Altitudinal Gradient Drives Rhizosphere Microbial Structure and Functional Potential in Prickly Pear Cactus (Opuntia ficus-indica L.)
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sampling
2.3. DNA Extraction and 16S rRNA High-Throughput Sequencing
2.4. Bioinformatics and Statistical Analyses
3. Results and Discussion
3.1. Microbial Diversity Associated with Prickly Pear Cactus
3.2. Rhizosphere Microbiota Structure Associated with Prickly Pear Cactus
3.3. The Core Microbiome Reveals Specific Recruitment of Bacterial Groups by Prickly Pear Cactus
3.4. Biomarkers Linked to Prickly Pear Cactus Microbiomes Along an Altitudinal Gradient
3.5. Altitude as a Determining Factor for Microbiota Diversity and Functionality
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yahia, E.M. (Ed.) Postharvest Biology and Technology of Tropical and Subtropical Fruits: Fundamental Issues; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Guerrero-Beltrán, J.Á.; Ochoa-Velasco, C.E. Figo da india—Opuntia spp. In Exotic Fruits; Academic Press: London, UK, 2018; pp. 187–201. [Google Scholar]
- Reyes-Terrazas, A.S.; Flores-Sánchez, D.; Navarro-Garza, H.; Pérez-Olvera, M.A.; Almaguer-Vargas, G. Características y retos del sistema de cultivo nopal verdura en Cuautlacingo, Otumba. Rev. Mex. De Cienc. Agrícolas 2023, 14, 211–222. [Google Scholar]
- Chahdoura, H.; Mzoughi, Z.; Ellouze, I.; Mekinić, I.G.; Čmiková, N.; El Bok, S.; Majdoub, H.; Ben Hsouna, A.; Ben Saad, R.; Mnif, W.; et al. Opuntia species: A comprehensive review of chemical composition and bio-pharmacological potential with contemporary applications. S. Afr. J. Bot. 2024, 174, 645–677. [Google Scholar] [CrossRef]
- Aguilar Sánchez, D.; Sánchez Salazar, M.T. La organización territorial de la producción de nopal verdura en Tlalnepantla, Morelos. Investig. Geográficas 2022, 108, e60490. [Google Scholar] [CrossRef]
- Severiano-Hernández, B.; Jiménez-Salgado, T.; Tapia-Hernández, R.A.; Romero-Arenas, O.; Rivera, A. Importance of prickly pear (Opuntia spp.) cultivation for sustainable agricultural systems and climate change resilient. GSC Adv. Res. Rev. 2025, 23, 117–123. [Google Scholar] [CrossRef]
- Ochoa, M.J.; Rivera, L.A.; Arteaga-Garibay, R.I.; Martínez-Peña, D.; Ireta, J.; Portillo, L. Black spot caused by Pseudocercospora opuntiae in cactus pear productive systems of Jalisco, Mexico. J. Prof. Assoc. Cactus Dev. 2015, 17, 1–12. [Google Scholar] [CrossRef]
- Hernández-Sánchez, E.; Mora-Aguilera, G.; Tlapal Bolaños, B.; Rodríguez-Leyva, E.; Alvarado Rosales, D. Effect of initial disease intensity of cactus black spot (Opuntia ficus-indica) in the temporal and spatial characterization. Rev. Mex. De Fitopatol. 2014, 32, 132–146. [Google Scholar]
- Ayala-Escobar, V.; de Jesùs, M.Y.M.; Braun, U.; Groenewald, J.Z.; Crous, P.W. Pseudocercospora opuntiae sp. nov., the causal organism of cactus leaf spot in Mexico. Fungal Divers. 2006, 21, 1–9. [Google Scholar]
- Inglese, P.; Saenz, C.; Mondragon, C.; Nefzaoui, A.; Louhaichi, M. Ecología del Cultivo, Manejo y Usos del Nopal; FAO: Rome, Italy, 2018. [Google Scholar]
- Acharya, P.; Biradar, C.; Louhaichi, M.; Ghosh, S.; Hassan, S.; Moyo, H.; Sarker, A. Finding a suitable niche for cultivating cactus pear (Opuntia ficus-indica) as an integrated crop in resilient dryland agroecosystems of India. Sustainability 2019, 11, 5897. [Google Scholar] [CrossRef]
