Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (41)

Search Parameters:
Keywords = coherent anti-Stokes Raman scattering

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2872 KiB  
Article
Egyptian Blue into Carboxymetylcellulose: New Dual-Emissive Solid-State Luminescent Films
by Mariana Coimbra, Francesco Fagnani, Gisele Peres, Paulo Ribeiro-Claro, Juan Carlos Otero, Daniele Marinotto, Dominique Roberto and Mariela Nolasco
Molecules 2025, 30(11), 2359; https://doi.org/10.3390/molecules30112359 - 28 May 2025
Viewed by 685
Abstract
The development and characterization of a sustainable carboxymethylcellulose (CMC)-based material hosting Egyptian blue (EB) as a luminophore with emission in both the visible and NIR regions is herein presented and discussed, demonstrating its potential to be applied in a variety of applications, such [...] Read more.
The development and characterization of a sustainable carboxymethylcellulose (CMC)-based material hosting Egyptian blue (EB) as a luminophore with emission in both the visible and NIR regions is herein presented and discussed, demonstrating its potential to be applied in a variety of applications, such as bioimaging, sensing, and security marking. Solution casting was used to synthesize the films, with citric acid (CA) as a crosslinking agent. Fully characterization was performed using attenuated total reflection (ATR) and coherent anti-Stokes Raman scattering (CARS) spectroscopy, zeta potential, UV–Vis, and photoluminescence (PL) spectroscopy, and thermal analysis techniques, such as thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The results confirm the effective crosslinking of CMC with CA within CMC–EB–CA films with 1.5 and 3% of EB. The introduction of EB retained its usual NIR emission with λem max = ~950 nm reaching quantum yield values in the range of 11.2–12.8% while also enabling a stable dispersion within the CMC matrix, as confirmed using CARS imaging and zeta potential. Additionally, the CMC films exhibited the characteristic clustering-triggered emission (CTE) in the blue region at 430 nm with a slight increase in luminescence quantum yield (Φ) from 5.8 to 6.1% after crosslinking with citric acid. Full article
(This article belongs to the Special Issue Advances in Dyes and Photochromics)
Show Figures

Graphical abstract

22 pages, 3440 KiB  
Review
Coherent Vibrational Anti-Stokes Raman Spectroscopy Assisted by Pulse Shaping
by Kai Wang, James T. Florence, Xia Hua, Zehua Han, Yujie Shen, Jizhou Wang, Xi Wang and Alexei V. Sokolov
Molecules 2025, 30(10), 2243; https://doi.org/10.3390/molecules30102243 - 21 May 2025
Viewed by 1097
Abstract
Coherent anti-Stokes Raman scattering (CARS) is a powerful nonlinear spectroscopic technique widely used in biological imaging, chemical analysis, and combustion and flame diagnostics. The adoption of pulse shapers in CARS has emerged as a useful approach, offering precise control of optical waveforms. By [...] Read more.
Coherent anti-Stokes Raman scattering (CARS) is a powerful nonlinear spectroscopic technique widely used in biological imaging, chemical analysis, and combustion and flame diagnostics. The adoption of pulse shapers in CARS has emerged as a useful approach, offering precise control of optical waveforms. By tailoring the phase, amplitude, and polarization of laser pulses, the pulse shaping approach enables selective excitation, spectral resolution improvement, and non-resonant background suppression in CARS. This paper presents a comprehensive review of applying pulse shaping techniques in CARS spectroscopy for biophotonics. There are two different pulse shaping strategies: passive pulse shaping and active pulse shaping. Two passive pulse shaping techniques, hybrid CARS and spectral focusing CARS, are reviewed. Active pulse shaping using a programmable pulse shaper such as spatial light modulator (SLM) is discussed for CARS spectroscopy. Combining active pulse shaping and passive shaping, optimizing CARS with acousto-optic programmable dispersive filters (AOPDFs) is discussed and illustrated with experimental examples conducted in the authors’ laboratory. These results underscore pulse shapers in advancing CARS technology, enabling improved sensitivity, specificity, and broader applications across diverse scientific fields. Full article
Show Figures

