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Abstract: Grouted soil–concrete interfaces exist in bored piles with post-grouting in pile tip or sides
and they have a substantial influence on pile skin friction. To study the effect of grouting volume on
the shearing characteristics of the interface between cohesive soil and concrete piles with different
roughness, grouting equipment and a direct shear apparatus were combined to carry out a total
of 48 groups of direct shear tests on cohesive soil–concrete interfaces incorporating the grouting
process. The test results showed that the shear behavior of the grouted cohesive soil–concrete
interface was improved mainly because increasing the grouting volume and roughness increased
the interfacial apparent cohesion. In contrast, increasing the grouting volume and roughness had
no obvious increasing effects on the interfacial friction angle. Interfacial grouting contributed to the
transition in the grouted cohesive soil from shrinkage to dilation: as the grouting volume increased,
the shrinkage became weaker and the dilation became more obvious. The shear band exhibited a
parabolic distribution rather than a uniform distribution along the shearing direction and that the
shear band thickness was greater in the shearing direction, and it will become thicker with increasing
grouting volume or roughness. The analysis can help to understand the shear characteristics of
soil–pile interface in studying the vertical bearing properties of pile with post-grouting in tip or sides.
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1. Introduction

Grouting technology, which provides good mechanical property improvements, is widely used in
engineering applications, such as tunnel engineering, pile foundation engineering, and construction [1].
In the ultralong, bored, cast-in-place piles used in high-rise buildings, the slurry used to prevent
hole wall collapse and the mud sedimentation at the bottom of the pile decrease pile shaft friction,
which substantially decreases the bearing capacity of the pile [2]. To improve the bearing capacity of a
pile, post-grouting on the tips and sides of piles can increase the tip friction and the shaft friction of piles,
respectively. Many field tests and numerical analyses have studied the vertical bearing performance of
grouted piles [2–7]; however, research on the shear characteristics of the grouted soil–pile interface in
grouted piles is relatively rare.

Following the work of Potyondy [8], who studied the interface between soil and various
construction materials, many scholars have studied the characteristics of the soil–structure
interface [9–33]. These studies included apparatus modifications and new test methods [9–11],
which were used to investigate the influence of surface properties on the traditional soil–structure
interface (including soil–concrete, soil–steel, and soil–cement grout interfaces) [9,12–25,33,34],
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the interfaces between new materials (including ice–soil and soil–geogrid interfaces) [26–32], and the
exterior load conditions (stress history, monotonic load, or cyclic load condition) [35–37].

In particular, for the soil–pile interface, there are some developments that need further elaboration
in terms of the influence of the surface property on the traditional soil–structure interface.

Some studies have investigated the influence of roughness or soil type on the shear characteristics
of the soil–concrete interface. Hu and Pu [9] conducted a study of shear tests of Yongdinghe sand–steel
interface with different roughnesses, finding that elastic perfect-plastic failure mode occurs along
the smooth interface while strain localization occurs in a rough interface accompanied with strong
strain-softening and bulk dilatancy; Su and Zhou [13] carried directed shear tests of sand–steel interface
and found that a critical value of relative roughness exists such that the peak shear stress or friction
angle can no longer be readily enlarged when relative roughness exceeds it. Zhao [17] found that the
thickness of shear zone is 8–14 times average particle size in the sand–concrete interface shearing test.
Chen [21] conducted a series of laboratory large-scale direct shear tests using different types of red
clay–concrete interfaces and the surface roughness is found to have a remarkable effect on the interfacial
shear strength and shear behavior, which is that the shear strength increases with increased surface
roughness. Shakir and Zhu [24] carried out direct shear tests to study the effects of water content and
surface roughness on the shear stress–shear displacement relationship of a clay–concrete interface,
wherein they found that the interfacial shear sliding dominated the interfacial shear displacement
behavior for both relatively rough and smooth interfaces.

Many other experimental studies have investigated the characteristics of the interface between
soil and cement grout. Chen [20] performed many direct shear tests and found that there is a linear
relationship between the shear strength of the grout and resultant normal pressure. Hossain [18]
conducted a series of interface direct shear tests between compacted, completely decomposed granite
(CDG) soil and cement grout under saturated conditions with different grouting pressures and normal
stresses, finding that grouting pressure and normal stress have influence on the behavior of the
soil–cement interface. Chu and Yin [33] conducted direct shear tests between the CDG and a cement
grout plate, finding that the shear stress–displacement behavior of the soil–cement grout interface is
similar to that of the soil alone and the interface shear strength of the CDG and cement grout material
depends on the normal stress level, the soil moisture content, and the interface surface waviness.

