Tracking Forest Disturbance in Northeast China’s Cold-Temperate Forests Using a Temporal Sequence of Landsat Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Preprocessing
2.2.1. Landsat Dataset
2.2.2. Road and River Vector Dataset
2.2.3. Dataset of Factors Influencing Forest Disturbance
2.3. Research Method
2.3.1. Mapping of the Forest
2.3.2. Detection of Forest Disturbance
2.3.3. Accuracy Evaluation of the Temporal and Spatial Distribution of Forests and Disturbances
2.3.4. Analysis of the Temporal and Spatial Pattern of Forest Disturbances
2.3.5. Analysis of Forest Disturbance Influencing Factors
3. Results
3.1. Accuracy of Forest Cover Synthesis Maps and Forest Disturbance Maps
3.2. Occurrence Pattern of Forest Disturbance
3.2.1. Spatial and Temporal Distribution of Forest Disturbance
3.2.2. Number of Forest Disturbance Events
3.3. Influencing Factor of Forest Disturbance
3.3.1. Climate Factors
3.3.2. Commercial Logging and Fires
4. Discussion
4.1. Extraction of Forest Disturbance Information
4.2. Characteristics of Forest Disturbance
4.3. Categorizing Factors Influencing Forest Disturbance
4.4. Prospect
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, J.; Xie, H.; Ma, J.; Wang, K. Integrated remote sensing and model approach for impact assessment of future climate change on the carbon budget of global forest ecosystems. Glob. Planet. Change 2021, 203, 103542. [Google Scholar] [CrossRef]
- Guo, Y.; Peng, C.; Trancoso, R.; Zhu, Q.; Zhou, X. Stand carbon density drivers and changes under future climate scenarios across global forests. For. Ecol. Manag. 2019, 49, 117463. [Google Scholar] [CrossRef]
- Niemelä, J. Management in relation to disturbance in the boreal forest. For. Ecol. Manag. 1999, 115, 127–134. [Google Scholar] [CrossRef]
- White, J.C.; Hermosilla, T.; Wulder, M.A.; Coops, N.C. Mapping, validating, and interpreting spatio-temporal trends in post-disturbance forest recovery. Remote Sens. Environ. 2022, 271, 112904. [Google Scholar] [CrossRef]
- Senf, C.; Seidl, R. Storm and fire disturbances in Europe: Distribution and trends. Glob. Chang. Biol. 2021, 27, 3605–3619. [Google Scholar] [CrossRef] [PubMed]
- Intergovernmental Panel on Climate Change (IPCC). Framing and Context. In Global Warming of 15°C: IPCC Special Report on Impacts of Global Warming of 15°C above Pre-industrial Levels in Context of Strengthening Response to Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Cambridge University Press: Cambridge, UK, 2022; pp. 49–92. [Google Scholar]
- Suzuki, S.N.; Tsunoda, T.; Nishimura, N.; Morimoto, J.; Suzuki, J.I. Dead wood offsets the reduced live wood carbon stock in forests over 50 years after a stand-replacing wind disturbance. For. Ecol. Manag. 2019, 432, 94–101. [Google Scholar] [CrossRef]
- Kauppi, P.; Posch, M. Sensitivity of boreal forests to possible climatic warming. Clim. Change 1985, 7, 45–54. [Google Scholar] [CrossRef]
- Schröder, J.M.; Ávila Rodríguez, L.P.; Günter, S. Research trends: Tropical dry forests: The neglected research agenda? For. Policy Econ. 2021, 122, 102333. [Google Scholar] [CrossRef]
- Zhang, Y.; Woodcock, C.E.; Chen, S.; Wang, J.A.; Sulla-Menashe, D.; Zuo, Z.; Olofsson, P.; Wang, Y.; Friedl, M.A. Mapping causal agents of disturbance in boreal and arctic ecosystems of North America using time series of Landsat data. Remote Sens. Environ. 2022, 272, 112935. [Google Scholar] [CrossRef]