Figure 1

51 pages, 2490 KiB  
Review
Raman Spectroscopy in the Characterization of Food Carotenoids: Challenges and Prospects
by Stefan M. Kolašinac, Ilinka Pećinar, Radoš Gajić, Dragosav Mutavdžić and Zora P. Dajić Stevanović
Foods 2025, 14(6), 953; https://doi.org/10.3390/foods14060953 - 11 Mar 2025
Cited by 1 | Viewed by 1850
Abstract
This paper presents an overview of the application of Raman spectroscopy (RS) in characterizing carotenoids, which have recently gained attention due to new findings on their health-promoting effects and rising demand in the food, pharmaceutical, and cosmetic industries. The backbone structure in the [...] Read more.
This paper presents an overview of the application of Raman spectroscopy (RS) in characterizing carotenoids, which have recently gained attention due to new findings on their health-promoting effects and rising demand in the food, pharmaceutical, and cosmetic industries. The backbone structure in the form of a polyene chain makes carotenoids sensitive to Raman spectroscopy, mainly due to the stretching vibrations of their conjugated double bonds. Raman spectroscopy is increasingly used in agricultural and food sciences and technologies as it is a non-preparative, environmentally friendly, fast and efficient method for characterizing target analytes. The application of RS in the qualitative and quantitative analysis of carotenoids requires the careful selection and adjustment of various instrument parameters (e.g., laser wavelength, laser power, spectral resolution, detector type, etc.) as well as performing complex chemometric modeling to interpret the Raman spectra. Most of the studies covered in this review focus more on qualitative than quantitative analysis. The most frequently used laser wavelengths are 1064, 785, and 532 nm, while 633 nm is the least used. Considering the sensitivity and complexity of RS, the present study focuses on the specific and critical points in the analysis of carotenoids by RS. The main methodological and experimental principles in the study of food carotenoids by RS are discussed and best practices recommended, while the future prospects and expectations for a wider application of RS, especially in food quality assessment, are emphasized. New Raman techniques such as Spatially Offset Raman Spectroscopy (SORS), Coherent Anti-Stokes Raman Spectroscopy (CARS) and Stimulated Raman Scattering Spectroscopy (SRS), as well as the application of artificial intelligence, are also described in the context of carotenoids analysis. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

18 pages, 7213 KiB  
Review
A Review of Non-Linear Optical Imaging Techniques for Cancer Detection
by Francisco J. Ávila
Optics 2024, 5(4), 416-433; https://doi.org/10.3390/opt5040031 - 16 Oct 2024
Cited by 2 | Viewed by 2167
Abstract
The World Health Organization (WHO) cancer agency predicts that more than 35 million cases of cancer will be experienced in 2050, a 77% increase over the 2022 estimate. Currently, the main cancers diagnosed are breast, lung, and colorectal. There is no standardized tool [...] Read more.
The World Health Organization (WHO) cancer agency predicts that more than 35 million cases of cancer will be experienced in 2050, a 77% increase over the 2022 estimate. Currently, the main cancers diagnosed are breast, lung, and colorectal. There is no standardized tool for cancer diagnoses; initially, clinical procedures are guided by the patient symptoms and usually involve biochemical blood tests, imaging, and biopsy. Label-free non-linear optical approaches are promising tools for tumor imaging, due to their inherent non-invasive biosafe contrast mechanisms and the ability to monitor collagen-related disorders, and biochemical and metabolic changes during cancer progression. In this review, the main non-linear microscopy techniques are discussed, according to three main contrast mechanisms: biochemical, metabolic, and structural imaging. Full article
Show Figures