Previous research has focused on the soil–concrete interface or soil–cement grout interface, and the
grouting process used in the test specimen preparation process has not been taken into account. In fact,
regardless of the tunnel engineering or post-grouting processes of piles, the cement grout cannot
completely cover the interface between the soil and concrete. The previous research performed by
our research group also shows that cement grout cannot completely cover the interface because of the
different grouting modes under different loading conditions [38]. Grouting will affect the roughness
and subsequently the mechanical properties of the soil–pile interface. Therefore, it is necessary to
consider the grouting process and roughness in the soil–concrete interface.

There have also been some numerical simulations and digital image analyses of the shear
deformation during the interfacial shearing process [17,39–41]. Zhao [17] used the discrete element
method (DEM) to simulate the interface direct shear behavior of granular soil and rough surface,
and discovered the micro-mechanisms of the interface shear band deformation. Zhang [40] also
simulated the granular-continuum interfaces using DEM and investigated the micro-scale responses
of the interface simulations. Oda [41] used microfocus X-ray computed tomography to observe the
microstructure in shear band. However, these methods either need to define complex conditions,
or require a lot of calculations, or require expensive and complicated instruments, and intuitive
experimental observations and measurements of the shear band at the macroscale are few. Therefore,
a simple method of punching bars of colored particles into soil was designed to observe and measure
interfacial shear band thickness and distribution.

Thus, in order to study the effect of grouting volume on the shearing characteristics of the interface
between cohesive soil and concrete piles with different roughness, the multifunctional direct shear
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apparatus in the laboratory was modified and combined with the self-developed grouting device
to carry out 48 sets of direct shear tests on grouted cohesive soil–concrete interfaces considering
the grouting process. The shear performance of the grouted cohesive soil–concrete interface with
different roughness values was analyzed from four aspects: the shear stress–displacement relationship,
interfacial shear strength, dilatancy, and shear band thickness. The results showed that grouting and
roughness increased the shear strength and shear stiffness mainly by increasing the interfacial apparent
cohesion rather than the friction angle, and grouting and roughness can weaken the shear shrinkage
and increase the dilatancy of the cohesive soil. The increase of shear strength was also reflected in the
increase of the shear band thickness with increasing grouting volume and roughness. These results
from the grouted cohesive soil–concrete interfaces provide experimental support for understanding
and analyzing the vertical bearing characteristics of piles with post-grouting in tip or sides.

2. Apparatus, Materials, and Methods

2.1. Apparatus for Grouting and Direct Shear Test

The direct shear test was performed on a large-scale multifunctional interfacial shearing instrument
at the Key Laboratory of Geotechnical and Underground Engineering of the Ministry of Education,
Tongji University (Shanghai, China); some modifications were made to the instrument to ensure
that the grout could be injected into the soil–concrete interface. The main equipment was divided
into two parts: grouting equipment and an SJW-200 direct shear apparatus, as shown in Figure 1.
The parameters of the SJW-200 direct shear apparatus are listed in Table 1.
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Table 1. Parameters of the SJW-200 direct shear apparatus

Shear Box Size (mm)
Range (kN) Velocity (mm/min)

Maximum Displacement (mm) Accuracy (%)
Normal Horizontal Normal Horizontal

600 × 400 × 200 200 200 0.1–50 0.1–50 150 0.5

2.2. Preparation of Materials

2.2.1. Concrete Plate

There are many kinds of roughness definitions, but for convenience, the peak-to-valley distance
R proposed by Zhang [42] was taken to define the roughness of the interface, as shown in Figure 2.
To investigate the effect of roughness on grouted cohesive soil–concrete plate interfaces, three roughness
values were selected in this experiment: 0, 3, and 6 mm. A concrete plate with dimensions of
600 × 400 × 50 mm (length ×width × height) was prepared, as shown in Figure 3, among which S2 = S3,
the height of equilateral trapezoidal tooth (h) equals R. To overcome the brittleness of the concrete,
6 mm of steel-reinforced mesh was arranged at 100 mm intervals near the lower and upper surfaces.
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2.2.2. Cohesive Soil and Grout

In this test, samples of remolded soil were prepared manually. The source of the soil was the silty
clay layer 8O taken from a project in Shanghai. Due to the large amount of soil used, the original soil
was first naturally dried, crushed, dried again, and then passed through a 0.1 mm sieve to obtain dry
soil. Cohesive soil samples were prepared from this dry soil in accordance with the [41]; the parameters
of the soil samples are shown in Table 2.

