Towards Understanding the Factors Shaping the Composition and Function of the Noccaea Microbiome in Metal-Contaminated Environments
Abstract
1. Introduction
2. Phylogenetic Relationships Within Noccaea (Formerly Thlaspi) Species
3. The Large Genome Size Constraint Hypothesis
4. Is There a Relationship Between Nuclear DNA Amount and Microbial Colonisation?
5. Genetic Requirements of Metal Hyperaccumulation and Impacts on the Microbiome in Noccaea Species
6. Bioimaging Techniques Reveal Adaptation Mechanisms in the Leaves of Noccaea Species
7. Specific Features in the Roots of Noccaea Species Affect Microbial Composition and Metal Uptake
8. Glucosinolates
9. Conclusions and Further Directions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AM | Arbuscular mycorrhiza |
DNA | Deoxyribonucleic Acid |
FTIR | Fourier-Transform Infrared Spectroscopy |
HMA4 | Heavy Metal ATPase 4 |
LA-ICP-MS | Laser Ablation Inductively Coupled Plasma Mass Spectrometry |
LEXRF | Low-Energy X-Ray Fluorescence |
NAS2 | Nicotianamine Synthase 2 |
NcHMA4 | Noccaea caerulescens Heavy Metal ATPase 4 |
NcMTP1 | Noccaea caerulescens Metal Tolerance Protein 1 |
PIXE | Particle-Induced X-ray Emission |
SR-μ-XRF | Synchrotron Micro X-Ray Fluorescence |
YSL3 | Yellow Stripe-Like 3 |
XCT | X-ray Computed Tomography |
WDG | Whole-Genome Duplication |
ZIFL1 | Zinc-Induced Facilitator-Like 1 |
ZIP6 | Cation Transporter Maintaining Zn Homeostasis |
Appendix A
Appendix A.1
No | Clade | Genus | Species | DNA Amount | Original Reference | Clade Average DNA Amount 1C (pg) |
---|---|---|---|---|---|---|
1C (pg) | https://ww2.bgbm.org/EuroPlusMed/query.asp | |||||
1 | Clade A | Capsella | rubella | 0.22 | [124] | |
2 | Clade A | Capsella | bursa-pastoris | 0.4 | [124] | |
3 | Clade A | Pachycladon | exilis | 0.44 | [124] | |
4 | Clade A | Pachycladon | fastigiata | 0.51 | [124] | |
5 | Clade A | Pachycladon | novae-zelandiae | 0.55 | [124] | |
6 | Clade A | Turritis | glabra | 0.24 | [124] | |
7 | Clade A | Arabidopsis | thaliana | 0.16 | [125] | |
8 | Clade A | Arabidopsis | arenosa | 0.2 | [124] | |
9 | Clade A | Arabidopsis | neglecta | 0.2 | [124] | |
10 | Clade A | Arabidopsis | halleri | 0.24 | [124] | |
11 | Clade A | Arabidopsis | korshynskyi | 0.25 | [126] | |
12 | Clade A | Arabidopsis | lyrata | 0.25 | [124] | |
13 | Clade A | Arabidopsis | cebennensis | 0.29 | [124] | |
14 | Clade A | Arabidopsis | pumila | 0.34 | [127] | |
15 | Clade A | Arabidopsis | suecica | 0.35 | [124] | |
16 | Clade A | Arabidopsis | arenosa | 0.39 | [124] | |
17 | Clade A | Arabidopsis | wallichii | 0.4 | [127] | |
18 | Clade A | Arabidopsis | neglecta | 0.4 | [124] | |
19 | Clade A | Arabidopsis | thaliana | 0.44 | [128] | |
20 | Clade A | Arabidopsis | lyrata | 0.45 | [129] | |
21 | Clade A | Arabidopsis | kamchatica | 0.52 | [130] | |
22 | Clade A | Physaria | gracilis | 0.26 | [124] | |
23 | Clade A | Physaria | ovalifolia | 0.43 | [124] | |
24 | Clade A | Physaria | arctica | 0.69 | [124] | |
25 | Clade A | Physaria | didymocarpa | 2.23 | [124] | |
26 | Clade A | Physaria | bellii | 2.34 | [124] | |
27 | Clade A | Erysimum | sylvestre | 0.28 | [53] | |
28 | Clade A | Erysimum | duriaei | 0.47 | [131] | |
29 | Clade A | Erysimum | scoparium | 0.54 | [132] | |
30 | Clade A | Erysimum | bicolor | 0.58 | [132] | |
31 | Clade A | Erysimum | goniocaulon | 0.69 | [133] | |
32 | Clade A | Erysimum | bicolor | 0.76 | [124] | |
33 | Clade A | Erysimum | cheiranthoides | 0.83 | [124] | |
34 | Clade A | Erysimum | diffusum | 0.88 | [134] | |
35 | Clade A | Rorippa | lipizensis | 0.22 | [135] | |
36 | Clade A | Rorippa | sylvestris | 0.48 | [134] | |
37 | Clade A | Rorippa | palustris | 0.54 | [124] | |
38 | Clade A | Rorippa | nasturtium-aquaticum | 0.7 | [136] | |
39 | Clade A | Cardamine | impatiens | 0.21 | [49] | |
40 | Clade A | Cardamine | hirsuta | 0.23 | [49] | |
41 | Clade A | Cardamine | amara | 0.24 | [137] | |