- Scott, C.T. Sampling Methods for Estimating Change in Forest Resources. Ecol. Appl. 1998, 8, 228–233. [Google Scholar] [CrossRef]
- Zhu, Z.; Wulder, M.A.; Roy, D.P.; Woodcock, C.E.; Hansen, M.C.; Radeloff, V.C.; Healey, S.P.; Schaaf, C.; Hostert, P.; Strobl, P.; et al. Benefits of the free and open Landsat data policy. Remote Sens. Environ. 2019, 224, 382–385. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Shao, Y.; Di, L.; Bai, Y.; Guo, B.; Gong, J. Geoprocessing on the Amazon cloud computing platform AWS. In Proceedings of the 2012 First International Conference on Agro- Geoinformatics (Agro-Geoinformatics), Shanghai, China, 2–4 August 2012. [Google Scholar]
- Chang, D.; Wang, Z.; Ning, X.; Li, Z.; Zhang, L.; Liu, X. Vegetation changes in Yellow River Delta wetlands from 2018 to 2020 using PIE-Engine and short time series Sentinel-2 images. Front. Mar. Sci. 2021, 9, 977050. [Google Scholar] [CrossRef]
- Cardille, J.A.; Perez, E.; Crowley, M.A.; Wulder, M.A.; White, J.C.; Hermosilla, T. Multi-sensor change detection for within-year capture and labelling of forest disturbance. Remote Sens. Environ. 2022, 268, 112741. [Google Scholar] [CrossRef]
- Shen, W.; Li, M.; Huang, C. Review of remote sensing algorithms for monitoring forest disturbance from time series and multi-source data fusion. J. Remote Sens. 2018, 22, 1005–1022. [Google Scholar] [CrossRef]
- Francini, S.; McRoberts, R.E.; D’Amico, G.; Coops, N.C.; Hermosilla, T.; White, J.C.; Wulder, M.A.; Marchetti, M.; Mugnozza, G.S.; Chirici, G. An open science and open data approach for the statistically robust estimation of forest disturbance areas. Int. J. Appl. Earth Obs. Geoinf. 2022, 106, 102663. [Google Scholar] [CrossRef]
- Huang, C.; Goward, S.N.; Masek, J.G.; Thomas, N.; Zhu, Z.; Vogelmann, J.E. An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks. Remote Sens. Environ. 2010, 114, 183–198. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Yang, Z.; Cohen, W.B. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr—Temporal segmentation algorithms. Remote Sens. Environ. 2010, 114, 2897–2910. [Google Scholar] [CrossRef]
- Verbesselt, J.; Hyndman, R.; Newnham, G.; Culvenor, D. Detecting trend and seasonal changes in satellite image time series. Remote Sens. Environ. 2010, 114, 106–115. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E.; Olofsson, P. Continuous monitoring of forest disturbance using all available Landsat imagery. Remote Sens. Environ. 2012, 122, 75–91. [Google Scholar] [CrossRef]
- Hughes, M.; Kaylor, S.; Daniel, H. Patch-Based Forest Change Detection from Landsat Time Series. Forests 2017, 8, 166. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhang, J.; Yang, Z.; Aljaddani Amal, H.; Cohen Warren, B.; Qiu, S.; Zhou, C. Continuous monitoring of land disturbance based on Landsat time series. Remote Sens. Environ. 2020, 238, 111116. [Google Scholar] [CrossRef]
- Chen, S.; Woodcock, C.E.; Bullock, E.L.; Arévalo, P.; Torchinava, P.; Peng, S.; Olofsson, P. Monitoring temperate forest degradation on Google Earth Engine using Landsat time series analysis. Remote Sens. Environ. 2021, 265, 112648. [Google Scholar] [CrossRef]
- Tao, X.; Huang, C.; Zhao, F.; Schleeweis, K.; Masek, J.; Liang, S. Mapping forest disturbance intensity in North and South Carolina using annual Landsat observations and field inventory data. Remote Sens. Environ. 2019, 221, 351–362. [Google Scholar] [CrossRef]