Table 2. Soil sample parameters

Water Content
(%)

Liquid Limit
(%)

Plastic Limit
(%)

Cohesion
(kPa)

Friction Angle
(◦)

Dry Density
(kg/m3)

25.0 35.8 21.0 18.52 33.10 1630

The cement used for grouting was 32.5R Portland cement from Hailuo Shanghai Cement Co., Ltd.
(Shanghai, China) The parameters of the cement are shown in Table 3. According to a preliminary
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test, the injectability, fluidity, and setting time of the cement grout were appropriate when the
water-to-cement ratio was set to 0.6. The grouting pressure was set to 0.4 MPa. The water used was tap
water. An early strength accelerator (0.5% of the cement content) was mixed in the grout to accelerate
the solidification process and reduce the curing time. Very little red stain was incorporated to facilitate
later observation.

Table 3. Cement parameters.

Constituent SiO2 Al2O3 Fe2O3 CaO MgO SO3 Specific Surface Area (m2/kg)

Content 21.50 5.88 3.67 60.2 1.82 2.46 378

2.3. Test Methods and Scheme

2.3.1. Measurement of Shear Band

To observe the changes in the cohesive soil at the interface during the shearing process and
effectively measure the maximum depth at which the shearing process influences the soil (i.e., the shear
band thickness), bars of fine red particles were punched into the soil samples. The colored bar layout
is shown in Figure 4. The schematic diagram in Figure 5 shows the mutual positions of shear box
displacement S (i.e., shear displacement), relative shear displacement SX and shear band thickness SZ
during the shearing process under the normal force FV and shear force FS. After the shearing process
is completed, the soil can be excavated to perform a detailed measurement of the shear band.
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2.3.2. Test Scheme

The tests were divided into three categories according to the concrete plates with roughness values
of 0, 3, and 6 mm, namely, R0, R3, and R6. There were 16 specimens in each category, for a total of
48 specimens for R0, R3, and R6. Only the 16 specimens in category R0 are listed in Table 4 and the
specimens in the other two categories have the same grouting and loading conditions.

Table 4. Details of test specimens with roughness R0

Specimen Grouting Volume
(dm3)

Normal Consolidation Stress
(kPa)

Normal Stress When Shearing
(kPa)

R0-V0-C100-S100 0 100 100
R0-V2-C100-S100 0.2 100 100
R0-V3-C100-S100 0.3 100 100
R0-V4-C100-S100 0.4 100 100
R0-V0-C100-S75 0 100 75
R0-V2-C100-S75 0.2 100 75
R0-V3-C100-S75 0.3 100 75
R0-V4-C100-S75 0.4 100 75
R0-V0-C100-S50 0 100 50
R0-V2-C100-S50 0.2 100 50
R0-V3-C100-S50 0.3 100 50
R0-V4-C100-S50 0.4 100 50
R0-V0-C75-S75 0 75 75
R0-V2-C75-S75 0.2 75 75
R0-V0-C50-S50 0 50 50
R0-V2-C50-S50 0.2 50 50

Note: In specimen ‘R0-V0-C100-S100’, ‘R’ represents roughness (‘R0’, ‘R3’, and ‘R6’ represent roughness values of 0,
3, and 6 mm, respectively), ‘V’ represents grouting volume (‘V0’, ‘V2’, ‘V3’, and ‘V4’ represent grouting volumes of
0, 0.2, 0.3, and 0.4 dm3, respectively), ‘C’ represents normal consolidation stress, and ‘S’ represents normal stress
during shearing.

2.3.3. Test Procedures

After the concrete plate and soil sample are in place in the shear box, the loading and grouting
process should be carried out according to the following procedures, as illustrated in Figure 6
(R0-V2-C100-S75 is taken as an example):

• Loading: Apply an initial normal consolidation stress of 100 kPa to the soil until the vertical
deformation of the cohesive soil becomes stable. The consolidation time should be no less than 1 h.