42 | Clade A | Cardamine | glauca | 0.28 | [134] | |
43 | Clade A | Cardamine | chelidonia | 0.36 | [138] | |
44 | Clade A | Cardamine | schinziana | 0.68 | [139] | |
45 | Clade A | Cardamine | yezoensis | 0.7 | [139] | |
46 | Clade A | Cardamine | amaraeiformis | 0.71 | [139] | |
47 | Clade A | Cardamine | valida | 0.71 | [139] | |
48 | Clade A | Cardamine | yezoensis | 0.87 | [139] | |
49 | Clade A | Cardamine | flexuosa | 0.9 | [140] | |
50 | Clade A | Cardamine | yezoensis | 0.99 | [139] | |
51 | Clade A | Cardamine | schinziana | 1 | [139] | |
52 | Clade A | Cardamine | torrentis | 1.13 | [139] | |
53 | Clade A | Cardamine | yezoensis | 1.24 | [139] | |
54 | Clade A | Cardamine | asarifolia | 1.34 | [141] | |
55 | Clade A | Cardamine | diphylla | 1.62 | [142] | |
56 | Clade A | Cardamine | pratensis | 1.70 | [143] | |
57 | Clade A | Cardamine | concatenata | 3.25 | [144] | 0.67 |
1 | Clade B | Raphanus | sativus | 0.6 | [145] | |
2 | Clade B | Raphanus | sativus | 1.50 | [146] | |
3 | Clade B | Hirschfeldia | incana | 0.52 | [124] | |
4 | Clade B | Brassica | hirta | 0.51 | [147] | |
5 | Clade B | Brassica | tournefortii | 0.6 | [148] | |
6 | Clade B | Brassica | campestris | 0.6 | [149] | |
7 | Clade B | Brassica | nigra | 0.8 | [150] | |
8 | Clade B | Brassica | oleracea | 0.8 | [146] | |
9 | Clade B | Brassica | rapa | 0.8 | [151] | |
10 | Clade B | Brassica | napus | 1.10 | [152] | |
11 | Clade B | Brassica | juncea | 1.50 | [150] | |
12 | Clade B | Brassica | carinata | 1.60 | [150] | |
13 | Clade B | Sinapis | arvensis | 0.38 | [147] | |
14 | Clade B | Sinapis | alba | 0.50 | [153] | |
15 | Clade B | Cakile | maritima | 0.68 | [124] | |
16 | Clade B | Cakile | edentula | 0.84 | [144] | |
17 | Clade B | Sisymbrium | officinale | 0.24 | [124] | |
18 | Clade B | Sisymbrium | loeselii | 0.24 | [138] | |
19 | Clade B | Sisymbrium | altissimum | 0.26 | [138] | |
20 | Clade B | Sisymbrium | orientale | 0.31 | [49] | |
21 | Clade B | Sisymbrium | austriacum | 0.36 | [124] | |
22 | Clade B | Sisymbrium | irio | 0.53 | [49] | |
23 | Clade B | Sisymbrium | strictissimum | 0.7 | [138] | |
24 | Clade B | Thlaspi | ceratocarpum | 0.43 | [124] | |
25 | Clade B | Thlaspi | arvense | 0.52 | [124] | |
26 | Clade B | Alliaria | petiolata | 1.35 | [154] | |
27 | Clade B | Calepina | irregularis | 0.21 | [124] | |
28 | Clade B | Noccaea | alpestris | 0.24 | [124] | |
29 | Clade B | Noccaea | alpestris | 0.2 | [143] | |
30 | Clade B | Noccaea | caerulescens | 0.34 | [155] | |
31 | Clade B | Noccaea | montana | 0.29 | [155] | |
32 | Clade B | Noccaea | goesingensis | 0.5 | [156] | |
33 | Clade B | Noccaea | oxyceras | 0.34 | [157] | |
34 | Clade B | Noccaea | praecox | 0.26 | [52] | |
35 | Clade B | Noccaea | perfoliata | 0.31 | [155] | |
36 | Clade B | Noccaea | rosularis | 0.32 | [157] | |
37 | Clade B | Noccaea | tymphaea | 0.32 | [155] | |
38 | Clade B | Noccaea | tymphaea | 0.66 | [155] | |
39 | Clade B | Noccaea | violascens | 0.31 | [157] | |
40 | Clade B | Kernera | saxatilis | 0.2 | [124] | 0.57 |
1 | Clade C | Iberis | sempervirens | 0.56 | [124] | |
2 | Clade C | Iberis | gibraltarica | 0.57 | [124] | |
3 | Clade C | Lobularia | libyaca | 0.53 | [124] | |
4 | Clade C | Lobularia | canariensis | 0.57 | [132] | |
5 | Clade C | Cochlearia | aucheri | 0.3 | [157] | |
6 | Clade C | Cochlearia | sempervivum | 0.33 | [157] | |
7 | Clade C | Cochlearia | pyrenaica | 0.4 | [158] | |
8 | Clade C | Cochlearia | danica | 0.7 | [124] | |
9 | Clade C | Cochlearia | officinalis | 0.75 | [124] | |
10 | Clade C | Cochlearia | tatrae | 1.04 | [159] | |
11 | Clade C | Cochlearia | borzaeana | 1.41 | [159] | |
12 | Clade C | Lunaria | rediviva | 0.37 | [134] | |
13 | Clade C | Lunaria | biennis | 1.85 | [160] | |
14 | Clade C | Biscutella | auriculata | 0.69 | [124] | |
15 | Clade C | Biscutella | didyma | 0.79 | [157] | |
16 | Clade C | Biscutella | laevigata | 1.83 | [52] | 0.79 |