- Pasquarella, V.J.; Arévalo, P.; Bratley, K.H.; Bullock, E.L.; Gorelick, N.; Yang, Z.; Kennedy, R.E. Demystifying LandTrendr and CCDC temporal segmentation. Int. J. Appl. Earth Obs. Geoinf. 2022, 110, 102806. [Google Scholar] [CrossRef]
- Robert, K.; Zhiqiang, Y.; Noel, G.; Justin, B.; Lucas, C.; Warren, C.; Sean, H. Implementation of the LandTrendr Algorithm on Google Earth Engine. Remote Sens. 2018, 10, 691. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, S. Wood trade responses to ecological rehabilitation program: Evidence from China’s new logging ban in natural forests. For. Policy Econ. 2021, 122, 102339. [Google Scholar] [CrossRef]
- Qiu, B.; Chen, G.; Tang, Z.; Lu, D.; Wang, Z.; Chen, C. Assessing the Three-North Shelter Forest Program in China by a novel framework for characterizing vegetation changes. ISPRS J. Photogramm. Remote Sens. 2017, 133, 75–88. [Google Scholar] [CrossRef]
- Shan, W.; Zhang, C.; Guo, Y.; Qiu, L. Mapping the Thermal State of Permafrost in Northeast China Based on the Surface Frost Number Model. Remote Sens. 2022, 14, 3185. [Google Scholar] [CrossRef]
- Dou, Y.; Yu, X.; Bakker, M.; Groot, R.D.; Carsjens, G.J.; Duan, H.; Huang, C. Analysis of the relationship between cross-cultural perceptions of landscapes and cultural ecosystem services in Genheyuan region, Northeast China. Ecosyst. Serv. 2020, 43, 101112. [Google Scholar] [CrossRef]
- Cao, B.; Qi, J.; Chen, E.; Xiao, Q.; Liu, Q.; Li, Z. Fine scale optical remote sensing experiment of mixed stand over complex terrain (FOREST) in the Genhe Reserve Area: Objective, observation and a case study. Int. J. Digit. Earth 2021, 14, 1411–1432. [Google Scholar] [CrossRef]
- Hao, X.; Zhao, Q.; Ji, W.; Wang, J.; Li, H. A dataset of snow phenology in China based on AVHRR from 1980 to 2020. China Sci. Data 2022, 7, 1–10. [Google Scholar]
- Committee, G.H.C. Genhe Chronicle; Inner Mongolia Culture Press: Hulunbuir, China, 1998; pp. 315–337. [Google Scholar]
- Committee, G.H.C. Genhe Chronicle (1996–2005); Inner Mongolia Culture Press: Hulunbuir, China, 2007; pp. 315–356. [Google Scholar]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Liu, H.Q.; Huete, A. A feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE Trans. Geosci. Remote Sens. 1995, 33, 457–465. [Google Scholar] [CrossRef]
- Jordan, C.F. Derivation of leaf-area index from quality of light on the forest floor. Ecology 1969, 50, 663–666. [Google Scholar] [CrossRef]
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 2007, 9, 62–66. [Google Scholar] [CrossRef]
- Zhang, Y.; Liang, S. Changes in forest biomass and linkage to climate and forest disturbances over Northeastern China. Glob. Chang. Biol. 2014, 20, 2596–2606. [Google Scholar] [CrossRef]
- Li, Q.; Cui, J.; Jiang, W.; Jiao, Q.; Gong, L.; Zhang, J.; Shen, X. Monitoring of the Fire in Muli County on March 28, 2020, based on high temporal-spatial resolution remote sensing techniques. Nat. Hazards Res. 2021, 1, 20–31. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Continuous change detection and classification of land cover using all available Landsat data. Remote Sens. Environ. 2014, 144, 152–171. [Google Scholar] [CrossRef]
- Ye, S.; Rogan, J.; Zhu, Z.; Eastman, J.R. A near-real-time approach for monitoring forest disturbance using Landsat time series: Stochastic continuous change detection. Remote Sens. Environ. 2021, 252, 112167. [Google Scholar] [CrossRef]