• Grouting and curing: Reduce the normal stress to 75 kPa, ensure the soil continues to consolidate
for 1 h. During this time, connect all the equipment, prepare the 0.2 dm3 of grout, and inject the
grout into the interface at 0.4 MPa. After injecting the grout, keep the normal stress at 75 kPa for
consolidation for 10 min. Then push the shear box, which is full of grouted soil, away from the
apparatus platform, cover it with a plastic film and store it under a thick wood plate to cure for
5 days.

• Loading and shearing: After curing the grout, install the shear box in place, apply a normal stress
of 100 kPa to the soil for 1 h, and then reduce the normal stress to 75 kPa for 30 min; the shearing
should be set to 1 mm/min until the shear displacement reaches 40 mm.

• Cutting, observation, and measurement: After shearing, remove the shear box from the apparatus,
cut the soil along the rows of colored bars, observe the apparent soil characteristics, and measure
the shear band.
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3. Test Results and Discussions

By conducting the above tests, the effects of roughness, grouting volume, and normal loading
and unloading on interfacial shear performance could be obtained. Due to the limited length of this
article, the specific effects of roughness and grouting volume on the shear characteristics of the interface
between cohesive soil and concrete plate were mainly analyzed from the aspects of interfacial shear
stress–displacement curves, shear strength, dilatancy, and shear band thickness and distribution.

3.1. Roughness Influence

3.1.1. Shear Stress–Displacement Relationship

Figure 7 shows the relationship between the interfacial shear stress–displacement curves (τ–s
curves) and roughness. Generally, each τ–s curve presents three stages. In the early stage, there is a
steep straight curve, which gradually becomes flatter in the middle stage and stabilizes in the later
stage. The whole shearing process shows hardening behavior. Although the increase amplitude is
different under various loading conditions, the peak shear stress gradually increases as the roughness
increases from R0 to R6. As the roughness increases, the initial straight stage of the τ-s curve becomes
steeper, indicating that increasing roughness can increase the initial shear stiffness. Figure 7e shows
a slight abnormality in that the curve of specimen R3-V0-C75-S75 is higher than that of specimen
R6-V0-C75-S75 during the early stage, which may be due to more grout being on the interface rather
than in the soil during shearing. Figure 7f shows a slight drop in the curve of R6-V2-C50-S50 during
the middle stage, which may be ascribed to grout slipping at the interface.



Materials 2020, 13, 3043 8 of 19

Materials 2020, 13, 3043 8 of 19 

 

0 10 20 30 40
0

20

40

60

80

shear stiffness
 increasing

∨
∨
τR6

τR3

τR0

increasing with R 

Shear displacement /mm

Sh
ea

r s
tre

ss
 τ

 /k
Pa

 R0-V0-C100-S100
 R3-V0-C100-S100      
 R6-V0-C100-S100  

 
0 10 20 30 40

0

10

20

30

40

50

60

70

increasing with R 

shear stiffness
 increasing

 R0-V0-C75-S75
 R3-V0-C75-S75      
 R6-V0-C75-S75  

Shear displacement /mm

Sh
ea

r s
tre

ss
 τ

  /
kP

a

∨
∨
τR6

τR3

τR0

 
(a) (b) 

0 10 20 30 40
0

10

20

30

40

50

increasing with R 

 R0-V0-C50-S50
 R3-V0-C50-S50      
 R6-V0-C50-S50  

Shear displacement /mm

Sh
ea

r s
tre

ss
 τ

  /
kP

a

shear stiffness
 increasing

∨
∨
τR6

τR3

τR0

 
0 10 20 30 40

0

20

40

60

80

100

shear stiffness
 increasing

increasing with R 

 R0-V2-C100-S100
 R3-V2-C100-S100      
 R6-V2-C100-S100  

Shear displacement /mm

Sh
ea

r s
tre

ss
 τ

  /
kP

a ∨
∨
τR6

τR3

τR0

 
(c) (d) 

0 10 20 30 40
0

20

40

60

80

increasing with R 

 R0-V2-C75-S75
 R3-V2-C75-S75      
 R6-V2-C75-S75  

Shear displacement /mm

Sh
ea

r s
tre

ss
 τ

  /
kP

a

∨
∨
τR6

τR3

τR0

 
0 10 20 30 40

0

10

20

30

40

50

60

 R0-V2-C50-S50
 R3-V2-C50-S50      
 R6-V2-C50-S50  

Shear displacement /mm

Sh
ea

r s
tre

ss
 τ

  /
kP

a ∨

∨
τR6

τR3

τR0

increasing with R 

 
(e) (f) 

Figure 7. Shear stress–displacement curves (τ–s curves) for specimens with different roughness values 
in different cases: (a) V0, C100 and S100; (b) V0, C75 and S75; (c) V0, C50 and S50; (d) V2, C100 and 
S100; (e) V2, C75 and S75; (f) V2, C50 and S50. 