1 | Clade D | Alyssum | saxatile | 0.65 | [124] | |
2 | Clade D | Alyssum | markgrafii | 0.54 | [134] | |
3 | Clade D | Alyssum | murale | 0.58 | [156] | |
4 | Clade D | Alyssum | saxatile | 0.65 | [124] | |
5 | Clade D | Berteroa | incana | 0.71 | [124] | 0.63 |
1 | Clade E | Parrya | nudicaulis | 1.08 | [124] | |
2 | Clade E | Chorispora | tenella | 0.35 | [124] | |
3 | Clade E | Bunias | erucago | 2.07 | [161] | |
4 | Clade E | Bunias | orientalis | 2.59 | [161] | |
5 | Clade E | Hesperis | matronalis | 3.8 | [138] | 1.98 |
1 | Clade F | Aethionema | saxatile | 0.62 | [134] | |
2 | Clade F | Aethionema | grandiflorum | 0.71 | [124] | |
3 | Clade F | Aethionema | schistosum | 0.71 | [124] | |
4 | Clade F | Aethionema | cordifolium | 2.14 | [133] | 1.05 |
References
- Turner, T.R.; James, E.K.; Poole, P.S. The Plant Microbiome. Genome Biol. 2013, 14, 209. [Google Scholar] [CrossRef]
- Trivedi, P.; Leach, J.E.; Tringe, S.G.; Sa, T.; Singh, B.K. Plant–Microbiome Interactions: From Community Assembly to Plant Health. Nat. Rev. Microbiol. 2020, 18, 607–621. [Google Scholar] [CrossRef] [PubMed]
- Fitzpatrick, C.R.; Salas-González, I.; Conway, J.M.; Finkel, O.M.; Gilbert, S.; Russ, D.; Teixeira, P.J.P.L.; Dangl, J.L. The Plant Microbiome: From Ecology to Reductionism and Beyond. Annu. Rev. Microbiol. 2020, 74, 81–100. [Google Scholar] [CrossRef] [PubMed]
- Reeves, R.D.; Brooks, R.R. European Species of Thlaspi L. (Cruciferae) as Indicators of Nickel and Zinc. J. Geochem. Explor. 1983, 18, 275–283. [Google Scholar] [CrossRef]
- Robinson, B.H.; Leblanc, M.; Petit, D.; Brooks, R.R.; Kirkman, J.H.; Gregg, P.E.H. The Potential of Thlaspi caerulescens for Phytoremediation of Contaminated Soils. Plant Soil 1998, 203, 47–56. [Google Scholar] [CrossRef]
- Reeves, R.D.; Baker, A.J.M.; Jaffré, T.; Erskine, P.D.; Echevarria, G.; van der Ent, A. A Global Database for Plants That Hyperaccumulate Metal and Metalloid Trace Elements. New Phytol. 2018, 218, 407–411. [Google Scholar] [CrossRef]
- Al-Shehbaz, I.A.; Beilstein, M.A.; Kellogg, E.A. Systematics and Phylogeny of the Brassicaceae (Cruciferae): An Overview. Plant Syst. Evol. 2006, 259, 89–120. [Google Scholar] [CrossRef]
- Al-Shehbaz, I.A. A Synopsis of the Genus Noccaea (Coluteocarpeae, Brassicaceae). Harv. Pap. Bot. 2014, 19, 25–51. [Google Scholar] [CrossRef]
- Franzke, A.; German, D.; Al-Shehbaz, I.A.; Mummenhoff, K. Arabidopsis Family Ties: Molecular Phylogeny and Age Estimates in Brassicaceae. Taxon 2009, 58, 425–437. [Google Scholar] [CrossRef]
- Hohmann, N.; Wolf, E.M.; Lysak, M.A.; Koch, M.A. A Time-Calibrated Road Map of Brassicaceae Species Radiation and Evolutionary History. Plant Cell 2015, 27, 2770–2784. [Google Scholar] [CrossRef]
- Mandáková, T.; Joly, S.; Krzywinski, M.; Mummenhoff, K.; Lysaka, M.A. Fast Diploidization in Close Mesopolyploid Relatives of Arabidopsis. Plant Cell 2010, 22, 2277–2290. [Google Scholar] [CrossRef]
- Kagale, S.; Robinson, S.J.; Nixon, J.; Xiao, R.; Huebert, T.; Condie, J.; Kessler, D.; Clarke, W.E.; Edger, P.P.; Links, M.G.; et al. Polyploid Evolution of the Brassicaceae during the Cenozoic Era. Plant Cell 2014, 26, 2777–2791. [Google Scholar] [CrossRef]
- Van de Peer, Y.; Mizrachi, E.; Marchal, K. The Evolutionary Significance of Polyploidy. Nat. Rev. Genet. 2017, 18, 411–424. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.H.; Sun, R.; Hu, Y.; Zeng, L.; Zhang, N.; Cai, L.; Zhang, Q.; Koch, M.A.; Al-Shehbaz, I.; Edger, P.P.; et al. Resolution of Brassicaceae Phylogeny Using Nuclear Genes Uncovers Nested Radiations and Supports Convergent Morphological Evolution. Mol. Biol. Evol. 2016, 33, 394–412. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Liu, H.; Han, X. Traits-Based Approach: Leveraging Genome Size in Plant–Microbe Interactions. Trends Microbiol. 2024, 32, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Sotelo, T.; Lema, M.; Soengas, P.; Cartea, M.E.; Velasco, P. In Vitro Activity of Glucosinolates and Their Degradation Products against Brassica-Pathogenic Bacteria and Fungi. Appl. Environ. Microbiol. 2015, 81, 432–440. [Google Scholar] [CrossRef]