- Morales, B.P.Z.; Pérez, A.B.; Valencia, L.B.; Domínguez, J.A.Z.; Martínez, M.C.Z.; Nolasco, A.Q. Efecto de las propiedades fisicas y químicas del suelo en el estado nutrimental del nopal-verdura (Opuntia ficus-indica (L.) Mill variedad Milpa Alta. Polibotánica 2025, 60. [Google Scholar] [CrossRef]
- Luo, C.; He, Y.; Chen, Y. Rhizosphere microbiome regulation: Unlocking the potential for plant growth. Curr. Res. Microb. Sci. 2025, 8, 100322. [Google Scholar] [CrossRef]
- Gómez-Godínez, L.J.; Aguirre-Noyola, J.L.; Martínez-Romero, E.; Arteaga-Garibay, R.I.; Ireta-Moreno, J.; Ruvalcaba-Gómez, J.M. A look at plant-growth-promoting bacteria. Plants 2023, 12, 1668. [Google Scholar] [CrossRef]
- Ramakrishna, W.; Yadav, R.; Li, K. Plant growth promoting bacteria in agriculture: Two sides of a coin. Appl. Soil Ecol. 2019, 138, 10–18. [Google Scholar] [CrossRef]
- Glick, B.R. Introduction to plant growth-promoting bacteria. In Beneficial Plant-Bacterial Interactions; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–37. [Google Scholar]
- Berg, G.; Rybakova, D.; Fischer, D.; Cernava, T.; Vergès, M.C.C.; Charles, T.; Chen, X.; Cocolin, L.; Eversole, K.; Corral, G.H.; et al. Microbiome definition re-visited: Old concepts and new challenges. Microbiome 2020, 8, 103. [Google Scholar] [PubMed]
- Compant, S.; Samad, A.; Faist, H.; Sessitsch, A. A review on the plant microbiome: Ecology, functions, and emerging trends in microbial application. J. Adv. Res. 2019, 19, 29–37. [Google Scholar] [CrossRef]
- Ghiasian, M.; Akhavan, S.A.; Amoozegar, M.A.; Saadatmand, S.; Shavandi, M. Bacterial diversity determination using culture-dependent and culture-independent methods. Glob. J. Environ. Sci. Manag. 2017, 3, 153–164. [Google Scholar]
- Gómez-Godínez, L.J.; Martínez-Romero, E.; Banuelos, J.; Arteaga-Garibay, R.I. Tools and challenges to exploit microbial communities in agriculture. Curr. Res. Microb. Sci. 2021, 2, 100062. [Google Scholar] [CrossRef]
- Su, C.; Lei, L.; Duan, Y.; Zhang, K.Q.; Yang, J. Culture-independent methods for studying environmental microorganisms: Methods, application, and perspective. Appl. Microbiol. Biotechnol. 2012, 93, 993–1003. [Google Scholar] [CrossRef] [PubMed]
- Janssen, P.H. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl. Environ. Microbiol. 2006, 72, 1719–1728. [Google Scholar] [CrossRef]
- Lahlali, R.; Ibrahim, D.S.; Belabess, Z.; Roni, M.Z.K.; Radouane, N.; Vicente, C.S.; Menéndez, E.; Mokrini, F.; Barka, E.A.; de Melo e Mota, M.G.; et al. High-throughput molecular technologies for unraveling the mystery of soil microbial community: Challenges and future prospects. Heliyon 2021, 7, e08142. [Google Scholar] [CrossRef] [PubMed]
- Matchado, M.S.; Lauber, M.; Reitmeier, S.; Kacprowski, T.; Baumbach, J.; Haller, D.; List, M. Network analysis methods for studying microbial communities: A mini review. Comput. Struct. Biotechnol. J. 2021, 19, 2687–2698. [Google Scholar] [CrossRef]
- Flores, M.M.L.; Silvestre, J.M.O. Modelo de desarrollo para el aprovechamiento de nopal verdura en Milpa Alta, Ciudad de México. Agric. Soc. Y Desarro. 2023, 20, 408–424. [Google Scholar]
- Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. 2010. Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 20 August 2025).
- Babraham Bioinformatics—TrimGalore! 2020. Available online: https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/ (accessed on 20 August 2025).
