions with the grid are considered in cases of excess or over requests. This hybrid solution is interesting for buildings located in cities or historical centers with limited usable roof surface to install a conventional solar heating and cooling (SHC) system able to achieve high solar fraction (SF). The results of dynamic simulation show that a tilt angle of 30° maximizes the SF of the system on annual basis achieving about 53.5%. The influence on the performance of proposed system of the hot water storage tank (HST) characteristics (volume, insulation) is also studied. It is highlighted that the SF improves when better insulated and bigger HSTs are considered. A maximum SF of about 58.2% is obtained with a 2000 L storage, whereas the lower thermal losses take place with a better insulated 1000 L tank. Full article
(This article belongs to the Special Issue Simulation of Polygeneration Systems)
Show Figures

Figure 1

Back to TopTop