- Abdel-Massih, R.M.; Debs, E.; Othman, L.; Attieh, J.; Cabrerizo, F.M. Glucosinolates, a Natural Chemical Arsenal: More to Tell than the Myrosinase Story. Front. Microbiol. 2023, 14, 1130208. [Google Scholar] [CrossRef]
- Kováč, J.; Lux, A.; Soukup, M.; Weidinger, M.; Gruber, D.; Lichtscheidl, I.; Vaculík, M. A New Insight on Structural and Some Functional Aspects of Peri-Endodermal Thickenings, a Specific Layer in Noccaea caerulescens Roots. Ann. Bot. 2020, 126, 423–434. [Google Scholar] [CrossRef]
- Durand, A.; Leglize, P.; Lopez, S.; Sterckeman, T.; Benizri, E. Noccaea caerulescens Seed Endosphere: A Habitat for an Endophytic Bacterial Community Preserved through Generations and Protected from Soil Influence. Plant Soil 2022, 472, 257–278. [Google Scholar] [CrossRef]
- Lopez, S.; Piutti, S.; Vallance, J.; Morel, J.-L.; Echevarria, G.; Benizri, E. Nickel Drives Bacterial Community Diversity in the Rhizosphere of the Hyperaccumulator Alyssum murale. Soil Biol. Biochem. 2017, 114, 121–130. [Google Scholar] [CrossRef]
- Idris, R.; Trifonova, R.; Puschenreiter, M.; Wenzel, W.W.; Sessitsch, A. Bacterial Communities Associated with Flowering Plants of the Ni Hyperaccumulator Thlaspi goesingense. Appl. Environ. Microbiol. 2004, 70, 2667–2677. [Google Scholar] [CrossRef]
- Jiang, Y.; Luo, J.; Guo, X.; Qiao, Y.; Li, Y.; Zhang, Y.; Zhou, R.; Vaculík, M.; Li, T. Phyllosphere Microbiome Assists the Hyperaccumulating Plant in Resisting Heavy Metal Stress. J. Environ. Sci. 2025, 154, 563–574. [Google Scholar] [CrossRef] [PubMed]
- Fones, H.N.; McCurrach, H.; Mithani, A.; Smith, J.A.C.; Preston, G.M. Local Adaptation Is Associated with Zinc Tolerance in Pseudomonas Endophytes of the Metal-Hyperaccumulator Plant Noccaea caerulescens. Proc. R. Soc. B Biol. Sci. 2016, 283, 20160648. [Google Scholar] [CrossRef]
- Bočaj, V.; Pongrac, P.; Grčman, H.; Šala, M.; Likar, M. Rhizobiome Diversity of Field-Collected Hyperaccumulating Noccaea ssp. BMC Plant Biol. 2024, 24, 922. [Google Scholar] [CrossRef] [PubMed]
- Martos, S.; Busoms, S.; Pérez-Martín, L.; Llugany, M.; Cabot, C.; Poschenrieder, C. Identifying the Specific Root Microbiome of the Hyperaccumulator Noccaea brachypetala Growing in Non-Metalliferous Soils. Front. Microbiol. 2021, 12, 639997. [Google Scholar] [CrossRef]
- Yung, L.; Sirguey, C.; Azou-Barré, A.; Blaudez, D. Natural Fungal Endophytes from Noccaea caerulescens Mediate Neutral to Positive Effects on Plant Biomass, Mineral Nutrition and Zn Phytoextraction. Front. Microbiol. 2021, 12, 689367. [Google Scholar] [CrossRef]
- Yung, L.; Blaudez, D.; Maurice, N.; Azou-Barré, A.; Sirguey, C. Dark Septate Endophytes Isolated from Non-Hyperaccumulator Plants Can Increase Phytoextraction of Cd and Zn by the Hyperaccumulator Noccaea caerulescens. Environ. Sci. Pollut. Res. 2021, 28, 16544–16557. [Google Scholar] [CrossRef]
- Langill, T.; Jorissen, L.P.; Oleńska, E.; Wójcik, M.; Vangronsveld, J.; Thijs, S. Community Profiling of Seed Endophytes from the Pb-Zn Hyperaccumulator Noccaea caerulescens and Their Plant Growth Promotion Potential. Plants 2023, 12, 643. [Google Scholar] [CrossRef]
- Trautwig, A.N.; Jackson, M.R.; Kivlin, S.N.; Stinson, K.A. Reviewing Ecological Implications of Mycorrhizal Fungal Interactions in the Brassicaceae. Front. Plant Sci. 2023, 14, 1269815. [Google Scholar] [CrossRef]
- Pongrac, P.; Sonjak, S.; Vogel-Mikuš, K.; Kump, P.; Nečemer, M.; Regvar, M. Roots of Metal Hyperaccumulating Population of Thlaspi praecox (Brassicaceae) Harbour Arbuscular Mycorrhizal and Other Fungi under Experimental Conditions. Int. J. Phytoremediat. 2009, 11, 347–359. [Google Scholar] [CrossRef]