Figure 1

11 pages, 3916 KiB  
Article
Nonlinear Optical Microscopic Imaging for Real-Time Gaseous Chemical Sensing
by Gombojav O. Ariunbold, Bryan Semon, Logan Carlson and Thejesh N. Bandi
Photonics 2024, 11(10), 959; https://doi.org/10.3390/photonics11100959 - 13 Oct 2024
Viewed by 1228
Abstract
Nonlinear optical microscopic imaging techniques have advanced for chemically sensitive imaging of solid and liquid samples but lack advancements for gaseous samples. In this work, wide-field three-color ultrafast coherent anti-Stokes Raman scattering microscopy is implemented for selectively imaging the ambient nitrogen gas. Our [...] Read more.
Nonlinear optical microscopic imaging techniques have advanced for chemically sensitive imaging of solid and liquid samples but lack advancements for gaseous samples. In this work, wide-field three-color ultrafast coherent anti-Stokes Raman scattering microscopy is implemented for selectively imaging the ambient nitrogen gas. Our technique operates by capturing a series of spectrally selected images with a rate of 5–10 frames per second. The recorded data are analyzed both qualitatively and quantitatively. This technique has been demonstrated to be sensitive to a variation of approximately 1011 nitrogen molecules in ambient air confined within a microscopic volume of 10 μm by 50 μm by 50 μm. We believe that our approach can potentially be extended toward real-time, in situ chemical imaging of the microscopic dynamics of gases, for example, in ammonia for nitrogen cycle, greenhouse gases for environmental pollution, plant fertilization regulation for precision agriculture, or byproducts produced from lower-temperature plasmas. Full article
(This article belongs to the Special Issue Nonlinear Optics and Hyperspectral Polarization Imaging)
Show Figures

Figure 1

17 pages, 3472 KiB  
Article
Alterations in the Structure, Composition, and Organization of Galactosaminoglycan-Containing Proteoglycans and Collagen Correspond to the Progressive Stages of Dupuytren’s Disease
by Luiz Guilherme S. Lenzi, João Baptista Gomes dos Santos, Renan P. Cavalheiro, Aline Mendes, Elsa Y. Kobayashi, Helena B. Nader and Flavio Faloppa
Int. J. Mol. Sci. 2024, 25(13), 7192; https://doi.org/10.3390/ijms25137192 - 29 Jun 2024
Cited by 1 | Viewed by 1418
Abstract
Dupuytren’s disease (DD) is a prevalent fibroproliferative disorder of the hand, shaped by genetic, epigenetic, and environmental influences. The extracellular matrix (ECM) is a complex assembly of diverse macromolecules. Alterations in the ECM’s content, structure and organization can impact both normal physiological functions [...] Read more.
Dupuytren’s disease (DD) is a prevalent fibroproliferative disorder of the hand, shaped by genetic, epigenetic, and environmental influences. The extracellular matrix (ECM) is a complex assembly of diverse macromolecules. Alterations in the ECM’s content, structure and organization can impact both normal physiological functions and pathological conditions. This study explored the content and organization of glycosaminoglycans, proteoglycans, and collagen in the ECM of patients at various stages of DD, assessing their potential as prognostic indicators. This research reveals, for the first time, relevant changes in the complexity of chondroitin/dermatan sulfate structures, specifically an increase of disaccharides containing iduronic acid residues covalently linked to either N-acetylgalactosamine 6-O-sulfated or N-acetylgalactosamine 4-O-sulfated, correlating with the disease’s severity. Additionally, we noted an increase in versican expression, a high molecular weight proteoglycan, across stages I to IV, while decorin, a small leucine-rich proteoglycan, significantly diminishes as DD progresses, both confirmed by mRNA analysis and protein detection via confocal microscopy. Coherent anti-Stokes Raman scattering (CARS) microscopy further demonstrated that collagen fibril architecture in DD varies importantly with disease stages. Moreover, the urinary excretion of both hyaluronic and sulfated glycosaminoglycans markedly decreased among DD patients.Our findings indicate that specific proteoglycans with galactosaminoglycan chains and collagen arrangements could serve as biomarkers for DD progression. The reduction in glycosaminoglycan excretion suggests a systemic manifestation of the disease. Full article
(This article belongs to the Special Issue Glycosaminoglycans, 2nd Edition)
Show Figures

