Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (49)

Search Parameters:
Keywords = coadaptation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 27829 KB  
Article
Deep Learning Strategies for Semantic Segmentation in Robot-Assisted Radical Prostatectomy
by Elena Sibilano, Claudia Delprete, Pietro Maria Marvulli, Antonio Brunetti, Francescomaria Marino, Giuseppe Lucarelli, Michele Battaglia and Vitoantonio Bevilacqua
Appl. Sci. 2025, 15(19), 10665; https://doi.org/10.3390/app151910665 - 2 Oct 2025
Abstract
Robot-assisted radical prostatectomy (RARP) has become the most prevalent treatment for patients with organ-confined prostate cancer. Despite superior outcomes, suboptimal vesicourethral anastomosis (VUA) may lead to serious complications, including urinary leakage, prolonged catheterization, and extended hospitalization. A precise localization of both the surgical [...] Read more.
Robot-assisted radical prostatectomy (RARP) has become the most prevalent treatment for patients with organ-confined prostate cancer. Despite superior outcomes, suboptimal vesicourethral anastomosis (VUA) may lead to serious complications, including urinary leakage, prolonged catheterization, and extended hospitalization. A precise localization of both the surgical needle and the surrounding vesical and urethral tissues to coadapt is needed for fine-grained assessment of this task. Nonetheless, the identification of anatomical structures from endoscopic videos is difficult due to tissue distortions, changes in brightness, and instrument interferences. In this paper, we propose and compare two Deep Learning (DL) pipelines for the automatic segmentation of the mucosal layers and the suturing needle in real RARP videos by exploiting different architectures and training strategies. To train the models, we introduce a novel, annotated dataset collected from four VUA procedures. Experimental results show that the nnU-Net 2D model achieved the highest class-specific metrics, with a Dice Score of 0.663 for the mucosa class and 0.866 for the needle class, outperforming both transformer-based and baseline convolutional approaches on external validation video sequences. This work paves the way for computer-assisted tools that can objectively evaluate surgical performance during the critical phase of suturing tasks. Full article
Show Figures

Figure 1

15 pages, 4683 KB  
Review
Genetic Susceptibility to Tuberculosis and the Utility of Polygenic Scores in Population Stratification
by Mariia A. Dashian, German A. Shipulin and Andrei A. Deviatkin
Int. J. Mol. Sci. 2025, 26(19), 9544; https://doi.org/10.3390/ijms26199544 - 30 Sep 2025
Abstract
Tuberculosis (TB) is one of the leading infectious causes of mortality worldwide. Although a significant proportion of the population (up to 36%, depending on the region) is infected with the latent form of TB, only about one in ten of these people will [...] Read more.
Tuberculosis (TB) is one of the leading infectious causes of mortality worldwide. Although a significant proportion of the population (up to 36%, depending on the region) is infected with the latent form of TB, only about one in ten of these people will develop an active form of the disease in their lifetime. This is due to a complex interaction between the host’s genetic predisposition and environment. However, the genetic determinants of TB are not well established and have been insufficiently explored in previous genome-wide association studies (GWAS) with sparse and incongruent results. We reviewed recent evidence on host genetic susceptibility to TB, highlighting population-specific characteristics, host–pathogen coevolution, and the limitations of conventional GWAS approaches in terms of clinical and genetic heterogeneity. While rare variants with high penetrance, such as TYK2 P1104A, lead to monogenic susceptibility, most heritable risk results from the cumulative effect of numerous common variants. This cumulative effect may be summarized using polygenic risk scores (PRSs). Although their use has been proven for non-communicable diseases, PRSs are not applied to infectious disease susceptibility. To date, no PRS model for susceptibility to tuberculosis has been consistently validated. The development of PRSs for TB susceptibility is limited by phenotypic heterogeneity, population structure, and co-adaptation between host and pathogen. Another major challenge is to take into account the considerable influence of environmental factors. This difficulty in modeling environmental influences probably explains the current lack of a clinically applicable PRS for TB susceptibility. However, taking these caveats into account, polygenic models could improve risk stratification at the individual level compared to single-variant association and allow for earlier targeted treatment and prophylaxis. Full article
(This article belongs to the Special Issue Tuberculosis: Host Immunity, Diagnosis and Treatment)
Show Figures