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Price, M.N.; Dehal, P.S.; Arkin, A.P. FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS ONE 2010, 5, e9490. [Google Scholar] [CrossRef]
- Sansupa, C.; Wahdan, S.F.M.; Hossen, S.; Disayathanoowat, T.; Wubet, T.; Purahong, W. Can we use functional annotation of prokaryotic taxa (FAPROTAX) to assign the ecological functions of soil bacteria? Appl. Sci. 2021, 11, 688. [Google Scholar] [CrossRef]
- Gómez-Godínez, L.J.; Cisneros-Saguilán, P.; Toscano-Santiago, D.D.; Santiago-López, Y.E.; Fonseca-Pérez, S.N.; Ruiz-Rivas, M.; Aguirre-Noyola, J.L.; García, G. Cultivable and Non-Cultivable Approach to Bacteria from Undisturbed Soil with Plant Growth-Promoting Capacity. Microorganisms 2025, 13, 909. [Google Scholar] [CrossRef] [PubMed]
- Meng, Q.; Yang, J.; Yao, R.; Liu, G. Soil quality in the east coastal region of China is related to different land use types. J. Soils Sediments 2013, 13, 664–676. [Google Scholar] [CrossRef]
- Guo, Y.; Ren, C.; Yi, J.; Doughty, R.; Zhao, F. Contrasting responses of rhizosphere bacteria, fungi and arbuscular mycorrhizal fungi along an elevational gradient in a temperate montane forest of China. Front. Microbiol. 2020, 11, 2042. [Google Scholar] [CrossRef]
- Zakavi, M.; Askari, H.; Shahrooei, M. Bacterial diversity changes in response to an altitudinal gradient in arid and semi-arid regions and their effects on crops growth. Front. Microbiol. 2022, 13, 984925. [Google Scholar] [CrossRef] [PubMed]
- Spain, A.M.; Krumholz, L.R.; Elshahed, M.S. Abundance, composition, diversity and novelty of soil Proteobacteria. ISME J. 2009, 3, 992–1000. [Google Scholar] [CrossRef]
- Mhete, M.; Eze, P.N.; Rahube, T.O.; Akinyemi, F.O. Soil properties influence bacterial abundance and diversity under different land-use regimes in semi-arid environments. Sci. Afr. 2020, 7, e00246. [Google Scholar] [CrossRef]
- Zhang, H.; Ullah, F.; Ahmad, R.; Shah, S.A.; Khan, A.; Adnan, M. Response of soil proteobacteria to biochar amendment in sustainable agriculture-a mini review. J. Soil Plant Environ. 2022, 1, 16–30. [Google Scholar] [CrossRef]
- Kim, H.S.; Lee, S.H.; Jo, H.Y.; Finneran, K.T.; Kwon, M.J. Diversity and composition of soil Acidobacteria and Proteobacteria communities as a bacterial indicator of past land-use change from forest to farmland. Sci. Total Environ. 2021, 797, 148944. [Google Scholar] [CrossRef]
- Vargas, L.K.; da Costa, P.B.; Beneduzi, A.; Lisboa, B.B.; Passaglia, L.M.; Granada, C.E. Soil fertility level is the main modulator of prokaryotic communities in a meta-analysis of 197 soil samples from the Americas and Europe. Appl. Soil Ecol. 2023, 186, 104811. [Google Scholar] [CrossRef]
- Wang, Y.F.; Xu, J.Y.; Liu, Z.L.; Cui, H.L.; Chen, P.; Cai, T.G.; Li, G.; Ding, L.-J.; Qiao, M.; Zhu, Y.-G.; et al. Biological interactions mediate soil functions by altering rare microbial communities. Environ. Sci. Technol. 2024, 58, 5866–5877. [Google Scholar] [CrossRef] [PubMed]
- Hazarika, S.N.; Thakur, D. Actinobacteria. In Beneficial Microbes in Agro-Ecology; Academic Press: London, UK, 2020; pp. 443–476. [Google Scholar]
- Wang, W.; Yu, Y.; Dou, T.Y.; Wang, J.Y.; Sun, C. Species of family Promicromonosporaceae and family Cellulomonadeceae that produce cellulosome-like multiprotein complexes. Biotechnol. Lett. 2018, 40, 335–341. [Google Scholar] [CrossRef]