3.1.2. Interfacial Shear Strength 
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where 𝑐௘  and 𝜑௘  represent the equivalent apparent cohesion and the equivalent friction angle, 
respectively. 

The increase of the shear strength is specifically reflected in the changes of 𝑐௘  and 𝜑௘ . The 
normal stress and the peak shear stress are linearly fitted under different roughness values according 
to Equation (1), as shown in Figure 8. The parameters of the fitted curves are listed in Table 5. The 
apparent cohesion increases by 1.25 times from 4.61 kPa at R0 to 10.4 kPa at R6 without grouting, 
whereas the friction angle only increases by about 10% from 31.42° to 34.52°. Under the V2 grouting 
condition, the apparent cohesion increases from 10.83 kPa at R0 to 19.39 kPa at R6, whereas the 
friction angle only increases from 32.94° to 36.05°. Figure 8 and Table 5 clearly show that, under the 

Figure 7. Shear stress–displacement curves (τ–s curves) for specimens with different roughness values
in different cases: (a) V0, C100 and S100; (b) V0, C75 and S75; (c) V0, C50 and S50; (d) V2, C100 and
S100; (e) V2, C75 and S75; (f) V2, C50 and S50.

3.1.2. Interfacial Shear Strength

With reference to the Mohr–Coulomb criterion, the peak shear stress and normal stress of the
interface conform to the equivalent relationship as

τ = ce + σtanϕe (1)

where ce and ϕe represent the equivalent apparent cohesion and the equivalent friction angle,
respectively.

The increase of the shear strength is specifically reflected in the changes of ce and ϕe. The normal
stress and the peak shear stress are linearly fitted under different roughness values according to
Equation (1), as shown in Figure 8. The parameters of the fitted curves are listed in Table 5.
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The apparent cohesion increases by 1.25 times from 4.61 kPa at R0 to 10.4 kPa at R6 without grouting,
whereas the friction angle only increases by about 10% from 31.42◦ to 34.52◦. Under the V2 grouting
condition, the apparent cohesion increases from 10.83 kPa at R0 to 19.39 kPa at R6, whereas the friction
angle only increases from 32.94◦ to 36.05◦. Figure 8 and Table 5 clearly show that, under the same
grouting volume, roughness can significantly increase the apparent cohesion of the grouted cohesive
soil–concrete interface, whereas it has no obvious influence on the friction angle.
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Figure 8. Fitted curves between peak shear stress and normal stress with different roughness values in
different grouting cases: (a) V0 and (b) V2.

Table 5. Fitted curve parameters (interfacial apparent cohesion and friction angle) conforming to
Mohr–Coulomb shear criterion for specimens with different roughness values

Grouting Volume Roughness Apparent Cohesion ce
(kPa)

Friction Angleϕe
(◦)

Correlation Coefficient
R2

V0
R0 4.61 31.42 0.989
R3 8.26 33.50 0.993
R6 10.4 34.52 0.990

V2
R0 10.83 32.94 0.989
R3 17.86 34.68 0.992
R6 19.39 36.05 0.993

3.1.3. Shear Dilatancy

Figure 9 shows the influence of roughness on the dilation or shrinkage (in the form of
the relationship between vertical displacement and horizontal displacement, wherein a positive
vertical displacement indicates soil shrinkage and a negative vertical displacement means dilation)
during interfacial shearing. Without grouting, all cohesive soil samples exhibit shear shrinkage.
With decreasing roughness, the soil exhibits weakening shrinkage. As shown in Figure 9c, the shearing
process is not very stable, wherein the vertical displacement decreases in the middle stage; however,
in general, the greater the roughness is, the weaker the shear shrinkage of the soil. Table 6 shows
the final shrinkage values and their relative variation as the roughness changes from R0 to R3 and
from R3 to R6. The negative variation values indicate that the cohesive soil shrinkage decreases with
increasing roughness.
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Figure 9. Dilation/shrinkage varying with different roughness values in different loading cases: (a) 
C100 and S100, (b) C75 and S75, and (c) C50 and S50. 
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softening behavior, showing a relatively stable trend in the final stage of shearing. Under the same 
roughness and loading conditions, the peak shear stress gradually increases as the grouting volume 
increases from 0 to 0.4 dm3. The initial stage of almost all the τ–s curves (except for the curve of 
specimen R3-V3-C100-S100) becomes steeper with increasing grouting volume, indicating that the 

Figure 9. Dilation/shrinkage varying with different roughness values in different loading cases:
(a) C100 and S100, (b) C75 and S75, and (c) C50 and S50.