Figure 1

18 pages, 3054 KB  
Article
Altitudinal Gradient Drives Rhizosphere Microbial Structure and Functional Potential in Prickly Pear Cactus (Opuntia ficus-indica L.)
by Lorena Jacqueline Gómez-Godínez, José Luis Aguirre-Noyola, Carlos Hugo Avendaño-Arrazate, Sergio de los Santos-Villalobos, Magali Ruiz-Rivas, Ramón Ignacio Arteaga-Garibay and José Martín Ruvalcaba-Gómez
Microbiol. Res. 2025, 16(10), 213; https://doi.org/10.3390/microbiolres16100213 - 26 Sep 2025
Abstract
The prickly pear cactus (Opuntia ficus-indica L.) is an emblematic crop for Mexico’s economy, gastronomy, and culture. Microbial communities play an important role in the health, development, and productivity of crops. This study used 16S rRNA high-throughput sequencing and bioinformatic analyses to [...] Read more.
The prickly pear cactus (Opuntia ficus-indica L.) is an emblematic crop for Mexico’s economy, gastronomy, and culture. Microbial communities play an important role in the health, development, and productivity of crops. This study used 16S rRNA high-throughput sequencing and bioinformatic analyses to evaluate the rhizosphere microbiome of prickly pear cactus across an altitudinal gradient in Milpa Alta (Mexico). A microbial core consisting of Bacillus, Acidibacter, and Sphingomonas was detected, reflecting strong co-adaptation between plants and soil microorganisms under different agroecosystems. However, in the lower-altitude zones, Conexibacter, Agromyces, Domibacillus, Pedomicrobium, and Rokubacteriales predominated, which are associated with humid environments and high organic matter content. In contrast, in the middle-altitude zones, Acidothermus, Gemmatimonas, Mesorhizobium, and Pseudoxanthomonas were enriched, which are involved in carbon and nitrogen cycles. Higher-altitude zones exhibited greater bacterial specialization, with genera adapted to more extreme conditions such as Halocella, Solirubrobacter, Rhodomicrobium, Phenylobacterium, Roseomonas, Pseudarthrobacter, Crossiella, Aquicella, and others. Overall, our data show that altitude acts as an ecological filter structuring soil microbial communities associated with prickly pear cactus, influencing the diversity and functional potential. This study on microbial diversity not only provides insights into the health of the agroecosystem but also represents a valuable source of microorganisms with functional potential for sustainable agriculture. Full article
(This article belongs to the Topic New Challenges on Plant–Microbe Interactions)
Show Figures