- Swarnalakshmi, K.; Senthilkumar, M.; Ramakrishnan, B. Endophytic actinobacteria: Nitrogen fixation, phytohormone production, and antibiosis. In Plant Growth Promoting Actinobacteria: A New Avenue for Enhancing the Productivity and Soil Fertility of Grain Legumes; Springer: Singapore, 2016; pp. 123–145. [Google Scholar]
- van Bergeijk, D.A.; Terlouw, B.R.; Medema, M.H.; van Wezel, G.P. Ecology and genomics of Actinobacteria: New concepts for natural product discovery. Nat. Rev. Microbiol. 2020, 18, 546–558. [Google Scholar] [CrossRef]
- Boukelloul, I.; Aouar, L.; Cherb, N.; Carvalho, M.F.; Oliveira, R.S.; Akkal, S.; Nieto, G.; Zellagui, A.; Necib, Y. Actinobacteria isolated from soils of arid Saharan regions display simultaneous antifungal and plant growth promoting activities. Curr. Microbiol. 2024, 81, 327. [Google Scholar] [CrossRef] [PubMed]
- Dedysh, S.N.; Damsté, J.S.S. Acidobacteria; John Wiley and Sons Ltd.: Chichester, UK, 2018; pp. 1–10. [Google Scholar] [CrossRef]
- Eichorst, S.A.; Trojan, D.; Roux, S.; Herbold, C.; Rattei, T.; Woebken, D. Genomic insights into the Acidobacteria reveal strategies for their success in terrestrial environments. Environ. Microbiol. 2018, 20, 1041–1063. [Google Scholar] [CrossRef] [PubMed]
- Kalam, S.; Basu, A.; Ahmad, I.; Sayyed, R.Z.; El-Enshasy, H.A.; Dailin, D.J.; Suriani, N.L. Recent understanding of soil acidobacteria and their ecological significance: A critical review. Front. Microbiol. 2020, 11, 580024. [Google Scholar] [CrossRef]
- Gonçalves, O.S.; Fernandes, A.S.; Tupy, S.M.; Ferreira, T.G.; Almeida, L.N.; Creevey, C.J.; Santana, M.F. Insights into plant interactions and the biogeochemical role of the globally widespread Acidobacteriota phylum. Soil Biol. Biochem. 2024, 192, 109369. [Google Scholar] [CrossRef]
- Miller, M.; Oakley, A.J.; Lewis, P.J. RNA polymerases from low G+C gram-positive bacteria. Transcription 2021, 12, 92–102. [Google Scholar] [CrossRef]
- Adácsi, C.; Kovács, S.; Pócsi, I.; Pusztahelyi, T. Elimination of deoxynivalenol, aflatoxin B1, and zearalenone by gram-positive microbes (Firmicutes). Toxins 2022, 14, 591. [Google Scholar] [CrossRef]
- Lee, S.M.; Kong, H.G.; Song, G.C.; Ryu, C.M. Disruption of Firmicutes and Actinobacteria abundance in tomato rhizosphere causes the incidence of bacterial wilt disease. ISME J. 2021, 15, 330–347. [Google Scholar] [CrossRef]
- Kandasamy, S.; Weerasuriya, N.; White, J.F.; Patterson, G.; Lazarovits, G. Soil′s physical and nutritional balance is essential for establishing a healthy microbiome. In Microbiome Stimulants for Crops; Woodhead Publishing: London, UK, 2021; pp. 381–404. [Google Scholar]
- Sharma, U.; Rawat, D.; Mukherjee, P.; Farooqi, F.; Mishra, V.; Sharma, R.S. Ecological life strategies of microbes in response to antibiotics as a driving factor in soils. Sci. Total Environ. 2023, 854, 158791. [Google Scholar] [CrossRef] [PubMed]
- Saxena, A.K.; Kumar, M.; Chakdar, H.; Anuroopa, N.; Bagyaraj, D.J. Bacillus species in soil as a natural resource for plant health and nutrition. J. Appl. Microbiol. 2020, 128, 1583–1594. [Google Scholar] [CrossRef] [PubMed]
- White, D.C.; Sutton, S.D.; Ringelberg, D.B. The genus Sphingomonas: Physiology and ecology. Curr. Opin. Biotechnol. 1996, 7, 301–306. [Google Scholar] [CrossRef] [PubMed]
- Leys, N.M.; Ryngaert, A.; Bastiaens, L.; Verstraete, W.; Top, E.M.; Springael, D. Occurrence and phylogenetic diversity of Sphingomonas strains in soils contaminated with polycyclic aromatic hydrocarbons. Appl. Environ. Microbiol. 2004, 70, 1944–1955. [Google Scholar] [CrossRef]
- Qu, Z.L.; Sun, H. Microbiome of forest soil. In Forest Microbiology; Academic Press: London, UK, 2021; pp. 293–302. [Google Scholar]