Figure 1

19 pages, 2694 KiB  
Review
Advances in Femtosecond Coherent Anti-Stokes Raman Scattering for Thermometry
by Kaiyuan Song, Mingze Xia, Sheng Yun, Yuan Zhang, Sheng Zhang, Hui Ge, Yanyan Deng, Meng Liu, Wei Wang, Longfei Zhao, Yulei Wang, Zhiwei Lv and Yuanqin Xia
Photonics 2024, 11(7), 622; https://doi.org/10.3390/photonics11070622 - 28 Jun 2024
Cited by 2 | Viewed by 1902
Abstract
The combustion process is complex and harsh, and the supersonic combustion flow field is also characterized by short duration and supersonic speed, which makes the real-time diagnostic technology for the transient environment extremely demanding. It is of great significance to realize high time-resolved [...] Read more.
The combustion process is complex and harsh, and the supersonic combustion flow field is also characterized by short duration and supersonic speed, which makes the real-time diagnostic technology for the transient environment extremely demanding. It is of great significance to realize high time-resolved accurate measurement of temperature, component concentration, and other parametric information of the combustion field to study the transient chemical reaction dynamics of the combustion field. Femtosecond CARS spectroscopy can effectively avoid the collision effect between particles in the measurement process and reduce the influence of the non-resonant background to improve the measurement accuracy and realize the time-resolved measurement on a millisecond scale. This paper introduces the development history of femtosecond CARS spectroscopy, points out its advantages and disadvantages, and looks forward to the future development trend to carry out high time-resolved measurements, establish a database of temperature changes in various complex combustion fields, and provide support for the study of engine mechanisms. Full article
(This article belongs to the Special Issue Emerging Topics in High-Power Laser and Light–Matter Interactions)
Show Figures

Figure 1

12 pages, 1118 KiB  
Review
Advancements in Neurosurgical Intraoperative Histology
by Ali A. Mohamed, Emma Sargent, Cooper Williams, Zev Karve, Karthik Nair and Brandon Lucke-Wold
Tomography 2024, 10(5), 693-704; https://doi.org/10.3390/tomography10050054 - 9 May 2024
Cited by 3 | Viewed by 3480
Abstract
Despite their relatively low incidence globally, central nervous system (CNS) tumors remain amongst the most lethal cancers, with only a few other malignancies surpassing them in 5-year mortality rates. Treatment decisions for brain tumors heavily rely on histopathological analysis, particularly intraoperatively, to guide [...] Read more.
Despite their relatively low incidence globally, central nervous system (CNS) tumors remain amongst the most lethal cancers, with only a few other malignancies surpassing them in 5-year mortality rates. Treatment decisions for brain tumors heavily rely on histopathological analysis, particularly intraoperatively, to guide surgical interventions and optimize patient outcomes. Frozen sectioning has emerged as a vital intraoperative technique, allowing for highly accurate, rapid analysis of tissue samples, although it poses challenges regarding interpretive errors and tissue distortion. Raman histology, based on Raman spectroscopy, has shown great promise in providing label-free, molecular information for accurate intraoperative diagnosis, aiding in tumor resection and the identification of neurodegenerative disease. Techniques including Stimulated Raman Scattering (SRS), Coherent Anti-Stokes Raman Scattering (CARS), Surface-Enhanced Raman Scattering (SERS), and Tip-Enhanced Raman Scattering (TERS) have profoundly enhanced the speed and resolution of Raman imaging. Similarly, Confocal Laser Endomicroscopy (CLE) allows for real-time imaging and the rapid intraoperative histologic evaluation of specimens. While CLE is primarily utilized in gastrointestinal procedures, its application in neurosurgery is promising, particularly in the context of gliomas and meningiomas. This review focuses on discussing the immense progress in intraoperative histology within neurosurgery and provides insight into the impact of these advancements on enhancing patient outcomes. Full article
(This article belongs to the Section Neuroimaging)
Show Figures

Figure 1

19 pages, 8900 KiB  
Article
Coherent Raman Scattering Spectral Shapes in a Strong Excitation Regime (Model Calculations)
by Georgi B. Hadjichristov
Photonics 2024, 11(4), 384; https://doi.org/10.3390/photonics11040384 - 18 Apr 2024
Viewed by 1421
Abstract
The influence of the interference between coherent processes in third-order nonlinear Raman scattering on the spectral shapes of Raman-scattered light waves is numerically modeled and discussed in the cases of commonly used coherent Raman spectroscopy techniques. The effects on the lineshapes depending on [...] Read more.
The influence of the interference between coherent processes in third-order nonlinear Raman scattering on the spectral shapes of Raman-scattered light waves is numerically modeled and discussed in the cases of commonly used coherent Raman spectroscopy techniques. The effects on the lineshapes depending on the laser intensity are analyzed for the coherent Raman spectroscopy performed via the excitation of molecular systems with focused laser pulses at high intensities. In this case, the interplay between the coherent processes in nonlinear Raman scattering, as well as laser power-induced resonance effects, may be significant and should be taken into account in the spectral lineshape analysis in coherent Raman spectroscopy and its related applications, since the coherent Raman spectra may be considerably modified. Full article
(This article belongs to the Special Issue Advances in Nonlinear Optics: From Fundamentals to Applications)
Show Figures