- Cohen, W.B.; Yang, Z.; Healey, S.P.; Kennedy, R.E.; Gorelick, N. A LandTrendr multispectral ensemble for forest disturbance detection. Remote Sens. Environ. 2018, 205, 131–140. [Google Scholar] [CrossRef]
- Tdma, B.; Dp, A.; Mb, A.; Eflbd, E.; Ig, C.; Tk, A. Characterizing forest disturbances across the Argentine Dry Chaco based on Landsat time series. Int. J. Appl. Earth Obs. Geoinf. 2021, 98, 102310. [Google Scholar]
- Wang, Y.; Ziv, G.; Adami, M.; Mitchard, E.; Batterman, S.A.; Buermann, W.; Marimon, B.S.; Junior, B.H.M.; Reis, S.M.; Rodrigues, D. Mapping tropical disturbed forests using multi-decadal 30 m optical satellite imagery. Remote Sens. Environ. 2018, 221, 474–488. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, D.; Peng, D.; Zhang, Y. Quantifying the influences of natural and human factors on the water footprint of afforestation in desert regions of northern China. Sci. Total Environ. 2021, 780, 146577. [Google Scholar] [CrossRef]
- Ye, L.; Liu, M.; Liu, X.; Zhu, L. Developing a new disturbance index for tracking gradual change of forest ecosystems in the hilly red soil region of southern China using dense Landsat time series. Ecol. Inform. 2021, 61, 101221. [Google Scholar] [CrossRef]
- Hislop, S.; Haywood, A.; Jones, S.; Soto-Berelov, M.; Skidmore, A.; Nguyen, T.H. A satellite data driven approach to monitoring and reporting fire disturbance and recovery across boreal and temperate forests. Int. J. Appl. Earth Obs. Geoinf. 2020, 87, 102034. [Google Scholar] [CrossRef]
- Bullock, E.L.; Woodcock, C.E.; Souza, C.; Olofsson, P. Satellite-based estimates reveal widespread forest degradation in the Amazon. Glob. Chang. Biol. 2020, 26, 2956–2969. [Google Scholar] [CrossRef]
- In, H.-J.; Kim, Y.P. Estimation of the aerosol optical thickness distribution in the Northeast Asian forest fire episode in May 2003: Possible missing emissions. Atmos. Res. 2010, 98, 261–273. [Google Scholar] [CrossRef]
- Zeng, P.; Sun, F.; Liu, Y.; Wang, Y.; Che, Y. Mapping future droughts under global warming across China: A combined multi-timescale meteorological drought index and SOM-Kmeans approach. Weather. Clim. Extrem. 2021, 31, 100304. [Google Scholar] [CrossRef]
- Shimizu, K.; Ota, T.; Mizoue, N.; Yoshida, S. A comprehensive evaluation of disturbance agent classification approaches: Strengths of ensemble classification, multiple indices, spatio-temporal variables, and direct prediction. ISPRS J. Photogramm. Remote Sens. 2019, 158, 99–112. [Google Scholar] [CrossRef]
- Xu, Z.; Shan, W.; Guo, Y.; Zhang, C.; Qiu, L. Swamp Wetlands in Degraded Permafrost Areas Release Large Amounts of Methane and May Promote Wildfires through Friction Electrification. Sustainability 2022, 14, 9193. [Google Scholar] [CrossRef]
- Hermosilla, T.; Wulder, M.A.; White, J.C.; Coops, N.C.; Hobart, G.W. Regional detection, characterization, and attribution of annual forest change from 1984 to 2012 using Landsat-derived time-series metrics. Remote Sens. Environ. 2015, 170, 121–132. [Google Scholar] [CrossRef]
Dataset | Time | Spatial Resolution | Data Source | Purpose |
---|---|---|---|---|
Landsat | 1990–2021 | 30 m | GEE | Extracting forest areas and detecting forest disturbances |
MODIS C6 | 2000–2020 | 1 km | GEE | Extracting annual fire data |
ECMWF ERA5 Monthly Aggregates | 1991–2020 | 0.1° | GEE | Extracting the total precipitation and average temperature during the year |