- Wang, Y.; Pei, Y.; Wang, X.; Dai, X.; Zhu, M. Antimicrobial metabolites produced by the plant growth-promoting rhizobacteria (PGPR): Bacillus and Pseudomonas. Adv. Agrochem 2024, 3, 206–221. [Google Scholar] [CrossRef]
- Romero, F.; Labouyrie, M.; Orgiazzi, A.; Ballabio, C.; Panagos, P.; Jones, A.; Tedersoo, L.; Bahram, M.; Guerra, C.A.; Eisenhauer, N.; et al. Soil health is associated with higher primary productivity across Europe. Nat. Ecol. Evol. 2024, 8, 1847–1855. [Google Scholar] [CrossRef]
- Sultana, R.; Islam, S.M.N.; Shuvo, S.B.; Ehsan, G.M.A.; Saha, P.; Khan, M.M.R.; Rumman, N. Endophytic bacterium Sphingomonas panaciterrae NB5 influences soil properties and improves growth, nutrient contents, and yield of red amaranth (Amaranthus tricolor L.). Curr. Plant Biol. 2024, 39, 100372. [Google Scholar] [CrossRef]
- Wei, L.; Wang, Y.; Li, N.; Zhao, N.; Xu, S. Bacteria-Like Gaiella Accelerate Soil Carbon Loss by Decomposing Organic Matter of Grazing Soils in Alpine Meadows on the Qinghai–Tibet Plateau. Microb. Ecol. 2024, 87, 104. [Google Scholar] [CrossRef] [PubMed]
- Daims, H.; Wagner, M. Nitrospira. Trends Microbiol. 2018, 26, 462–463. [Google Scholar] [CrossRef]
- Li, L.; Yang, X.; Tong, B.; Wang, D.; Tian, X.; Liu, J.; Chen, J.; Xiao, X.; Wang, S. Rhizobacterial compositions and their relationships with soil properties and medicinal bioactive ingredients in Cinnamomum migao. Front. Microbiol. 2023, 14, 1078886. [Google Scholar] [CrossRef]
- Chiba, A.; Uchida, Y.; Kublik, S.; Vestergaard, G.; Buegger, F.; Schloter, M. Soil bacterial diversity is positively correlated with decomposition rates during early phases of maize litter decomposition. Microorganisms 2021, 9, 357. [Google Scholar] [CrossRef]
- Chen, L.; Liu, Y. The function of root exudates in the root colonization by beneficial soil rhizobacteria. Biology 2024, 13, 95. [Google Scholar] [CrossRef] [PubMed]
- Bouwmeester, H.; Dong, L.; Wippel, K.; Hofland, T.; Smilde, A. The chemical interaction between plants and the rhizosphere microbiome. Trends Plant Sci. 2025, 30, 1002–1019. [Google Scholar] [CrossRef]
- Seki, T.; Matsumoto, A.; Shimada, R.; Inahashi, Y.; Ōmura, S.; Takahashi, Y. Conexibacter arvalis sp. nov., isolated from a cultivated field soil sample. Int. J. Syst. Evol. Microbiol. 2012, 62 Pt 10, 2400–2404. [Google Scholar] [CrossRef]
- Rocha, S.M.B.; Pereira, A.P.d.A.; Melo, V.M.M.; Campos, J.R.; Borges, J.F.; Costa, R.M.; de Medeiros, E.V.; Neto, F.d.A.; Mendes, L.W.; Araujo, A.S.F. Co-occurrence network and predicted functions of bacterial community in soil from Brazilian Cerrado under distinct types of vegetation cover. Community Ecol. 2025, 26, 411–420. [Google Scholar] [CrossRef]
- Liu, Z.-S.; Wang, K.-H.; Cai, M.; Yang, M.-L.; Wang, X.-K.; Ma, H.-L.; Yuan, Y.-H.; Wu, L.-H.; Li, D.-F.; Liu, S.-J. Agromyces chromiiresistens sp. nov., Novosphingobium album sp. nov., Sphingobium arseniciresistens sp. nov., Sphingomonas pollutisoli sp. nov., and Salinibacterium metalliresistens sp. nov.: Five new members of Microbacteriaceae and Sphingomonadaceae from polluted soil. Front. Microbiol. 2023, 14, 1289110. [Google Scholar] [CrossRef]
- Aguilera-Najera, D.; Rodriguez-Cruz, U.E.; Vazquez, B.; Fernandez, C.; Martinez-Perez, E.; Tapia-Lopez, R.; Souza, V. Whole genome sequencing of a Domibacillus strain from the Cuatro Ciénegas basin that tends to act as an altruist. Microbiol. Resour. Announc. 2024, 13, e0023024. [Google Scholar] [CrossRef]