- Vogel-Mikuš, K.; Drobne, D.; Regvar, M. Zn, Cd and Pb Accumulation and Arbuscular Mycorrhizal Colonisation of Pennycress Thlaspi praecox Wulf. (Brassicaceae) from the Vicinity of a Lead Mine and Smelter in Slovenia. Environ. Pollut. 2005, 133, 233–242. [Google Scholar] [CrossRef]
- Regvar, M.; Vogel-Mikuš, K.; Kugonič, N.; Turk, B.; Batič, F. Vegetational and Mycorrhizal Successions at a Metal Polluted Site: Indications for the Direction of Phytostabilisation? Environ. Pollut. 2006, 144, 976–984. [Google Scholar] [CrossRef]
- Vogel-Mikuš, K.; Pongrac, P.; Kump, P.; Nečemer, M.; Regvar, M. Colonisation of a Zn, Cd and Pb Hyperaccumulator Thlaspi praecox Wulfen with Indigenous Arbuscular Mycorrhizal Fungal Mixture Induces Changes in Heavy Metal and Nutrient Uptake. Environ. Pollut. 2006, 139, 362–371. [Google Scholar] [CrossRef] [PubMed]
- Zunk, K.; Mummenhoff, K.; Koch, M.; Hurka, H. Phylogenetic Relationships of Thlaspi s.l. (Subtribe Thlaspidinae, Lepidieae) and Allied Genera Based on Chloroplast DNA Restriction-Site Variation. Theor. Appl. Genet. 1996, 92, 375–381. [Google Scholar] [CrossRef] [PubMed]
- Koch, M.; Mummenhoff, K. Thlaspi s.str. (Brassicaceae) versus Thlaspi s.l.: Morphological and Anatomical Characters in the Light of ITS NrDNA Sequence Data. Plant Syst. Evol. 2001, 227, 209–225. [Google Scholar] [CrossRef]
- Özgişi, K.; Özüdoğru, B. Seed Morphology and Its Systematic Implication in Noccaea s.l. (Brassicaceae). Flora 2025, 328, 152746. [Google Scholar] [CrossRef]
- Krämer, U. Metal Hyperaccumulation in Plants. Annu. Rev. Plant Biol. 2010, 61, 517–534. [Google Scholar] [CrossRef]
- Fasani, E.; Zamboni, A.; Sorio, D.; Furini, A.; DalCorso, G. Metal Interactions in the Ni Hyperaccumulating Population of Noccaea caerulescens Monte Prinzera. Biology 2023, 12, 1537. [Google Scholar] [CrossRef]
- Vogel-Mikuš, K.; Regvar, M.; Mesjasz-Przybyłowicz, J.; Przybyłowicz, W.J.; Simčič, J.; Pelicon, P.; Budnar, M. Spatial Distribution of Cadmium in Leaves of Metal Hyperaccumulating Thlaspi praecox Using Micro-PIXE. New Phytol. 2008, 179, 712–721. [Google Scholar] [CrossRef]
- Koren, Š.; Arčon, I.; Kump, P.; Nečemer, M.; Vogel-Mikuš, K. Influence of CdCl2 and CdSO4 Supplementation on Cd Distribution and Ligand Environment in Leaves of the Cd Hyperaccumulator Noccaea (Thlaspi) praecox. Plant Soil 2013, 370, 125–148. [Google Scholar] [CrossRef]
- Likar, M.; Pongrac, P.; Vogel-Mikuš, K.; Regvar, M. Molecular Diversity and Metal Accumulation of Different Thlaspi praecox Populations from Slovenia. Plant Soil 2010, 330, 195–205. [Google Scholar] [CrossRef]
- Koch, M.; Al-Shehbaz, I.A. Taxonomic and Phylogenetic Evaluation of the American “Thlaspi” Species: Identity and Relationship to the Eurasian Genus Noccaea (Brassicaceae). Syst. Bot. 2004, 29, 375–384. [Google Scholar] [CrossRef]
- Mandáková, T.; Li, Z.; Barker, M.S.; Lysak, M.A. Diverse Genome Organization Following 13 Independent Mesopolyploid Events in Brassicaceae Contrasts with Convergent Patterns of Gene Retention. Plant J. 2017, 91, 3–21. [Google Scholar] [CrossRef] [PubMed]
- Lysak, M.A.; Koch, M.A.; Pecinka, A.; Schubert, I. Chromosome Triplication Found across the Tribe Brassiceae. Genome Res. 2005, 15, 516–525. [Google Scholar] [CrossRef] [PubMed]
- Vision, T.J.; Brown, D.G.; Tanksley, S.D. The Origins of Genomic Duplications in Arabidopsis. Science 2000, 290, 2114–2117. [Google Scholar] [CrossRef]
- Leitch, I.; Bennett, M.; Leitch, A.; Soltis, D.; Soltis, P.; Pires, J. Genome Downsizing in Polyploid Plants. Biol. J. Linn. Soc. 2004, 82, 651–663. [Google Scholar] [CrossRef]
- Greilhuber, J.; Doležel, J.; Lysák, M.A.; Bennett, M.D. The Origin, Evolution and Proposed Stabilization of the Terms ‘Genome Size’ and ‘C-Value’ to Describe Nuclear DNA Contents. Ann. Bot. 2005, 95, 255–260. [Google Scholar] [CrossRef]
- Doležel, J.; Bartoš, J.; Voglmayr, H.; Greilhuber, J. Letter to the Editor. Cytometry 2003, 51, 127–128. [Google Scholar] [CrossRef]