Figure 1

15 pages, 773 KB  
Review
Evolutionary Trajectory of Plasmodium falciparum: From Autonomous Phototroph to Dedicated Parasite
by Damian Pikor, Mikołaj Hurla, Alicja Drelichowska and Małgorzata Paul
Biomedicines 2025, 13(9), 2287; https://doi.org/10.3390/biomedicines13092287 - 17 Sep 2025
Viewed by 241
Abstract
Malaria persists as a paradigmatic model of co-evolutionary complexity, emerging from the dynamic interplay among a human host, Anopheles vectors, and Plasmodium falciparum parasites. In human populations, centuries of selective pressures have sculpted an intricate and heterogeneous immunogenetic landscape. Classical adaptations, such as [...] Read more.
Malaria persists as a paradigmatic model of co-evolutionary complexity, emerging from the dynamic interplay among a human host, Anopheles vectors, and Plasmodium falciparum parasites. In human populations, centuries of selective pressures have sculpted an intricate and heterogeneous immunogenetic landscape. Classical adaptations, such as hemoglobinopathies, are complemented by a diverse array of genetic polymorphisms that modulate innate and adaptive immune responses. These genetic traits, along with the acquisition of functional immunity following repeated exposures, mitigate disease severity but are continually challenged by the parasite’s highly evolved mechanisms of antigenic variation and immunomodulation. Such host adaptations underscore an evolutionary arms race that perpetually shapes the clinical and epidemiological outcomes. Intermediaries in malaria transmission have evolved robust responses to both natural and anthropogenic pressures. Their vector competence is governed by complex polygenic traits that affect physiological barriers and immune responses during parasite development. Recent studies reveal that these mosquitoes exhibit rapid behavioral and biochemical adaptations, including shifts in host-seeking behavior and the evolution of insecticide resistance. Mechanisms such as enhanced metabolic detoxification and target site insensitivity have emerged in response to the widespread use of insecticides, thereby eroding the efficacy of conventional interventions like insecticide-treated bed nets and indoor residual spraying. These adaptations not only sustain transmission dynamics in intervention saturated landscapes but also challenge current vector control paradigms, necessitating the development of innovative, integrated management strategies. At the molecular level, P. falciparum exemplifies evolutionary ingenuity through extensive genomic streamlining and metabolic reconfiguration. Its compact genome, a result of strategic gene loss and pruning, is optimized for an obligate parasitic lifestyle. The repurposing of the apicoplast for critical anabolic functions including fatty acid, isoprenoid, and haem biosynthesis highlights the parasite’s ability to exploit host derived nutrients efficiently. Moreover, the rapid accumulation of mutations, coupled with an elaborate repertoire for antigenic switching and epigenetic regulation, not only facilitates immune escape but also accelerates the emergence of antimalarial drug resistance. Advanced high throughput sequencing and functional genomics have begun to elucidate the metabolic epigenetic nexus that governs virulence gene expression and antigenic diversity in P. falciparum. By integrating insights from molecular biology, genomics, and evolutionary ecology, this study delineates the multifaceted co-adaptive dynamics that render malaria a recalcitrant global health threat. Our findings provide critical insights into the molecular arms race at the heart of host–pathogen vector interactions and underscore promising avenues for the development of next generation therapeutic and vector management strategies aimed at sustainable malaria elimination. Full article
(This article belongs to the Section Microbiology in Human Health and Disease)
Show Figures

Figure 1

23 pages, 3286 KB  
Review
Towards Understanding the Factors Shaping the Composition and Function of the Noccaea Microbiome in Metal-Contaminated Environments
by Marjana Regvar, Valentina Bočaj, Jure Mravlje, Teja Pelko, Matevž Likar, Paula Pongrac and Katarina Vogel-Mikuš
Int. J. Mol. Sci. 2025, 26(17), 8748; https://doi.org/10.3390/ijms26178748 - 8 Sep 2025
Viewed by 627
Abstract
Noccaea species (formerly Thlaspi) are Brassicaceae plants renowned for their capacity to hyperaccumulate zinc (Zn), cadmium (Cd), and nickel (Ni), which has made them model systems in studies of metal tolerance, phytoremediation, and plant adaptation to extreme environments. While their physiological and [...] Read more.
Noccaea species (formerly Thlaspi) are Brassicaceae plants renowned for their capacity to hyperaccumulate zinc (Zn), cadmium (Cd), and nickel (Ni), which has made them model systems in studies of metal tolerance, phytoremediation, and plant adaptation to extreme environments. While their physiological and genetic responses to metal stress are relatively well characterised, the extent to which these traits influence microbiome composition and function remains largely unexplored. These species possess compact genomes shaped by ancient whole-genome duplications and rearrangements, and such genomic traits may influence microbial recruitment through changes in secondary metabolism, elemental composition, and tissue architecture. Here, we synthesise the current findings on how genome size, metal hyperaccumulation, structural adaptations, and glucosinolate diversity affect microbial communities in Noccaea roots and leaves. We review evidence from bioimaging, molecular profiling, and physiological studies, highlighting interactions with bacteria and fungi adapted to metalliferous soils. At present, the leaf microbiome of Noccaea species remains underexplored. Analyses of root microbiome, however, reveal a consistent taxonomic core dominated by Actinobacteria and Proteobacteria among bacterial communities and Ascomycetes, predominantly Dothideomycetes and Leotiomycetes among fungi. Collectively, these findings suggest that metal-adapted microbes provide several plant-beneficial functions, including metal detoxification, nutrient cycling, growth promotion, and enhanced metal extraction in association with dark septate endophytes. By contrast, the status of mycorrhizal associations in Noccaea remains debated and unresolved, although evidence points to functional colonisation by selected fungal taxa. These insights indicate that multiple plant traits interact to shape microbiome assembly and activity in Noccaea species. Understanding these dynamics offers new perspectives on plant–microbe co-adaptation, ecological resilience, and the optimisation of microbiome-assisted strategies for sustainable phytoremediation. Full article
(This article belongs to the Special Issue Molecular Advances in Understanding Plant-Microbe Interactions)
Show Figures