- Sly, L.I.; Arunpairojana, V.; Hodgkinson, M.C. Pedomicrobium manganicum from drinking-water distribution systems with manganese-related “dirty water” problems. Syst. Appl. Microbiol. 1988, 11, 75–84. [Google Scholar] [CrossRef]
- Braun, B.; Richert, I.; Szewzyk, U. Detection of iron-depositing Pedomicrobium species in native biofilms from the Odertal National Park by a new, specific FISH probe. J. Microbiol. Methods 2009, 79, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, A.A.; Oshkin, I.Y.; Danilova, O.V.; Philippov, D.A.; Ravin, N.V.; Dedysh, S.N. Rokubacteria in northern peatlands: Habitat preferences and diversity patterns. Microorganisms 2021, 10, 11. [Google Scholar] [CrossRef]
- Normand, P.; Berry, A.; Benson, D.R. Acidothermus. In Bergey’s Manual of Systematics of Archaea and Bacteria; Wiley: Hoboken, NJ, USA, 2015; pp. 1–3. [Google Scholar]
- Sakon, J.; Adney, W.S.; Himmel, M.E.; Thomas, S.R.; Karplus, P.A. Crystal structure of thermostable family 5 endocellulase E1 from Acidothermus cellulolyticus in complex with cellotetraose. Biochemistry 1996, 35, 10648–10660. [Google Scholar] [CrossRef]
- Hanada, S.; Sekiguchi, Y. The phylum Gemmatimonadetes. In The Prokaryotes, 4th ed.; Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; Volume 11, pp. 677–681. [Google Scholar]
- Zhang, H.; Sekiguchi, Y.; Hanada, S.; Hugenholtz, P.; Kim, H.; Kamagata, Y.; Nakamura, K. Gemmatimonas aurantiaca gen. nov., sp. nov., a gram-negative, aerobic, polyphosphate-accumulating micro-organism, the first cultured representative of the new bacterial phylum Gemmatimonadetes phyl. nov. Int. J. Syst. Evol. Microbiol. 2003, 53, 1155–1163. [Google Scholar] [CrossRef]
- Laranjo, M.; Alexandre, A.; Oliveira, S. Legume growth-promoting rhizobia: An overview on the Mesorhizobium genus. Microbiol. Res. 2014, 169, 2–17. [Google Scholar] [CrossRef]
- Meng, X.; Niu, G.; Yang, W.; Cao, X. Di (2-ethylhexyl) phthalate biodegradation and denitrification by a Pseudoxanthomonas sp. strain. Bioresour. Technol. 2015, 180, 356–359. [Google Scholar] [CrossRef]
- Heng, S.; Sutheeworapong, S.; Champreda, V.; Uke, A.; Kosugi, A.; Pason, P.; Waeonukul, R.; Ceballos, R.M.; Ratanakhanokchai, K.; Tachaapaikoon, C. Genomics and cellulolytic, hemicellulolytic, and amylolytic potential of Iocasia fonsfrigidae strain SP3-1 for polysaccharide degradation. PeerJ 2022, 10, e14211. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y.; Liu, R.; Cai, R.; Liu, F.; Sun, C. Iocasia fonsfrigidae NS-1 gen. nov., sp. nov., a novel deep-sea bacterium possessing diverse carbohydrate metabolic pathways. Front. Microbiol. 2021, 12, 725159. [Google Scholar] [CrossRef]
- Singleton, D.R.; Furlong, M.A.; Peacock, A.D.; White, D.C.; Coleman, D.C.; Whitman, W.B. Solirubrobacter pauli gen. nov., sp. nov., a mesophilic bacterium within the Rubrobacteridae related to common soil clones. Int. J. Syst. Evol. Microbiol. 2003, 53, 485–490. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.K.; Na, J.-R.; Lee, T.-H.; Im, W.-T.; Soung, N.-K.; Yang, D.-C. Solirubrobacter soli sp. nov., isolated from soil of a ginseng field. Int. J. Syst. Evol. Microbiol. 2007, 57, 1453–1455. [Google Scholar] [CrossRef]
- Franke-Whittle, I.H.; Manici, L.M.; Insam, H.; Stres, B. Rhizosphere bacteria and fungi associated with plant growth in soils of three replanted apple orchards. Plant Soil 2015, 395, 317–333. [Google Scholar] [CrossRef]
