Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = cohesive soil–concrete interface

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 18380 KiB  
Article
Examining Shear Behavior in Sandy Gravel Interfaces: The Role of Relative Density and Material Interactions
by Zhanhai Li, Jinxiao Li, Xiang Mao, Xinyu Xie, Jingze Zhu, Yang Zheng, Yuan Li, Zhifeng Ren, Zhaohui Sun and Jiankun Liu
Buildings 2025, 15(4), 546; https://doi.org/10.3390/buildings15040546 - 11 Feb 2025
Viewed by 728
Abstract
Current research on soil–structure interface properties mainly focuses on sand, clay, and silt, with little attention given to sandy gravel. In order to study the effects of relative density and interface materials on the shear behavior of the sandy gravel–structure interface, a series [...] Read more.
Current research on soil–structure interface properties mainly focuses on sand, clay, and silt, with little attention given to sandy gravel. In order to study the effects of relative density and interface materials on the shear behavior of the sandy gravel–structure interface, a series of large-scale direct shear tests on sandy gravel were carried out, and stress–strain relationships, volume change curves, and shear strengths were investigated. The results show that the angle of internal friction of sandy gravel increases linearly with relative density (R2 is 0.998), from 43.0° to 48.0° when the relative density increases from 0.3 to 0.9. The growth trend of cohesion increases, the shear behavior transitions from strain hardening to strain softening, and the shear strength increases linearly with the increase in relative density. The interfacial shear strengths and interface adhesion of sandy gravel with steel and concrete interfaces increase linearly with relative density, and the shear curves are strain hardening. Furthermore, the interface friction angle of concrete increases linearly with relative density (R2 is 0.985), from 30.2° to 34.2°, while the interface friction angle of the steel interface remains relatively constant around 28.9°. Finally, relative density was introduced into the Mohr–Coulomb shear strength formula, and the relationship equations of relative density and normal pressure with the shear strength and interfacial shear strength of sandy gravel were established. The validation results show that the error margin of the formula is within 4%. This formula can be used to evaluate changes in the mechanical properties of sandy gravel formations and the bearing capacity of pile foundations after they have been disturbed by factors such as construction. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

23 pages, 40212 KiB  
Article
Global and Local Shear Behavior of the Frozen Soil–Concrete Interface: Effects of Temperature, Water Content, Normal Stress, and Shear Rate
by Kun Zhang, Jianglin Yan, Yanhu Mu, Xiaoming Zhu and Lianhai Zhang
Buildings 2024, 14(10), 3319; https://doi.org/10.3390/buildings14103319 - 21 Oct 2024
Cited by 1 | Viewed by 1316
Abstract
The interface between soil and concrete in cold climates has a significant effect on the structural integrity of embedded structures, including piles, liners, and others. In this study, a novel temperature control system was employed to conduct direct shear tests on this interface. [...] Read more.
The interface between soil and concrete in cold climates has a significant effect on the structural integrity of embedded structures, including piles, liners, and others. In this study, a novel temperature control system was employed to conduct direct shear tests on this interface. The test conditions included normal stress (25 to 100 kPa), temperature (ranging from 20 to −6 °C), water content (from 10 to 19%), and shear rates (0.1 to 1.2 mm/min). Simultaneously, the deformation process of the interface was continuously photographed using a modified visual shear box, and the non-uniform deformation mechanism of the interface was analyzed by combining digital image correlation (DIC) technology with the photographic data. The findings revealed that the shear stress–shear displacement curves did not exhibit a discernible peak strength at elevated temperatures, indicating deformation behavior characterized by strain hardening. In the frozen state, however, the deformation softened, and the interfacial ice bonding strength exhibited a positive correlation with decreasing temperature. When the initial water content was 16% and the normal stress was 100 kPa, the peak shear strength increased significantly from 99.9 kPa to 182.9 kPa as the test temperature dropped from 20 °C to −6 °C. Both shear rate and temperature were found to have a marked effect on the peak shear strength, with interface cohesion being the principal factor contributing to this phenomenon. At a shear rate of 0.1 mm/min, the curve showed hardening characteristics, but at other shear rates, the curves exhibited strain-softening behavior, with the softening becoming more pronounced as shear rates increased and temperatures decreased. Due to the refreezing of interfacial ice, the residual shear strength increased in proportion to the reduction in shear rate. On a mesoscopic level, it was evident that the displacement of soil particles near the interface exhibited more pronounced changes. At lower shear rates, the phenomenon of interfacial refreezing became apparent, as evidenced by the periodic changes in interfacial granular displacement at the interface. Full article
(This article belongs to the Special Issue Structural Mechanics Analysis of Soil-Structure Interaction)
Show Figures