Figure 1

17 pages, 3699 KB  
Article
The Role of MHC-II Diversity over Enclosure Design in Gut Microbiota Structuring of Captive Bengal Slow Lorises
by Rong Jiang, Xiaojia Zhang, Lei Xie, Yan Zhang, Changjun Zeng, Yongfang Yao, Huailiang Xu, Caoyang Yang, Xiao Wang, Qingyong Ni, Meng Xie and Chuanren Li
Biology 2025, 14(8), 1094; https://doi.org/10.3390/biology14081094 - 21 Aug 2025
Viewed by 485
Abstract
The endangered Bengal slow loris (Nycticebus bengalensis) relies heavily on captive/rescue populations for conservation. This study investigated the critical link between Major Histocompatibility Complex (MHC) class II DRB1 exon 2 (DRB1e2) genetic variation and gut microbiota in 46 captive [...] Read more.
The endangered Bengal slow loris (Nycticebus bengalensis) relies heavily on captive/rescue populations for conservation. This study investigated the critical link between Major Histocompatibility Complex (MHC) class II DRB1 exon 2 (DRB1e2) genetic variation and gut microbiota in 46 captive individuals, aiming to improve ex situ management. Using standardized conditions across three enclosure types, we characterized DRB1e2 polymorphism via targeted sequencing and analyzed fecal microbiota using 16S rRNA gene amplicon sequencing. Results demonstrated that high DRB1e2 polymorphism significantly reduced microbial community evenness. Specific genotypes showed distinct microbial associations: G9 strongly correlated with beneficial short-chain fatty acid producers like Fructobacillus, and G2 positively correlated with Bifidobacterium spp., while G2, G3, and G4 correlated negatively with Buchnera (a nutrient-provisioning symbiont). Genotypes and polymorphism collectively explained 9.77% of microbiota variation, exceeding the weaker (5.15%), though significant, influence of enclosure type on β-diversity. These findings reveal that host DRB1e2 variation is a primary driver shaping gut microbiota structure and taxon abundance in captive slow lorises, providing evidence for MHC-mediated host–microbe co-adaptation. This offers a genetically informed framework for optimizing conservation strategies, such as tailoring diets or probiotics to specific genotypes, to enhance gut health and population viability. Full article
Show Figures

Figure 1

22 pages, 3713 KB  
Article
Co-Adaptive Inertia–Damping Control of Grid-Forming Energy Storage Inverters for Suppressing Active Power Overshoot and Frequency Deviation
by Huiping Zheng, Boyu Ma, Xueting Cheng, Yang Cui and Liming Bo
Energies 2025, 18(16), 4255; https://doi.org/10.3390/en18164255 - 11 Aug 2025
Viewed by 431
Abstract
With the large-scale integration of renewable energy through power electronic inverters,
modern power systems are gradually transitioning to low-inertia systems. Grid-forming
inverters are prone to power overshoot and frequency deviation when facing external
disturbances, threatening system stability. Existing methods face two main challenges [...] Read more.
With the large-scale integration of renewable energy through power electronic inverters,
modern power systems are gradually transitioning to low-inertia systems. Grid-forming
inverters are prone to power overshoot and frequency deviation when facing external
disturbances, threatening system stability. Existing methods face two main challenges in
dealing with complex disturbances: neural-network-based approaches have high computational
burdens and long response times, while traditional linear algorithms lack sufficient
precision in adjustment, leading to inadequate system response accuracy and stability. This
paper proposes an innovative coordinated adaptive control strategy for virtual inertia and
damping. The strategy utilizes a Radial Basis Function neural network for the adaptive
regulation of virtual inertia, while the damping coefficient is adjusted using a linear algorithm.
This approach provides refined inertia regulation while maintaining computational
efficiency, optimizing the rate of change in frequency and frequency deviation. Simulation
results demonstrate that the proposed control strategy significantly outperforms traditional
methods in improving system performance. In the active power reference variation
scenario, frequency overshoot is reduced by 65.4%, active power overshoot decreases by
66.7%, and the system recovery time is shortened. In the load variation scenario, frequency
overshoot is reduced by approximately 3.6%, and the maximum frequency deviation is
reduced by approximately 26.9%. In the composite disturbance scenario, the frequency
peak is reduced by approximately 0.1 Hz, the maximum frequency deviation decreases by
35%, and the power response improves by 23.3%. These results indicate that the proposed
method offers significant advantages in enhancing system dynamic response, frequency
stability, and power overshoot suppression, demonstrating its substantial potential for
practical applications. Full article
Show Figures