- Johnston, J.S.; Pepper, A.E.; Hall, A.E.; Chen, Z.J.; Hodnett, G.; Drabek, J.; Lopez, R.; Price, H.J. Evolution of Genome Size in Brassicaceae. Ann. Bot. 2005, 95, 229–235. [Google Scholar] [CrossRef]
- Mandáková, T.; Singh, V.; Krämer, U.; Lysak, M.A. Genome Structure of the Heavy Metal Hyperaccumulator Noccaea caerulescens and Its Stability on Metalliferous and Nonmetalliferous Soils. Plant Physiol. 2015, 169, 674–689. [Google Scholar] [CrossRef]
- Knight, C.A.; Molinari, N.A.; Petrov, D.A. The Large Genome Constraint Hypothesis: Evolution, Ecology and Phenotype. Ann. Bot. 2005, 95, 177–190. [Google Scholar] [CrossRef]
- Temsch, E.M.; Temsch, W.; Ehrendorfer-Schratt, L.; Greilhuber, J. Heavy Metal Pollution, Selection, and Genome Size: The Species of the Žerjav Study Revisited with Flow Cytometry. J. Bot. 2010, 2010, 596542. [Google Scholar] [CrossRef]
- Vidic, T.; Greilhuber, J.; Vilhar, B.; Dermastia, M. Selective Significance of Genome Size in a Plant Community with Heavy Metal Pollution. Ecol. Appl. 2009, 19, 1515–1521. [Google Scholar] [CrossRef]
- Leitch, I.J.; Johnston, E.; Pellicer, J.; Hidalgo, O.; Bennett, M.D. Plant DNA C-Values Database. Available online: https://cvalues.science.kew.org/ (accessed on 29 July 2025).
- Rodríguez-Gijón, A.; Nuy, J.K.; Mehrshad, M.; Buck, M.; Schulz, F.; Woyke, T.; Garcia, S.L. A Genomic Perspective Across Earth’s Microbiomes Reveals That Genome Size in Archaea and Bacteria Is Linked to Ecosystem Type and Trophic Strategy. Front. Microbiol. 2022, 12, 761869. [Google Scholar] [CrossRef]
- Greilhuber, J.; Borsch, T.; Müller, K.; Worberg, A.; Porembski, S.; Barthlott, W. Smallest Angiosperm Genomes Found in Lentibulariaceae, with Chromosomes of Bacterial Size. Plant Biol. 2006, 8, 770–777. [Google Scholar] [CrossRef] [PubMed]
- Pellicer, J.; Fay, M.F.; Leitch, I.J. The Largest Eukaryotic Genome of Them All? Bot. J. Linn. Soc. 2010, 164, 10–15. [Google Scholar] [CrossRef]
- Francis, D.; Davies, M.S.; Barlow, P.W. A Strong Nucleotypic Effect on the Cell Cycle Regardless of Ploidy Level. Ann. Bot. 2008, 101, 747–757. [Google Scholar] [CrossRef] [PubMed]
- D’Ario, M.; Tavares, R.; Schiessl, K.; Desvoyes, B.; Gutierrez, C.; Howard, M.; Sablowski, R. Cell Size Controlled in Plants Using DNA Content as an Internal Scale. Science 2021, 372, 1176–1181. [Google Scholar] [CrossRef]
- Bhadra, S.; Leitch, I.J.; Onstein, R.E. From Genome Size to Trait Evolution during Angiosperm Radiation. Trends Genet. 2023, 39, 728–735. [Google Scholar] [CrossRef]
- Sudová, R.; Rydlová, J.; Münzbergová, Z.; Suda, J. Ploidy-Specific Interactions of Three Host Plants with Arbuscular Mycorrhizal Fungi: Does Genome Copy Number Matter? Am. J. Bot. 2010, 97, 1798–1807. [Google Scholar] [CrossRef]
- Anneberg, T.J.; Segraves, K.A. Intraspecific Polyploidy Correlates with Colonization by Arbuscular Mycorrhizal Fungi in Heuchera cylindrica. Am. J. Bot. 2019, 106, 894–900. [Google Scholar] [CrossRef] [PubMed]
- Bainard, L.D.; Bainard, J.D.; Newmaster, S.G.; Klironomos, J.N. Mycorrhizal Symbiosis Stimulates Endoreduplication in Angiosperms. Plant Cell Environ. 2011, 34, 1577–1585. [Google Scholar] [CrossRef] [PubMed]
- Segraves, K.A. The Effects of Genome Duplications in a Community Context. New Phytol. 2017, 215, 57–69. [Google Scholar] [CrossRef] [PubMed]
- Simonin, K.A.; Roddy, A.B. Genome Downsizing, Physiological Novelty, and the Global Dominance of Flowering Plants. PLoS Biol. 2018, 16, e2003706. [Google Scholar] [CrossRef]
- Regvar, M.; Vogel, K.; Irgel, N.; Hildebrandt, U.; Wilde, P.; Bothe, H. Colonization of Pennycresses (Thlaspi spp.) of the Brassicaceae by Arbuscular Mycorrhizal Fungi. J. Plant Physiol. 2003, 160, 615–626. [Google Scholar] [CrossRef]
- Orłowska, E.; Zubek, S.; Jurkiewicz, A.; Szarek-Łukaszewska, G.; Turnau, K. Influence of Restoration on Arbuscular Mycorrhiza of Biscutella laevigata L. (Brassicaceae) and Plantago Lanceolata L. (Plantaginaceae) from Calamine Spoil Mounds. Mycorrhiza 2002, 12, 153–159. [Google Scholar] [CrossRef]