Figure 1

26 pages, 36425 KiB  
Article
Study on Bonding Characteristics of Polymer Grouted Concrete-Soil Interface
by Lina Wang, Xiaodong Yang, Yueliang Diao and Chengchao Guo
Polymers 2024, 16(15), 2207; https://doi.org/10.3390/polym16152207 - 2 Aug 2024
Cited by 2 | Viewed by 1681
Abstract
The issue of interfacial shear damage has been a significant challenge in the field of geotechnical engineering, particularly in the context of diaphragm walls and surrounding soils. Polymer grouting is a more commonly used repair and reinforcement method but its application to interface [...] Read more.
The issue of interfacial shear damage has been a significant challenge in the field of geotechnical engineering, particularly in the context of diaphragm walls and surrounding soils. Polymer grouting is a more commonly used repair and reinforcement method but its application to interface repair and reinforcement in the field of geotechnical engineering is still relatively rare. Consequently, this paper presents a new polymer grouting material for use in grouting reinforcement at the interface between concrete and soils. The bonding characteristics and shear damage mode of the interface after grouting were investigated by the direct shear test, and the whole process of interface shear damage was investigated by digital image correlation (DIC) technology. Finally, the reinforcement mechanism was analyzed by microscopic analysis. The results demonstrate that the permeable polymer is capable of effectively filling the pores of soil particles and penetrating into the concrete-soil interface. Through a chemical reaction with water in the soil, the polymer cements the soil particles together, forming chemical adhesion at the interface and thereby achieving the desired reinforcement and repair effect. In the shear process, as the normal stress increased, the horizontal displacement and horizontal compressive strain at the distal end of the loading end decreased, while the maximum vertical displacement and maximum vertical strain of the cured soil also decreased. The results of scanning electron microscopy (SEM) demonstrated that the four groups of test polymers exhibited a reduction in soil porosity of 53.47%, 58.79%, 52.71%, and 54.12%, respectively. Additionally, the form of concrete-soil interfacial bonding was observed in the concrete-cohesive layer-cured soil mode. The findings of this study provide a foundation for further research on diaphragm wall repair and reinforcement. Full article
(This article belongs to the Special Issue Application and Development of Polymers in Geotechnical Engineering)
Show Figures

Figure 1

11 pages, 3103 KiB  
Article
Impact of Climate Change on the Performance of Permafrost Highway Subgrade Reinforced by Concrete Piles
by Yueyue Wang, Ying Zhao, Xuesong Mao and Shunde Yin
Future Transp. 2023, 3(3), 996-1006; https://doi.org/10.3390/futuretransp3030055 - 3 Aug 2023
Cited by 1 | Viewed by 2057
Abstract
Climate change has a detrimental impact on permafrost soil in cold regions, resulting in the thawing of permafrost and causing instability and security issues in infrastructure, as well as settlement problems in pavement engineering. To address these challenges, concrete pipe pile foundations have [...] Read more.
Climate change has a detrimental impact on permafrost soil in cold regions, resulting in the thawing of permafrost and causing instability and security issues in infrastructure, as well as settlement problems in pavement engineering. To address these challenges, concrete pipe pile foundations have emerged as a viable solution for reinforcing the subgrade and mitigating settlement in isolated permafrost areas. However, the effectiveness of these foundations depends greatly on the mechanical properties of the interface between the permafrost soil and the pipe, which are strongly influenced by varying thawing conditions. While previous studies have primarily focused on the interface under frozen conditions, this paper specifically investigates the interface under thawing conditions. In this study, direct shear tests were conducted to examine the damage characteristics and shear mechanical properties of the soil-pile interface with a water content of 26% at temperatures of −3 °C, −2 °C, −1 °C, −0.5 °C, and 8 °C. The influence of different degrees of melting on the stress–strain characteristics of the soil-pile interface was also analyzed. The findings reveal that as the temperature increases, the shear strength of the interface decreases. The shear stress-displacement curve of the soil-pile interface in the thawing state exhibits a strain-softening trend and can be divided into three stages: the pre-peak shear stress growth stage, the post-peak shear stress steep drop stage, and the post-peak shear stress reconstruction stage. In contrast, the stress curve in the thawed state demonstrates a strain-hardening trend. The study further highlights that violent phase changes in the ice crystal structure have a significant impact on the peak freezing strength and residual freezing strength at the soil-pile interface, with these strengths decreasing as the temperature rises. Additionally, the cohesion and internal friction angle at the soil-pile interface decrease with increasing temperature. It can be concluded that the mechanical strength of the soil-pile interface, crucial for subgrade reinforcement in permafrost areas within transportation engineering, is greatly influenced by temperature-induced changes in the ice crystal structure. Full article
(This article belongs to the Special Issue Feature Papers in Future Transportation)
Show Figures