Figure 1

16 pages, 3289 KB  
Article
Unique Structural Features Relate to Evolutionary Adaptation of Cytochrome P450 in the Abyssal Zone
by Tatiana Y. Hargrove, David C. Lamb, Zdzislaw Wawrzak, George Minasov, Jared V. Goldstone, Steven L. Kelly, John J. Stegeman and Galina I. Lepesheva
Int. J. Mol. Sci. 2025, 26(12), 5689; https://doi.org/10.3390/ijms26125689 - 13 Jun 2025
Viewed by 696
Abstract
Cytochromes P450 (CYPs) form one of the largest enzyme superfamilies, with similar structural folds yet biological functions varying from synthesis of physiologically essential compounds to metabolism of myriad xenobiotics. Sterol 14α-demethylases (CYP51s) represent a very special P450 family, regarded as a possible evolutionary [...] Read more.
Cytochromes P450 (CYPs) form one of the largest enzyme superfamilies, with similar structural folds yet biological functions varying from synthesis of physiologically essential compounds to metabolism of myriad xenobiotics. Sterol 14α-demethylases (CYP51s) represent a very special P450 family, regarded as a possible evolutionary progenitor for all currently existing P450s. In metazoans CYP51 is critical for the biosynthesis of sterols including cholesterol. Here we determined the crystal structures of ligand-free CYP51s from the abyssal fish Coryphaenoides armatus and human-. Comparative sequence–structure–function analysis revealed specific structural elements that imply elevated conformational flexibility, uncovering a molecular basis for faster catalytic rates, lower substrate selectivity, and intrinsic resistance to inhibition. In addition, the C. armatus structure displayed a large-scale repositioning of structural segments that, in vivo, are immersed in the endoplasmic reticulum membrane and border the substrate entrance (the FG arm, >20 Å, and the β4 hairpin, >15 Å). The structural distinction of C. armatus CYP51, which is the first structurally characterized deep sea P450, suggests stronger involvement of the membrane environment in regulation of the enzyme function. We interpret this as a co-adaptation of the membrane protein structure with membrane lipid composition during evolutionary incursion to life in the deep sea. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

19 pages, 4408 KB  
Article
Co-Adapting a Reflective Video-Based Professional Development in Informal STEM Education
by Amber Simpson, Alice Anderson, Adam V. Maltese, Lauren Penney and Kelli Paul
Educ. Sci. 2025, 15(3), 353; https://doi.org/10.3390/educsci15030353 - 12 Mar 2025
Viewed by 1020
Abstract
Traditional professional development for informal educators often relies on brief, lecture-based sessions that reinforce familiar teaching practices. In collaboration with 27 informal learning organizations across four years, we attended to the need for authentic, long-term professional development through the co-adaptation and co-refinement of [...] Read more.
Traditional professional development for informal educators often relies on brief, lecture-based sessions that reinforce familiar teaching practices. In collaboration with 27 informal learning organizations across four years, we attended to the need for authentic, long-term professional development through the co-adaptation and co-refinement of a reflective video-based cycle. This focus on supporting informal educators to productively attend, interpret, and respond to youths’ experiences with failure while engaged in science, technology, engineering, and mathematics (STEM) related activities. This paper describes how and why organizations co-adapted components of the professional development failure cycle to support the operational constraints of their organizations while addressing the specific needs of their informal educators. Co-adaptations addressed the following: (a) educators’ discomfort and vulnerabilities, (b) time constraints, (c) staff turnover, and (d) lack of tools. These adaptations refined the development of a reflective video-based professional development framework that informal STEM institutions can adopt to equip educators with strategies and build a supportive community, helping youths navigate and learn from failure. Full article
Show Figures