Figure 1

12 pages, 3846 KiB  
Article
Dual-Pump Vibrational Coherent Anti-Stokes Raman Scattering System Developed for Simultaneous Temperature and Relative Nitrogen–Water Vapor Concentration Measurements
by Amon Too, Evaggelos Sidiropoulos, Yannik Holz, Nancy Wangechi Karuri and Thomas Seeger
Optics 2023, 4(4), 613-624; https://doi.org/10.3390/opt4040046 - 8 Dec 2023
Viewed by 2368
Abstract
Simultaneous gas phase temperature and water vapor concentration measurement are important to understand reacting flows such as combustion or gas reforming processes. Here, coherent anti-Stokes Raman scattering (CARS) offers the possibility for non-intrusive measurements with a high temporal and spatial resolution. Therefore, this [...] Read more.
Simultaneous gas phase temperature and water vapor concentration measurement are important to understand reacting flows such as combustion or gas reforming processes. Here, coherent anti-Stokes Raman scattering (CARS) offers the possibility for non-intrusive measurements with a high temporal and spatial resolution. Therefore, this work demonstrates the simultaneous measurement of temperature and relative water vapor–nitrogen concentrations by using dual-pump vibrational coherent anti-Stokes Raman scattering (DPVCARS). A calibration procedure is developed for a temperature range of 473 K to 673 K and a water vapor concentration of 24% to 46% at ambient pressure. This setup is tested with 500 CARS single pulse spectra taken in a gas cell at a known temperature and concentration. Based on these results, information about precision and accuracy can be delivered. Full article
(This article belongs to the Collection Feature Paper Collection of Emerging Trends on Optics)
Show Figures

Figure 1

35 pages, 7519 KiB  
Review
Optical Methods for Non-Invasive Determination of Skin Penetration: Current Trends, Advances, Possibilities, Prospects, and Translation into In Vivo Human Studies
by Maxim E. Darvin
Pharmaceutics 2023, 15(9), 2272; https://doi.org/10.3390/pharmaceutics15092272 - 3 Sep 2023
Cited by 18 | Viewed by 5168
Abstract
Information on the penetration depth, pathways, metabolization, storage of vehicles, active pharmaceutical ingredients (APIs), and functional cosmetic ingredients (FCIs) of topically applied formulations or contaminants (substances) in skin is of great importance for understanding their interaction with skin targets, treatment efficacy, and risk [...] Read more.
Information on the penetration depth, pathways, metabolization, storage of vehicles, active pharmaceutical ingredients (APIs), and functional cosmetic ingredients (FCIs) of topically applied formulations or contaminants (substances) in skin is of great importance for understanding their interaction with skin targets, treatment efficacy, and risk assessment—a challenging task in dermatology, cosmetology, and pharmacy. Non-invasive methods for the qualitative and quantitative visualization of substances in skin in vivo are favored and limited to optical imaging and spectroscopic methods such as fluorescence/reflectance confocal laser scanning microscopy (CLSM); two-photon tomography (2PT) combined with autofluorescence (2PT-AF), fluorescence lifetime imaging (2PT-FLIM), second-harmonic generation (SHG), coherent anti-Stokes Raman scattering (CARS), and reflectance confocal microscopy (2PT-RCM); three-photon tomography (3PT); confocal Raman micro-spectroscopy (CRM); surface-enhanced Raman scattering (SERS) micro-spectroscopy; stimulated Raman scattering (SRS) microscopy; and optical coherence tomography (OCT). This review summarizes the state of the art in the use of the CLSM, 2PT, 3PT, CRM, SERS, SRS, and OCT optical methods to study skin penetration in vivo non-invasively (302 references). The advantages, limitations, possibilities, and prospects of the reviewed optical methods are comprehensively discussed. The ex vivo studies discussed are potentially translatable into in vivo measurements. The requirements for the optical properties of substances to determine their penetration into skin by certain methods are highlighted. Full article
Show Figures