Figure 1

17 pages, 6451 KiB  
Article
Experimental Study on Shear Behavior of Interface between Different Soil Materials and Concrete under Variable Normal Stress
by Hongyuan Liu, Mingxing Zhu, Xiaojuan Li, Guoliang Dai, Qian Yin, Jing Liu and Chen Ling
Appl. Sci. 2022, 12(21), 11213; https://doi.org/10.3390/app122111213 - 5 Nov 2022
Cited by 7 | Viewed by 2227
Abstract
At present, the interface shear test is mainly used to evaluate the anti-sliding performance of the new foundation base. However, the traditional interface shear test has certain limitations in simulating the load change during the construction process and cannot accurately simulate the interface [...] Read more.
At present, the interface shear test is mainly used to evaluate the anti-sliding performance of the new foundation base. However, the traditional interface shear test has certain limitations in simulating the load change during the construction process and cannot accurately simulate the interface shear characteristics between the structure and the soil under the continuous change of the normal stress. Based on the self-developed large-scale interface shear equipment, this paper carried out the interface shear test and mechanism research of cement soil concrete, sand concrete, clay concrete and other materials in different curing cycles under the loading and unloading modes of variable normal stress repeated steps and continuous loading modes of variable normal stress steps. In addition, this paper deduced the formula of the minimum interface friction coefficient based on Mohr–Coulomb criterion. The experimental results show that the curing effect of cement soil can significantly improve the shear mechanical properties of the interface, and the friction coefficient of the cement soil concrete interface will also increase step by step with the increase of the curing time of the cement soil. The sliding shear surface can be remolded under the preloading of normal pressure, so that the interface shear characteristics of each shear material under repeated loading and unloading can be approximately equal to the interface shear characteristics of multiple equivalent materials under separate loading. In the case of a continuous change of normal stress, the rapid increase of normal stress will lead to accelerated entry into the limit shear state, resulting in plastic failure of the shear plane as a whole. In the engineering with a continuous change of stress, the interface shear friction coefficient of the material with high cohesion fluctuates greatly. The minimum interface friction coefficient formula and test proposed in this paper can be used to evaluate the interface friction coefficient range, and the sand concrete interface shear performance under the continuous normal stress loading mode showed good consistency. The self-developed large-scale interface shearing equipment and its test data provide theoretical basis and solutions for the improvement of traditional interface shearing equipment. Full article
(This article belongs to the Special Issue Recent Progress on Advanced Foundation Engineering)
Show Figures

Figure 1

12 pages, 6548 KiB  
Article
Shear Characteristics of Soil—Concrete Structure Interaction Interfaces
by Dejie Li, Chong Shi, Huaining Ruan and Bingyi Li
Appl. Sci. 2022, 12(18), 9145; https://doi.org/10.3390/app12189145 - 12 Sep 2022
Cited by 10 | Viewed by 4145
Abstract
The shear characteristics of the interfaces between soil and concrete structures are essential for the safety of the structures. In this study, a large-scale direct shear test apparatus was developed to measure the mechanical parameters of soil–concrete interfaces under conditions with different soil [...] Read more.
The shear characteristics of the interfaces between soil and concrete structures are essential for the safety of the structures. In this study, a large-scale direct shear test apparatus was developed to measure the mechanical parameters of soil–concrete interfaces under conditions with different soil types, soil moisture contents, and interfacial filling materials. The results showed that the shear stress of the soil–concrete interface increased initially and then became stable with the increase in the shear displacement. The shear displacement of the sandy soil when the shear stress became stable was smaller than that of the clayey soil. The silty sand–concrete interface had a smaller friction angle than the interface with the medium-coarse sand. Moreover, with the increase in the soil moisture content, the friction angle of the clayey soil–concrete interface decreased rapidly, whereas the cohesion first increased and then decreased, and the peak cohesion was near the plastic limit of the soil. Under the same moisture content, the friction angle and cohesion of the clay–concrete interface was reduced by filling the interface with a thin layer of sandy soil, while filling the silty sand–concrete interface with a thin layer of silt reduced the friction angle and increased the interfacial cohesion. Nonetheless, the filling had little impact on the overall shear strength of the interface. Full article
Show Figures