Figure 1

23 pages, 903 KB  
Article
High-Involvement Human Resource Management Practices and Employee Resilience: The Mediating Role of Employee Technology Adaptation—A Case Study of South Sumatra
by Afriyadi Cahyadi, Taufiq Marwa, József Poór, Ahmad Maulana and Katalin Szabó
Adm. Sci. 2024, 14(11), 292; https://doi.org/10.3390/admsci14110292 - 6 Nov 2024
Cited by 3 | Viewed by 3720
Abstract
In the post-COVID-19 era, the need for a resilient workforce to maintain a competitive advantage has become increasingly critical. Despite advancements, there is a research gap in understanding how employee resilience is influenced by high-involvement human resource management practices and employee technology adaptation. [...] Read more.
In the post-COVID-19 era, the need for a resilient workforce to maintain a competitive advantage has become increasingly critical. Despite advancements, there is a research gap in understanding how employee resilience is influenced by high-involvement human resource management practices and employee technology adaptation. This study addresses this gap by developing and empirically testing a mediation model linking to employee technology adaptation and resilience. Theoretical frameworks include the resource-based view, human co-adaptation, and positive organizational behavior. A cross-sectional survey of 322 employees from small and medium enterprises in South Sumatra was conducted. Structural equation modeling was used to analyze the mediating role of employee technology adaptation in the relationship between high-involvement human resource management practices and employee resilience. The results indicate that high-involvement human resource management practices positively affects both technology adaptation and resilience. Employee technology adaptation partially mediates this relationship. The findings offer practical insights for human resource managers, suggesting that fostering technology adaptation through high-involvement human resource management practices can enhance employee resilience. This study concludes with a discussion on the theoretical and practical implications contributing to the development of small and medium enterprises in the digital era post COVID-19. Full article
(This article belongs to the Special Issue Human Resource Management Innovation and Practice in a Digital Age)
Show Figures

Figure 1

18 pages, 4281 KB  
Article
Eco-Spatial Indices as an Effective Tool for Climate Change Adaptation in Residential Neighbourhoods—Comparative Study
by Renata Giedych, Gabriela Maksymiuk and Agata Cieszewska
Land 2024, 13(9), 1492; https://doi.org/10.3390/land13091492 - 14 Sep 2024
Viewed by 1483
Abstract
Eco-spatial indices are commonly used tools to improve the quality of the environment in cities. Initially modelled on the Berlin BAF, indices have evolved to address current challenges, particularly climate change adaptation. The Ratio of Biologically Vital Areas (RBVA), introduced in Poland in [...] Read more.
Eco-spatial indices are commonly used tools to improve the quality of the environment in cities. Initially modelled on the Berlin BAF, indices have evolved to address current challenges, particularly climate change adaptation. The Ratio of Biologically Vital Areas (RBVA), introduced in Poland in the mid-1990s, is an early planning tool for implementing Nature-based Solutions (NbSs) at the site level. This research aimed to assess the effectiveness of the RBVA in Poland compared to its counterparts in Oslo and Malmö. The study employed a serious simulation game developed under the Norwegian-funded CoAdapt project, testing six development scenarios, varied in terms of applied NbSs, for a typical multi-family housing estate. The adaptive potential of the tested scenarios was assessed based on the values of five environmental parameters calculated in the game; that is, air temperature, oxygen production, CO2 sequestration, rainwater harvesting, and biodiversity. The findings revealed that the RBVA, in its current form, has limited effectiveness in supporting climate adaptation. Its two-dimensional nature makes it less effective than the more comprehensive Green Factors used in Oslo and Malmö. The research presented in the article proves that better-constructed indices result in the efficiency of applied NbSs and consequently better adaptation to climate change. Full article
(This article belongs to the Special Issue Strategic Planning for Urban Sustainability)
Show Figures