Graphical abstract

18 pages, 4865 KiB  
Article
Influence of Casein and Milk Phospholipid Emulsifiers on the Digestion and Self-Assembled Structures of Milk Lipids
by Malinda Salim, Alastair K. H. MacGibbon, Cameron J. Nowell, Andrew J. Clulow and Ben J. Boyd
Colloids Interfaces 2023, 7(3), 56; https://doi.org/10.3390/colloids7030056 - 28 Aug 2023
Cited by 2 | Viewed by 3270
Abstract
Interfacial compositions of fat globules modulate the digestion behaviour of milk triglycerides in the gastrointestinal tract, thereby affecting lipid metabolism and delivery of nutrients. In this study, we aim to understand the impact of emulsifiers on lipid digestibility and the self-assembled liquid crystal [...] Read more.
Interfacial compositions of fat globules modulate the digestion behaviour of milk triglycerides in the gastrointestinal tract, thereby affecting lipid metabolism and delivery of nutrients. In this study, we aim to understand the impact of emulsifiers on lipid digestibility and the self-assembled liquid crystal structures formed by anhydrous milk fat (AMF) during digestion. AMF was emulsified with casein and milk phospholipids, and digestion was performed in both gastric and small intestinal conditions to account for changes at the oil/water interface following enzymatic digestion in the gastric phase. Small angle X-ray scattering was used to characterise the self-assembled structures of the digestion products, while coherent anti-Stokes Raman scattering microscopy was utilised to probe changes in lipid distribution at the single droplet level during digestion. Our findings confirmed that emulsifiers play a key role in the digestion of AMF. Milk phospholipids exhibited a protective effect on milk triglycerides against pancreatic lipase digestion by slowing digestion, but this effect was slightly negated in emulsions pre-digested under gastric conditions. The overall types of liquid crystal structures formed after digestion of casein- and milk phospholipids-emulsified AMF were comparable to commercial bovine milk irrespective of gastric pre-treatment. However, emulsification of AMF with milk phospholipids resulted in changes in the microstructures of the liquid crystal phases, suggesting potential interactions between the digested products of the fat globules and milk phospholipids. This study highlights the importance of emulsifiers in regulating lipid digestion behaviour and lipid self-assembly during digestion. Full article
Show Figures

Figure 1

15 pages, 3068 KiB  
Article
Tracking Permeation of Dimethyl Sulfoxide (DMSO) in Mentha × piperita Shoot Tips Using Coherent Raman Microscopy
by Heidi D. Kreckel, Fionna M. D. Samuels, Remi Bonnart, Gayle M. Volk, Dominik G. Stich and Nancy E. Levinger
Plants 2023, 12(12), 2247; https://doi.org/10.3390/plants12122247 - 8 Jun 2023
Cited by 8 | Viewed by 2896
Abstract
Cryopreservation has emerged as a low-maintenance, cost-effective solution for the long-term preservation of vegetatively propagated crops. Shoot tip cryopreservation often makes use of vitrification methods that employ highly concentrated mixtures of cryoprotecting agents; however, little is understood as to how these cryoprotecting agents [...] Read more.
Cryopreservation has emerged as a low-maintenance, cost-effective solution for the long-term preservation of vegetatively propagated crops. Shoot tip cryopreservation often makes use of vitrification methods that employ highly concentrated mixtures of cryoprotecting agents; however, little is understood as to how these cryoprotecting agents protect cells and tissues from freezing. In this study, we use coherent anti-Stokes Raman scattering microscopy to directly visualize where dimethyl sulfoxide (DMSO) localizes within Mentha × piperita shoot tips. We find that DMSO fully penetrates the shoot tip tissue within 10 min of exposure. Variations in signal intensities across images suggest that DMSO may interact with cellular components, leading to its accumulation in specific regions. Full article
(This article belongs to the Special Issue Micropropagation and Cryopreservation of Plants)
Show Figures