A dataset of snow phenology in China based on AVHRR from 1980 to 2020 | 1991–2020 | 1 km | National Cryosphere Desert Data Center, http://www.ncdc.ac.cn (accessed on 26 February 2023) | Extracting the total number of snow cover days each year |
Openstreet map | 2022 | — | https://wiki.openstreetmap.org/ (accessed on 26 February 2023) | Extracting river and road information |
Genhe Chronicle | 1990–2020 | — | Inner Mongolia Culture Press | Obtaining commercial timber production, large fire incidents, and burned areas |
Recorded information | — | Genhe Forestry Bureau |
Parameter | Range |
---|---|
min Observations | 6 |
chiSquare Probability | 0.99 |
min Num of Years Scaler | 1.33 |
λ | 20/10,000 |
max Iterations | 10,000 |
RD | Spring & EVI | Spring & RVI | Spring & NDVI | |||||||
---|---|---|---|---|---|---|---|---|---|---|
FCD | F | NF | UA | F | NF | UA | F | NF | UA | |
F | 1802 | 140 | 92.79 | 1785 | 218 | 89.12 | 1688 | 305 | 84.70 | |
NF | 71 | 987 | 93.29 | 78 | 919 | 92.18 | 123 | 884 | 87.79 | |
PA | 96.21 | 87.58 | — | 95.81 | 80.83 | — | 93.21 | 74.35 | — | |
OA | 92.97 | 90.13 | 85.73 | |||||||
RD | Summer & EVI | Summer & RVI | Summer & NDVI | |||||||
FCD | F | NF | UA | F | NF | UA | F | NF | UA | |
F | 1857 | 145 | 92.76 | 1803 | 189 | 90.51 | 1785 | 268 | 86.95 | |
NF | 41 | 957 | 95.89 | 72 | 936 | 92.86 | 103 | 844 | 89.12 | |
PA | 97.84 | 86.84 | — | 96.16 | 83.20 | — | 94.54 | 75.90 | — | |
OA | 93.80 | 91.30 | 87.63 |
RD | Spring & EVI | Spring & RVI | Spring & NDVI | |||||||
---|---|---|---|---|---|---|---|---|---|---|
DMD | DF | NDF | UA | DF | NDF | UA | DF | NDF | UA | |
DF | 1368 | 232 | 85.50 | 1259 | 297 | 80.91 | 1121 | 392 | 74.09 | |
NDF | 185 | 1215 | 86.79 | 290 | 1154 | 79.92 | 381 | 1106 | 74.38 | |
PA | 88.09 | 83.97 | — | 81.28 | 79.53 | — | 74.63 | 73.83 | — | |
OA | 86.10 | 80.43 | 74.23 | |||||||
RD | Summer & EVI | Summer & RVI | Summer & NDVI | |||||||
DMD | DF | NDF | UA | DF | NDF | UA | DF | NDF | UA | |
DF | 1401 | 207 | 87.13 | 1253 | 277 | 81.90 | 1215 | 322 | 79.05 | |
NDF | 153 | 1239 | 89.01 | 265 | 1205 | 81.97 | 305 | 1158 | 79.15 | |
PA | 90.15 | 85.68 | — | 82.54 | 81.31 | — | 79.93 | 78.24 | — | |
OA | 88.00 | 81.93 | 79.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Jia, X.; Zhang, X.; Lei, L.; Chai, G.; Yao, Z.; Qiu, S.; Du, J.; Wang, J.; Wang, Z.; et al. Tracking Forest Disturbance in Northeast China’s Cold-Temperate Forests Using a Temporal Sequence of Landsat Data. Remote Sens. 2024, 16, 3238. https://doi.org/10.3390/rs16173238
Wang Y, Jia X, Zhang X, Lei L, Chai G, Yao Z, Qiu S, Du J, Wang J, Wang Z, et al. Tracking Forest Disturbance in Northeast China’s Cold-Temperate Forests Using a Temporal Sequence of Landsat Data. Remote Sensing. 2024; 16(17):3238. https://doi.org/10.3390/rs16173238
Chicago/Turabian StyleWang, Yueting, Xiang Jia, Xiaoli Zhang, Lingting Lei, Guoqi Chai, Zongqi Yao, Shike Qiu, Jun Du, Jingxu Wang, Zheng Wang, and et al. 2024. "Tracking Forest Disturbance in Northeast China’s Cold-Temperate Forests Using a Temporal Sequence of Landsat Data" Remote Sensing 16, no. 17: 3238. https://doi.org/10.3390/rs16173238
APA StyleWang, Y., Jia, X., Zhang, X., Lei, L., Chai, G., Yao, Z., Qiu, S., Du, J., Wang, J., Wang, Z., & Wang, R. (2024). Tracking Forest Disturbance in Northeast China’s Cold-Temperate Forests Using a Temporal Sequence of Landsat Data. Remote Sensing, 16(17), 3238. https://doi.org/10.3390/rs16173238