Figure 1

16 pages, 5164 KB  
Article
Effects of the Interaction between Rumen Microbiota Density–VFAs–Hepatic Gluconeogenesis on the Adaptability of Tibetan Sheep to Plateau
by Wenxin Yang, Yuzhu Sha, Xiaowei Chen, Xiu Liu, Fanxiong Wang, Jiqing Wang, Pengyang Shao, Qianling Chen, Min Gao and Wei Huang
Int. J. Mol. Sci. 2024, 25(12), 6726; https://doi.org/10.3390/ijms25126726 - 19 Jun 2024
Cited by 5 | Viewed by 2027
Abstract
During the adaptive evolution of animals, the host and its gut microbiota co-adapt to different elevations. Currently, there are few reports on the rumen microbiota–hepato-intestinal axis of Tibetan sheep at different altitudes. Therefore, the purpose of this study was to explore the regulatory [...] Read more.
During the adaptive evolution of animals, the host and its gut microbiota co-adapt to different elevations. Currently, there are few reports on the rumen microbiota–hepato-intestinal axis of Tibetan sheep at different altitudes. Therefore, the purpose of this study was to explore the regulatory effect of rumen microorganism–volatile fatty acids (VFAs)–VFAs transporter gene interactions on the key enzymes and genes related to gluconeogenesis in Tibetan sheep. The rumen fermentation parameters, rumen microbial densities, liver gluconeogenesis activity and related genes were determined and analyzed using gas chromatography, RT-qPCR and other research methods. Correlation analysis revealed a reciprocal relationship among rumen microflora–VFAs-hepatic gluconeogenesis in Tibetan sheep at different altitudes. Among the microbiota, Ruminococcus flavefaciens (R. flavefaciens), Ruminococcus albus (R. albus), Fibrobactersuccinogenes and Ruminobacter amylophilus (R. amylophilus) were significantly correlated with propionic acid (p < 0.05), while propionic acid was significantly correlated with the transport genes monocarboxylate transporter 4 (MCT4) and anion exchanger 2 (AE2) (p < 0.05). Propionic acid was significantly correlated with key enzymes such as pyruvate carboxylase, phosphoenolpyruvic acid carboxylase and glucose (Glu) in the gluconeogenesis pathway (p < 0.05). Additionally, the expressions of these genes were significantly correlated with those of the related genes, namely, forkhead box protein O1 (FOXO1) and mitochondrial phosphoenolpyruvate carboxykinase 2 (PCK2) (p < 0.05). The results showed that rumen microbiota densities differed at different altitudes, and the metabolically produced VFA contents differed, which led to adaptive changes in the key enzyme activities of gluconeogenesis and the expressions of related genes. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

21 pages, 5448 KB  
Article
A Transcriptome Response of Bread Wheat (Triticum aestivum L.) to a 5B Chromosome Substitution from Wild Emmer
by Alexandr Muterko, Antonina Kiseleva and Elena Salina
Plants 2024, 13(11), 1514; https://doi.org/10.3390/plants13111514 - 30 May 2024
Viewed by 985
Abstract
Over the years, alien chromosome substitution has attracted the attention of geneticists and breeders as a rich source of remarkable genetic diversity for improvement in narrowly adapted wheat cultivars. One of the problems encountered along this way is the coadaptation and realization of [...] Read more.
Over the years, alien chromosome substitution has attracted the attention of geneticists and breeders as a rich source of remarkable genetic diversity for improvement in narrowly adapted wheat cultivars. One of the problems encountered along this way is the coadaptation and realization of the genome of common wheat against the background of the introduced genes. Here, using RNA-Seq, we assessed a transcriptome response of hexaploid wheat Triticum aestivum L. (cultivar Chinese Spring) to a 5B chromosome substitution with its homolog from wild emmer (tetraploid wheat T. dicoccoides Koern) and discuss how complete the physiological compensation for this alien chromatin introgression is. The main signature of the transcriptome in the substituted line was a sharp significant drop of activity before the beginning of the photoperiod with a gradual increase up to overexpression in the middle of the night. The differential expression altered almost all biological processes and pathways tested. Because in most cases, the differential expression or its fold change were modest, and this was only a small proportion of the expressed transcriptome, the physiological compensation of the 5B chromosome substitution in common wheat seemed overall satisfactory, albeit not completely. No over- or under-representation of differential gene expression was found in specific chromosomes, implying that local structural changes in the genome can trigger a global transcriptome response. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