Table 6. Final dilation/shrinkage for specimens with different roughness values in loading conditions
without grouting.

Grouting Volume Loading Conditions Roughness Dilation/Shrinkage (mm) Variation (%)

V0

C100-S100
R0 2.277 -
R3 2.073 −9.0
R6 1.823 −12.1

C75-S75
R0 1.438 -
R3 1.272 −11.5
R6 1.154 −9.3

C50-S50
R0 0.497 -
R3 0.433 −12.9
R6 0.257 −40.6

Note: A positive value corresponds to ‘shrinkage’ in the fourth column, whereas a negative value corresponds
to ‘dilation’.

3.2. Grouting Volume Influence

3.2.1. Shear Stress–Displacement Relationship

Figure 10 shows the relationship between the interfacial shear stress–displacement curves (τ–s
curves) and grouting volume under the same roughness. The whole shearing process exhibits no
softening behavior, showing a relatively stable trend in the final stage of shearing. Under the same
roughness and loading conditions, the peak shear stress gradually increases as the grouting volume
increases from 0 to 0.4 dm3. The initial stage of almost all the τ–s curves (except for the curve of
specimen R3-V3-C100-S100) becomes steeper with increasing grouting volume, indicating that the
initial shear stiffness can be increased by injecting grouts into the interface. Figure 10b shows a
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slight abnormality in that the curve of specimen R3-V3-C100-S100 is higher than that of specimen
R3-V4-C100-S100 during the early stage and middle stage, which may originate from the injection of
more grout at the interface rather than in the soil for specimen R3-V3-C100-S100.
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Figure 10. Shear stress–displacement curves (τ–s curves) for specimens with different grouting 
volumes: (a) R0, C100 and S100; (b) R3, C100 and S100; (c) R6, C100 and S100. 

3.2.2. Interfacial Shear Strength 

Figure 11 shows the fitted curves between peak shear stress and normal stress for cases with 
different grouting volumes and roughness values. The variations in the apparent cohesion and 
friction angle with respect to the grouting volume are shown in Figure 12. Under the three roughness 
values, the apparent cohesion increases nonlinearly with increasing grouting volume. When R = 0 
mm, the apparent cohesion increases by 36.4%, 50.9%, and 185.0% when the grouting volume 
increases from 0 L to 0.2, 0.3, and 0.4 dm3, respectively. The same variation rule can be found under 
R3 and R6 conditions in Figure 12a. The slope of the fitted curves exhibits no obvious changes in 
Figure 11, and the average value of the friction angle under different grouting volumes changes 
slightly, ranging from 32.7° to 34.7° at the same roughness in Figure 12b. These characteristics indicate 
that the interfacial shear strength can be increased by grouting on the interface. The main reason is 
that the interfacial apparent cohesion increases with the increase of grouting volume, whereas the 
friction angle shows no significant change. 

Figure 10. Shear stress–displacement curves (τ–s curves) for specimens with different grouting volumes:
(a) R0, C100 and S100; (b) R3, C100 and S100; (c) R6, C100 and S100.