Figure 1

23 pages, 5917 KiB  
Article
Effect of Chemical Composition of Fine Aggregate on the Frictional Behavior of Concrete–Soil Interface under Sulfuric Acid Environment
by Jie Xiao, Zhenming Xu, Yikang Murong, Lei Wang, Bin Lei, Lijing Chu, Haibo Jiang and Wenjun Qu
Fractal Fract. 2022, 6(1), 22; https://doi.org/10.3390/fractalfract6010022 - 31 Dec 2021
Cited by 27 | Viewed by 3851
Abstract
Through direct shear tests, this paper aimed to research the effect of fine marble aggregate on the shear strength and fractal dimension of the interface between soil and concrete corroded by sulfuric acid. More realistic concrete rough surfaces than the artificially roughened surfaces [...] Read more.
Through direct shear tests, this paper aimed to research the effect of fine marble aggregate on the shear strength and fractal dimension of the interface between soil and concrete corroded by sulfuric acid. More realistic concrete rough surfaces than the artificially roughened surfaces were formed by immersing four concrete plates in plastic buckets filled with sulfuric acid for different periods of time. The sand was adopted to imitate the soil. 3D laser scanner was employed to obtain the digital shapes of concrete plates subjected to sulfuric acid, and the rough surfaces were evaluated by fractal dimension. Large direct shear experiments were performed to obtain the curves of the interface shear stress and shear displacement between sand and corroded concrete plate. The method of data fitting was adopted to calculate the parameters of shear strength (i.e., friction angle and the cohesive) and the parameters of the Clough–Duncan hyperbolic model. The results indicated that as the corrosion days increased, the surface of the concrete plate became rougher, the surface fractal dimensions of the concrete corroded by sulfuric acid became bigger, and the interface friction angle became greater. The friction angle of the interface and the fractal dimensions of the surface of the concrete plate containing crushed gravel and marble sand were smaller than that of the concrete plate containing crushed gravel and river sand. Full article
(This article belongs to the Special Issue Fractal and Fractional in Cement-based Materials)
Show Figures

Figure 1

19 pages, 6199 KiB  
Article
Study on the Effects of Grouting and Roughness on the Shear Behavior of Cohesive Soil–Concrete Interfaces
by You-Bao Wang, Chunfeng Zhao and Yue Wu
Materials 2020, 13(14), 3043; https://doi.org/10.3390/ma13143043 - 8 Jul 2020
Cited by 27 | Viewed by 3369
Abstract
Grouted soil–concrete interfaces exist in bored piles with post-grouting in pile tip or sides and they have a substantial influence on pile skin friction. To study the effect of grouting volume on the shearing characteristics of the interface between cohesive soil and concrete [...] Read more.
Grouted soil–concrete interfaces exist in bored piles with post-grouting in pile tip or sides and they have a substantial influence on pile skin friction. To study the effect of grouting volume on the shearing characteristics of the interface between cohesive soil and concrete piles with different roughness, grouting equipment and a direct shear apparatus were combined to carry out a total of 48 groups of direct shear tests on cohesive soil–concrete interfaces incorporating the grouting process. The test results showed that the shear behavior of the grouted cohesive soil–concrete interface was improved mainly because increasing the grouting volume and roughness increased the interfacial apparent cohesion. In contrast, increasing the grouting volume and roughness had no obvious increasing effects on the interfacial friction angle. Interfacial grouting contributed to the transition in the grouted cohesive soil from shrinkage to dilation: as the grouting volume increased, the shrinkage became weaker and the dilation became more obvious. The shear band exhibited a parabolic distribution rather than a uniform distribution along the shearing direction and that the shear band thickness was greater in the shearing direction, and it will become thicker with increasing grouting volume or roughness. The analysis can help to understand the shear characteristics of soil–pile interface in studying the vertical bearing properties of pile with post-grouting in tip or sides. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

Back to TopTop