14 pages, 2786 KB  
Article
Dissecting the Roles of Phosphorus Use Efficiency, Organic Acid Anions, and Aluminum-Responsive Genes under Aluminum Toxicity and Phosphorus Deficiency in Ryegrass Plants
by Leyla Parra-Almuna, Sofía Pontigo, Antonieta Ruiz, Felipe González, Nuria Ferrol, María de la Luz Mora and Paula Cartes
Plants 2024, 13(7), 929; https://doi.org/10.3390/plants13070929 - 23 Mar 2024
Cited by 3 | Viewed by 1786
Abstract
Aluminum (Al) toxicity and phosphorus (P) deficiency are widely recognized as major constraints to agricultural productivity in acidic soils. Under this scenario, the development of ryegrass plants with enhanced P use efficiency and Al resistance is a promising approach by which to maintain [...] Read more.
Aluminum (Al) toxicity and phosphorus (P) deficiency are widely recognized as major constraints to agricultural productivity in acidic soils. Under this scenario, the development of ryegrass plants with enhanced P use efficiency and Al resistance is a promising approach by which to maintain pasture production. In this study, we assessed the contribution of growth traits, P efficiency, organic acid anion (OA) exudation, and the expression of Al-responsive genes in improving tolerance to concurrent low-P and Al stress in ryegrass (Lolium perenne L.). Ryegrass plants were hydroponically grown under optimal (0.1 mM) or low-P (0.01 mM) conditions for 21 days, and further supplied with Al (0 and 0.2 mM) for 3 h, 24 h and 7 days. Accordingly, higher Al accumulation in the roots and lower Al translocation to the shoots were found in ryegrass exposed to both stresses. Aluminum toxicity and P limitation did not change the OA exudation pattern exhibited by roots. However, an improvement in the root growth traits and P accumulation was found, suggesting an enhancement in Al tolerance and P efficiency under combined Al and low-P stress. Al-responsive genes were highly upregulated by Al stress and P limitation, and also closely related to P utilization efficiency. Overall, our results provide evidence of the specific strategies used by ryegrass to co-adapt to multiple stresses in acid soils. Full article
(This article belongs to the Special Issue Molecular Mechanism of Plant Mineral Nutrient)
Show Figures

Figure 1

16 pages, 2084 KB  
Article
Association of a Global Invasive Pest Spodoptera frugiperda (Lepidoptera: Noctuidae) with Local Parasitoids: Prospects for a New Approach in Selecting Biological Control Agents
by Ihsan Nurkomar, Ichsan Luqmana Indra Putra, Damayanti Buchori and Fajar Setiawan
Insects 2024, 15(3), 205; https://doi.org/10.3390/insects15030205 - 19 Mar 2024
Cited by 9 | Viewed by 3521
Abstract
Spodopotera frugiperda is a worldwide invasive pest that has caused significant economic damage. According to the classical biological control approach, natural enemies that can control invasive pests come from the same area of origin as the pests that have experienced coadaptation processes. However, [...] Read more.
Spodopotera frugiperda is a worldwide invasive pest that has caused significant economic damage. According to the classical biological control approach, natural enemies that can control invasive pests come from the same area of origin as the pests that have experienced coadaptation processes. However, the new association’s approach suggests that local natural enemies are equally capable of controlling invasive pests. Due to the lack of data on the association of S. frugiperda and local natural enemies, research was conducted through a rapid survey to study the diversity of parasitoids associated with S. frugiperda. The results showed 15 parasitoid species associated with S. frugiperda. Four egg parasitoids, eight larval parasitoids, and three larval–pupal parasitoids were found to be associated with S. frugiperda for three years after it was first discovered in Indonesia. Eleven of them are new reports of parasitoids associated with S. frugiperda in Indonesia. A new association was found between S. frugiperda and twelve parasitoid species, consisting of three egg parasitoids (Platygasteridaesp.01, Platygasteridaesp.02, and Telenomus remus), six larval parasitoids (Apanteles sp., Microplitis sp., Campoletis sp., Coccygidium sp., Eupelmus sp., and Stenobracon sp.), and three larval–pupal parasitoids (Brachymeria lasus, B. femorata, and Charops sp.). Telenomus remus is the most dominant parasitoid, with a higher abundance and parasitism rate. The result suggests another method for selecting biological control using the new association approach since local natural enemies can foster quick adaptation to invasive pests. Full article
(This article belongs to the Collection Improving IPM of Specialty Crop Pests and Global Food Security)
Show Figures

Figure 1

Back to TopTop