Graphical abstract

7 pages, 1978 KiB  
Communication
Planar Laser Induced Fluorescence of OH for Thermometry in a Flow Field Based on Two Temperature Point Calibration Method
by Guohua Li, Zhenrong Zhang, Jingfeng Ye, Sheng Wang, Jun Shao, Haolong Wu, Yamin Wang, Zhiyun Hu, Jinhua Wang and Zuohua Huang
Appl. Sci. 2023, 13(1), 176; https://doi.org/10.3390/app13010176 - 23 Dec 2022
Cited by 3 | Viewed by 1992
Abstract
In view of the uncertainty in the calibration process of two-color plane laser-induced fluorescence (PLIF) temperature measurement, a new calibration method is proposed, in which the influence of fluorescence yield is considered. The calibration process was carried out at high and low temperature [...] Read more.
In view of the uncertainty in the calibration process of two-color plane laser-induced fluorescence (PLIF) temperature measurement, a new calibration method is proposed, in which the influence of fluorescence yield is considered. The calibration process was carried out at high and low temperature region, respectively. Then, the bias of thermometry results origin from quenching is restrained. This new calibration method is validated in a jet flame with temperature range of 1300–1800 K. Here, the temperature results from Coherent Anti-Stokes Raman scattering (CARS), single-point calibrated PLIF, and two-point calibrated PLIF are all acquired with the maximum standard errors of 13 K, 36 K, and 37 K, respectively. The temperature deviation between the average results from PLIF and Coherent Anti-Stokes Raman scattering (CARS) is 120 K and 10 K, when the two-point and one-point calibration methods are used. Therefore, the two-point calibrated PLIF is preferred in the combustion field, especially with a large temperature range and strong quenching coefficient. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

14 pages, 4343 KiB  
Article
Long-Term Repeatable In Vivo Monitoring of Amyloid-β Plaques and Vessels in Alzheimer’s Disease Mouse Model with Combined TPEF/CARS Microscopy
by Ziyi Luo, Hao Xu, Soham Samanta, Renlong Zhang, Guoquan Luo, Yiming Wang, Liwei Liu, Xiaoyu Weng, Jun He, Changrui Liao, Yiping Wang, Bingang Guo and Junle Qu
Biomedicines 2022, 10(11), 2949; https://doi.org/10.3390/biomedicines10112949 - 16 Nov 2022
Cited by 6 | Viewed by 2519
Abstract
Long-term, repeatable monitoring of the appearance and progress of Alzheimer’s disease (AD) in real time can be extremely beneficial to acquire highly reliable diagnostic insights, which is crucial for devising apt strategies towards effective AD treatment. Herein, we present an optimized innovative cranial [...] Read more.
Long-term, repeatable monitoring of the appearance and progress of Alzheimer’s disease (AD) in real time can be extremely beneficial to acquire highly reliable diagnostic insights, which is crucial for devising apt strategies towards effective AD treatment. Herein, we present an optimized innovative cranial window imaging method for the long-term repeatable imaging of amyloid-β (Aβ) plaques and vessels in an AD mouse model. Basically, two-photon excitation fluorescence (TPEF) microscopy was used to monitor the fluorescently labeled Aβ plaques, whereas the label-free blood vessels were studied using coherent anti-Stokes Raman scattering (CARS) microscopy in the live in vivo AD mouse model. It was possible to clearly observe the Aβ deposition and vascular structure in the target cortex localization for 31 weeks in the AD mouse model using this method. The combined TPEF/CARS imaging studies were also instrumental in realizing the relationship between the tendency of Aβ deposition and ageing. Essentially, the progression of cerebral amyloid angiopathy (CAA) in the AD mouse model was quantitatively characterized, which revealed that the proportion Aβ deposition in the unit vessel can increase from 13.63% to 28.80% upon increasing the age of mice from 8 months old to 14 months old. The proposed imaging method provided an efficient, safe, repeatable platform with simple target localization aptitude towards monitoring the brain tissues, which is an integral part of studying any brain-related physiological or disease conditions to extract crucial structural and functional information. Full article
(This article belongs to the Section Neurobiology and Clinical Neuroscience)
Show Figures

Figure 1

Back to TopTop