- Sivakala, K.K.; Jose, P.A.; Anandham, R.; Thinesh, T.; Jebakumar, S.; Samaddar, S.; Chatterjee, P.; Sivakumar, N.; Sa, T. Spatial physiochemical and metagenomic analysis of desert environment. J. Microbiol. Biotechnol. 2018, 28, 1517–1526. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.M.; Mou, T.; Sun, Y.; Su, J.; Yu, L.Y.; Zhang, Y.Q. Environmental distribution and genomic characteristics of Solirubrobacter, with proposal of two novel species. Front. Microbiol. 2023, 14, 1267771. [Google Scholar] [CrossRef]
- Wei, X.; Wang, X.; Cao, P.; Gao, Z.; Chen, A.J.; Han, J. Microbial Community Changes in the Rhizosphere Soil of Healthy and Rusty Panax ginseng and Discovery of Pivotal Fungal Genera Associated with Rusty Roots. BioMed Res. Int. 2020, 2020, 8018525. [Google Scholar] [CrossRef]
- Town, J.R.; Yu, M.; Lemke, R.; Helgason, B.L. Land use in the Prairie Pothole Region influences the soil bacterial community composition and relative abundance of nitrogen cycling genes. Can. J. Soil Sci. 2023, 103, 471–482. [Google Scholar] [CrossRef]
- Conners, E.M.; Rengasamy, K.; Ranaivoarisoa, T.; Bose, A. The phototrophic purple non-sulfur bacteria Rhodomicrobium spp. are novel chassis for bioplastic production. Microb. Biotechnol. 2024, 17, e14552. [Google Scholar] [CrossRef] [PubMed]
- Thomas, F.A.; Sinha, R.K.; Hatha, A.M.; Krishnan, K.P. Phenylobacterium glaciei sp. nov., isolated from Vestrebroggerbreen, a valley glacier in Svalbard, Arctic. Int. J. Syst. Evol. Microbiol. 2022, 72, 72–005375. [Google Scholar] [CrossRef]
- Tang, Y.; Huang, J.; Huang, B.; Du, J.; Zhang, C.; Long, Q.; Li, Y.; Guo, Z.; Liu, Q. Phenylobacterium montanum sp. nov., an oligotrophic, slightly acidophilic mesophile isolated from sandy soil. Int. J. Syst. Evol. Microbiol. 2024, 74, 006463. [Google Scholar]
- Pouder, E.; Vince, E.; Jacquot, K.; Traoré, M.B.; Grosche, A.; Ludwig, M.; Jebbar, M.; Maignien, L.; Alain, K.; Mieszkin, S. Phenylobacterium ferrooxidans sp. nov., isolated from a sub-surface geothermal aquifer in Iceland. Syst. Appl. Microbiol. 2025, 48, 126578. [Google Scholar] [CrossRef]
- Lloyd, A.B. Behaviour of streptomycetes in soil. Microbiology 1969, 56, 165–170. [Google Scholar] [CrossRef]
- Tshishonga, K.; Serepa-Dlamini, M.H. Draft genome sequence of Pseudarthrobacter phenanthrenivorans Strain MHSD1, a bacterial endophyte isolated from the medicinal plant Pellaea calomelanos. Evol. Bioinform. 2020, 16, 1176934320913257. [Google Scholar] [CrossRef]
- Ham, S.H.; Yoon, A.R.; Oh, H.E.; Park, Y.G. Plant growth-promoting microorganism Pseudarthrobacter sp. NIBRBAC000502770 enhances the growth and flavonoid content of Geum aleppicum. Microorganisms 2022, 10, 1241. [Google Scholar] [CrossRef]
- Jiang, Y.; Song, Y.; Jiang, C.; Li, X.; Liu, T.; Wang, J.; Chen, C.; Gao, J. Identification and characterization of Arthrobacter nicotinovorans JI39, a novel plant growth-promoting rhizobacteria strain from Panax ginseng. Front. Plant Sci. 2022, 13, 873621. [Google Scholar] [CrossRef]
- Donahue, J.M.; Williams, N.M.; Sells, S.F.; Labeda, D.P. Crossiella equi sp. nov., isolated from equine placentas. Int. J. Syst. Evol. Microbiol. 2002, 52, 2169–2173. [Google Scholar] [CrossRef] [PubMed]
- Adeyemo, O.M.; Onilude, A.A. Antimicrobial potential of a rare actinomycete isolated from soil: Crossiella sp.-EK18. J. Adv. Microbiol. 2018, 11, 1–15. [Google Scholar] [CrossRef]
- Santos, P.; Pinhal, I.; Rainey, F.A.; Empadinhas, N.; Costa, J.; Fields, B.; Benson, R.; Veríssimo, A.; da Costa, M.S. Gamma-Proteobacteria Aquicella lusitana gen. nov., sp. nov., and Aquicella siphonis sp. nov. Infect Protozoa and Require Activated Charcoal for Growth in Laboratory Media. Appl. Environ. Microbiol. 2003, 69, 6533–6540. [Google Scholar] [CrossRef] [PubMed]