- Trombley, J.; Celenza, J.L.; Frey, S.D.; Anthony, M.A. Arbuscular Mycorrhizal Fungi Boost Development of an Invasive Brassicaceae. Plant Cell Environ. 2025, 48, 4928–4937. [Google Scholar] [CrossRef]
- Trouvelot, A.; Kough, J.L.; Gianinazzi-Pearson, V. Mesure du taux de mycorhization VA d’un systeme radiculaire. Recherche de methods d’estimation ayant une signification fonctionnelle. In Physiological and Genetical Aspects of Mycorrhizae; Gianinazzi-Pearson, V., Gianinazzi, S., Eds.; INRA: Paris, France, 1986; pp. 217–221. [Google Scholar]
- Ancousture, J.; Durand, A.; Blaudez, D.; Benizri, E. A Reduced but Stable Core Microbiome Found in Seeds of Hyperaccumulators. Sci. Total Environ. 2023, 887, 164131. [Google Scholar] [CrossRef]
- Levy, A.; Salas Gonzalez, I.; Mittelviefhaus, M.; Clingenpeel, S.; Herrera Paredes, S.; Miao, J.; Wang, K.; Devescovi, G.; Stillman, K.; Monteiro, F.; et al. Genomic Features of Bacterial Adaptation to Plants. Nat. Genet. 2017, 50, 138–150. [Google Scholar] [CrossRef]
- van der Ent, A.; Spiers, K.M.; Brueckner, D.; Echevarria, G.; Aarts, M.G.M.; Montargès-Pelletier, E. Spatially-Resolved Localization and Chemical Speciation of Nickel and Zinc in Noccaea tymphaea and Bornmuellera emarginata. Metallomics 2019, 11, 2052–2065. [Google Scholar] [CrossRef]
- Baker, A.J.M.; Reeves, R.D.; Hahar, A.S.M. Heavy Metal Accumulation and Tolerance in British Populations of the Metallophyte Thlaspi caerulescens J. & C. Presl (Brassicaceae). New Phytol. 1994, 127, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Brooks, R.R.; Lee, J.; Reeves, R.D.; Jaffre, T. Detection of Nickeliferous Rocks by Analysis of Herbarium Specimens of Indicator Plants. J. Geochem. Explor. 1977, 7, 49–57. [Google Scholar] [CrossRef]
- Reeves, R.D. Hyperaccumulation of Trace Elements by Plants. In Phytoremediation of Metal-Contaminated Soils; Morel, J.-L., Echevarria, G., Goncharova, N., Eds.; Springer: Dordrecht, The Netherland, 2006; pp. 25–52. [Google Scholar] [CrossRef]
- Hanikenne, M.; Talke, I.N.; Haydon, M.J.; Lanz, C.; Nolte, A.; Motte, P.; Kroymann, J.; Weigel, D.; Krämer, U. Evolution of Metal Hyperaccumulation Required Cis-Regulatory Changes and Triplication of HMA4. Nature 2008, 453, 391–395. [Google Scholar] [CrossRef] [PubMed]
- Roux, C.; Castric, V.; Pauwels, M.; Wright, S.I.; Saumitou-Laprade, P.; Vekemans, X. Does Speciation between Arabidopsis halleri and Arabidopsis lyrata Coincide with Major Changes in a Molecular Target of Adaptation? PLoS ONE 2011, 6, e26872. [Google Scholar] [CrossRef]
- Ó Lochlainn, S.; Bowen, H.C.; Fray, R.G.; Hammond, J.P.; King, G.J.; White, P.J.; Graham, N.S.; Broadley, M.R. Tandem Quadruplication of HMA4 in the Zinc (Zn) and Cadmium (Cd) Hyperaccumulator Noccaea caerulescens. PLoS ONE 2011, 6, e17814. [Google Scholar] [CrossRef]
- Craciun, A.R.; Meyer, C.L.; Chen, J.; Roosens, N.; De Groodt, R.; Hilson, P.; Verbruggen, N. Variation in HMA4 Gene Copy Number and Expression among Noccaea caerulescens Populations Presenting Different Levels of Cd Tolerance and Accumulation. J. Exp. Bot. 2012, 63, 4179–4189. [Google Scholar] [CrossRef]
- Clemens, S.; Palmgren, M.G.; Krämer, U. A Long Way Ahead: Understanding and Engineering Plant Metal Accumulation. Trends Plant Sci. 2002, 7, 309–315. [Google Scholar] [CrossRef]
- Hanikenne, M.; Nouet, C. Metal Hyperaccumulation and Hypertolerance: A Model for Plant Evolutionary Genomics. Curr. Opin. Plant Biol. 2011, 14, 252–259. [Google Scholar] [CrossRef]
- Milner, M.J.; Mitani-Ueno, N.; Yamaji, N.; Yokosho, K.; Craft, E.; Fei, Z.; Ebbs, S.; Clemencia Zambrano, M.; Ma, J.F.; Kochian, L.V. Root and Shoot Transcriptome Analysis of Two Ecotypes of Noccaea caerulescens Uncovers the Role of NcNramp1 in Cd Hyperaccumulation. Plant J. 2014, 78, 398–410. [Google Scholar] [CrossRef]