3.2.2. Interfacial Shear Strength

Figure 11 shows the fitted curves between peak shear stress and normal stress for cases with
different grouting volumes and roughness values. The variations in the apparent cohesion and friction
angle with respect to the grouting volume are shown in Figure 12. Under the three roughness values,
the apparent cohesion increases nonlinearly with increasing grouting volume. When R = 0 mm,
the apparent cohesion increases by 36.4%, 50.9%, and 185.0% when the grouting volume increases
from 0 L to 0.2, 0.3, and 0.4 dm3, respectively. The same variation rule can be found under R3 and R6
conditions in Figure 12a. The slope of the fitted curves exhibits no obvious changes in Figure 11, and the
average value of the friction angle under different grouting volumes changes slightly, ranging from
32.7◦ to 34.7◦ at the same roughness in Figure 12b. These characteristics indicate that the interfacial
shear strength can be increased by grouting on the interface. The main reason is that the interfacial
apparent cohesion increases with the increase of grouting volume, whereas the friction angle shows no
significant change.
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Figure 11. Fitted curves between peak shear stress and normal stress with different grouting volumes 
for different roughness values: (a) R0, (b) R3, and (c) R6. 
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Figure 12. Relationship of interfacial apparent cohesion and friction angle with respect to the grouting 
volume for specimens with different roughness values under unloading conditions: (a) Interfacial 
apparent cohesion variation with grouting volume; (b) Friction angle variation with grouting volume. 
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apparent cohesion variation with grouting volume; (b) Friction angle variation with grouting volume. 
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3.2.3. Shear Dilatancy

Figure 13 displays the variation in cohesive soil dilation or shrinkage with respect to the grouting
volume for specimens with R0 in different loading cases. The specific values of the dilation/shrinkage
are shown in Table 7. In general, the vertical displacement decreases with increasing grouting volume.
Under the C100-S100 loading condition, the specimen exhibits obvious dilatancy, which becomes
increasingly weaker with increasing grouting volume, as shown in Figure 13a. Although there exists
a descending trend during the late stage under the C100-S75 and C100-S50 loading conditions, the
grouted cohesive soil shows significant changes from shrinkage to dilation as the grouting volume
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varies from 0 to 0.4 dm3, as shown in Figure 13b,c. This indicates that the shrinkage of grouted cohesive
soil becomes weaker and the dilation becomes more obvious as the grouting volume increases.Materials 2020, 13, 3043 13 of 19 
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Figure 13. Dilation/shrinkage varying with increasing grouting volume for specimens with R0 in 
different loading cases: (a) C100-S100, (b) C100-S75, and (c) C100-S50. 
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Figure 13. Dilation/shrinkage varying with increasing grouting volume for specimens with R0 in
different loading cases: (a) C100-S100, (b) C100-S75, and (c) C100-S50.

Table 7. Final dilation/shrinkage for specimens with R0 and different grouting volumes under
unloading conditions

Roughness Loading Conditions Grouting Volume Dilation/Shrinkage (mm) Relative Variation (%)

R0

C100-S100

V0 2.277 -
V2 1.722 −24.4
V3 0.924 −46.3
V4 0.910 −1.5

C100-S75

V0 1.288 -
V2 0.443 −65.6
V3 −0.414 −193.6
V4 −0.458 −10.6

C100-S50

V0 0.128 -
V2 −0.584 −556.3
V3 −0.594 −1.7
V4 −0.627 −5.6

Note: ‘Shrinkage’ corresponds to positive values, whereas ‘dilation’ corresponds to negative values in the
fourth column.

3.3. Thickness and Distribution of Shear Band

The reasons for the increase in interfacial shear strength can be found from the mesoscale or
microscale changes in the shear band; many studies have investigated this phenomenon through
numerical analysis. However, through the measurement method proposed in Section 2.3, the results in
the current test were obtained in a more accurate and intuitive manner.
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Figure 14 shows the variations in the interfacial shear band and apparent soil characteristics
along the shearing direction. Along the shearing direction (‘left’ in Figure 14), the soil becomes denser.
The interaction between the vertical adjacent soil layers is obvious, and the shear band is thicker. In the
direction opposing the shearing direction (‘right’ in Figure 14), the soil becomes loose. This interaction
between adjacent soil layers is weak, and even the colored bar is cut horizontally, which results in a thin
shear band. These features were reflected in the distribution contour of shear band thickness projected
to the horizontal plane for specimens with R0 under no grouting conditions in Figure 15. It shows
that the shear band tends to be thicker in the middle left and thinner at both ends, and the thickest
position deviates from the center line. Along the Y direction perpendicular to the shear direction on the
horizontal plane, the shear band displays a symmetrical distribution with thicker center and thinner
ends due to the symmetrical boundary conditions. This also indicates that the representative value of
the shear band thickness should avoid selecting the area that is greatly affected by the boundaries, so as
to ensure that the selected values can accurately reflect the deformation characteristics of the interface.
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Figure 15. Distribution contour of shear band thickness projected to the horizontal plane:
(a) R0-V0-C100-S100; (b) R0-V0-C100-S75.