- Saini, N.; Gupta, R.S. A robust phylogenetic framework for members of the order Legionellales and its main genera (Legionella, Aquicella, Coxiella and Rickettsiella) based on phylogenomic analyses and identification of molecular markers demarcating different clades. Antonie Van Leeuwenhoek 2021, 114, 957–982. [Google Scholar] [CrossRef] [PubMed]
- Simarmata, R.; Widowati, T.; Jrl, S.; Fwp, R.; Christita, M.; Khairina, Y.; Erdayani, E.; Khumairah, F.H. Rhizosphere bacteriome of Allium cepa after the application of chemical and endophyte-based fertilizer. Acta Ecol. Sin. 2023, 43, 1138–1148. [Google Scholar] [CrossRef]
- Liu, B.; Yang, J.; Lu, W.; Wang, H.; Song, X.; Yu, S.; Liu, Q.; Sun, Y.; Jiang, X. Altitudinal variation in rhizosphere microbial communities of the endangered plant Lilium tsingtauense and the environmental factors driving this variation. Microbiol. Spectr. 2024, 12, e0096624. [Google Scholar] [CrossRef]
- Islam, W.; Noman, A.; Naveed, H.; Huang, Z.; Chen, H.Y. Role of environmental factors in shaping the soil microbiome. Environ. Sci. Pollut. Res. 2020, 27, 41225–41247. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.; Dolfing, J.; Guo, Z.; Chen, R.; Wu, M.; Li, Z.; Lin, X.; Feng, Y. Important ecophysiological roles of non-dominant Actinobacteria in plant residue decomposition, especially in less fertile soils. Microbiome 2021, 9, 84. [Google Scholar] [CrossRef] [PubMed]
- Vázquez Alvarado, R.E.; Olivares Sáenz, E.; Zavala García, F.; Valdez Cepeda, R.D. Utilization of manure and fertilizers to improve the productivity of cactus pear (Opuntia spp.) a review. In V International Congress on Cactus Pear and Cochineal 728; International Society for Horticultural Science: Leuven, Belgium, 2004; pp. 151–158. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez-Godínez, L.J.; Aguirre-Noyola, J.L.; Avendaño-Arrazate, C.H.; de los Santos-Villalobos, S.; Ruiz-Rivas, M.; Arteaga-Garibay, R.I.; Ruvalcaba-Gómez, J.M. Altitudinal Gradient Drives Rhizosphere Microbial Structure and Functional Potential in Prickly Pear Cactus (Opuntia ficus-indica L.). Microbiol. Res. 2025, 16, 213. https://doi.org/10.3390/microbiolres16100213
Gómez-Godínez LJ, Aguirre-Noyola JL, Avendaño-Arrazate CH, de los Santos-Villalobos S, Ruiz-Rivas M, Arteaga-Garibay RI, Ruvalcaba-Gómez JM. Altitudinal Gradient Drives Rhizosphere Microbial Structure and Functional Potential in Prickly Pear Cactus (Opuntia ficus-indica L.). Microbiology Research. 2025; 16(10):213. https://doi.org/10.3390/microbiolres16100213
Chicago/Turabian StyleGómez-Godínez, Lorena Jacqueline, José Luis Aguirre-Noyola, Carlos Hugo Avendaño-Arrazate, Sergio de los Santos-Villalobos, Magali Ruiz-Rivas, Ramón Ignacio Arteaga-Garibay, and José Martín Ruvalcaba-Gómez. 2025. "Altitudinal Gradient Drives Rhizosphere Microbial Structure and Functional Potential in Prickly Pear Cactus (Opuntia ficus-indica L.)" Microbiology Research 16, no. 10: 213. https://doi.org/10.3390/microbiolres16100213
APA StyleGómez-Godínez, L. J., Aguirre-Noyola, J. L., Avendaño-Arrazate, C. H., de los Santos-Villalobos, S., Ruiz-Rivas, M., Arteaga-Garibay, R. I., & Ruvalcaba-Gómez, J. M. (2025). Altitudinal Gradient Drives Rhizosphere Microbial Structure and Functional Potential in Prickly Pear Cactus (Opuntia ficus-indica L.). Microbiology Research, 16(10), 213. https://doi.org/10.3390/microbiolres16100213