It should be noted that grouting into the interface under different conditions may result in different
grouting modes [38]. The colored bar, especially in Row 3 facing the grouting hole in Figure 5, may be
damaged by the grouts, so the thickness and distribution diagram of the shear band shown in Figures 16
and 17 refers to Row 2 which was not damaged in the grouting process.
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volumes in different loading cases: (a) C100 and S100 and (b) C100 and S75.

Figure 16 shows the relationship of the distribution and thickness of the shear band with respect to
roughness in different loading cases. Figure 17 shows the relationship of the distribution and thickness
of the shear band with respect to the grouting volume. The results show that the shear band exhibits
a parabolic distribution rather than a uniform distribution along the shearing direction, which is
consistent with the phenomenon in Figure 14. The peak thickness of the shear band deviates from the
central line of the shear box, occurring on the left part. The interfacial shear band becomes thicker as
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the roughness or grouting volume increases. To enable a comparison of the magnitude of change, the
six data points from each shear band are averaged, as shown in Tables 8 and 9. It can be clearly found
that the increase of the roughness and grouting volume can thicken the shear band by a maximum of
13.3%, which contributes to increasing the interfacial shear strength. However, after reaching certain
values of grouting volume, additional increases in grouting volume will have marginal diminishing
effects on interfacial shear strength.

Table 8. Average shear band thickness for specimens with different roughness values and no grouting

Loading Conditions Roughness Average Shear Band Thickness (mm) Relative Variation (%)

C100-S100
R0 74.8 -
R3 78.0 4.3
R6 82.0 5.1

C75-S75
R0 63.8 -
R3 69.7 9.2
R6 71.7 2.9

C50-S50
R0 50.0 -
R3 53.8 7.6
R6 55.6 3.3

Table 9. Average shear band thickness for specimens with R0 under different grouting conditions

Loading Conditions Grouting Volume Average Shear Band Thickness (mm) Relative Variation (%)

C100-S100

V0 74.8 -
V2 84.0 12.3
V3 87.7 4.4
V4 88.5 0.9

C100-S75

V0 65.3 -
V2 74.0 13.3
V3 79.2 7.0
V4 81.0 2.3

4. Conclusions

To simulate the interfacial shearing between soil and concrete piles with post grouting in tip or
sides, the multifunctional interfacial shearing instrument at the Key Laboratory of Geotechnical and
Underground Engineering of the Ministry of Education, Tongji University (Shanghai, China) was
modified and combined with the self-developed grouting device to carry out 48 sets of direct shear
tests on grouted cohesive soil–concrete interfaces with different roughness considering the grouting
process. A simple method of punching bars of colored particles into soil was designed to observe and
measure interfacial shear band thickness and distribution. The effects of grouting and roughness on
the shear characteristics of the cohesive soil–concrete interface were discussed and analyzed from four
aspects: the shear stress–displacement relationship, interfacial shear strength, dilatancy, and shear
band distribution and thickness. The following conclusions can be drawn:

(1) The shear stress–displacement relationship of the cohesive soil–concrete interface can be effectively
improved by increasing the interfacial grouting volume and roughness. The initial shear stiffness
and peak shear stress increased with increasing grouting volume and roughness.

(2) The improvement in the shear performance of the cohesive soil–concrete interface was mainly
due to the interfacial apparent cohesion—rather than the friction angle—being improved by
increasing the grouting volume and roughness. Increasing the interfacial grouting volume and
roughness had no obvious increasing effects on the friction angle.
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(3) Cohesive soil without grouting exhibited shear shrinkage that weakened with increasing
roughness. As the interfacial grouting volume increased, the shrinkage of the grouted cohesive
soil transitioned to dilation. Hence, as the grouting volume increased, the shrinkage became
weaker and the dilation became more obvious.

(4) Interfacial shear band becomes thicker with increasing grouting volume or roughness. In the
direction opposing the shearing direction, the soil became looser, whereas the soil became
denser in the shearing direction. The shear band exhibited a parabolic distribution rather than a
uniform distribution along the shearing direction, and the shear band thickness was larger in the
shearing direction. Increasing the roughness and grouting volume effectively thickened the shear
band, which contributed to increasing the interfacial shear strength. However, after reaching
certain values of grouting volume, additional increase in grouting volume may have marginal
diminishing effects on the interfacial shear strength.
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