- Martos, S.; Gallego, B.; Sáez, L.; López-Alvarado, J.; Cabot, C.; Poschenrieder, C. Characterization of Zinc and Cadmium Hyperaccumulation in Three Noccaea (Brassicaceae) Populations from Non-Metalliferous Sites in the Eastern Pyrenees. Front. Plant Sci. 2016, 7, 173623. [Google Scholar] [CrossRef]
- Lin, Y.F.; Severing, E.I.; te Lintel Hekkert, B.; Schijlen, E.; Aarts, M.G.M. A Comprehensive Set of Transcript Sequences of the Heavy Metal Hyperaccumulator Noccaea caerulescens. Front. Plant Sci. 2014, 5, 78115. [Google Scholar] [CrossRef]
- Han, L.; Wu, X.; Hou, K.; Zhang, H.; Liang, X.; Chen, C.; Wang, Z.; Shen, C. Identification and Functional Analysis of Calcium Sensor Calmodulins from Heavy Metal Hyperaccumulator Noccaea caerulescens. Funct. Plant Biol. 2023, 50, 294–302. [Google Scholar] [CrossRef] [PubMed]
- Ważny, R.; Rozpądek, P.; Domka, A.; Jędrzejczyk, R.J.; Nosek, M.; Hubalewska-Mazgaj, M.; Lichtscheidl, I.; Kidd, P.; Turnau, K. The Effect of Endophytic Fungi on Growth and Nickel Accumulation in Noccaea Hyperaccumulators. Sci. Total Environ. 2021, 768, 144666. [Google Scholar] [CrossRef]
- Durand, A.; Sterckeman, T.; Gonnelli, C.; Coppi, A.; Bacci, G.; Leglize, P.; Benizri, E. A Core Seed Endophytic Bacterial Community in the Hyperaccumulator Noccaea caerulescens across 14 Sites in France. Plant Soil 2021, 459, 203–216. [Google Scholar] [CrossRef]
- Wolters, H.; Jürgens, G. Survival of the Flexible: Hormonal Growth Control and Adaptation in Plant Development. Nat. Rev. Genet. 2009, 10, 305–317. [Google Scholar] [CrossRef] [PubMed]
- Callahan, D.L.; Hare, D.J.; Bishop, D.P.; Doble, P.A.; Roessner, U. Elemental Imaging of Leaves from the Metal Hyperaccumulating Plant Noccaea caerulescens Shows Different Spatial Distribution of Ni, Zn and Cd. RSC Adv. 2015, 6, 2337–2344. [Google Scholar] [CrossRef]
- Vázquez, M.D.; Barceló, J.; Poschenrieder, C.; Mádico, J.; Hatton, P.; Baker, A.J.M.; Cope, G.H. Localization of Zinc and Cadmium in Thlaspi caerulescens (Brassicaceae), a Metallophyte That Can Hyperaccumulate Both Metals. J. Plant Physiol. 1992, 140, 350–355. [Google Scholar] [CrossRef]
- Regvar, M.; Eichert, D.; Kaulich, B.; Gianoncelli, A.; Pongrac, P.; Vogel-Mikuš, K. Biochemical Characterization of Cell Types within Leaves of Metal-Hyperaccumulating Noccaea praecox (Brassicaceae). Plant Soil 2013, 373, 157–171. [Google Scholar] [CrossRef]
- Braccini, I.; Pérez, S. Molecular Basis of Ca2+-Induced Gelation in Alginates and Pectins: The Egg-Box Model Revisited. Biomacromolecules 2001, 2, 1089–1096. [Google Scholar] [CrossRef]
- Pongrac, P.; Vogel-Mikuš, K.; Vavpetič, P.; Tratnik, J.; Regvar, M.; Simčič, J.; Grlj, N.; Pelicon, P. Cd Induced Redistribution of Elements within Leaves of the Cd/Zn Hyperaccumulator Thlaspi praecox as Revealed by Micro-PIXE. Phys. Res. Sect. B Beam Interact. Mater. At. 2010, 268, 2205–2210. [Google Scholar] [CrossRef]
- Smets, W.; Chock, M.K.; Walsh, C.M.; Vanderburgh, C.Q.; Kau, E.; Lindow, S.E.; Fierer, N.; Koskella, B. Leaf Side Determines the Relative Importance of Dispersal versus Host Filtering in the Phyllosphere Microbiome. mBio 2023, 14, e0111123. [Google Scholar] [CrossRef] [PubMed]
- Kusstatscher, P.; Wicaksono, W.A.; Bergna, A.; Cernava, T.; Bergau, N.; Tissier, A.; Hause, B.; Berg, G. Trichomes Form Genotype-Specific Microbial Hotspots in the Phyllosphere of Tomato. Environ. Microbiome 2020, 15, 17. [Google Scholar] [CrossRef] [PubMed]
- Bočaj, V.; Regvar, M.; Pongrac, P. Linking Microbiome and Hyperaccumulation in Plants. Acta Biol. Slov. 2025, 68, 147–160. [Google Scholar] [CrossRef]
- Jakovljević, K.; Mišljenović, T.; Brueckner, D.; Jacquet, J.; Michaudel, G.; van der Ent, A. Elemental Localization in Inflorescences of the Hyperaccumulators Noccaea praecox and Noccaea caerulescens (Brassicaceae). Ecol. Res. 2024, 39, 588–595. [Google Scholar] [CrossRef]
- Zelko, I.; Lux, A.; Czibula, K. Difference in the Root Structure of Hyperaccumulator Thlaspi caerulescens and Non-Hyperaccumulator Thlaspi arvense. Int. J. Environ. Pollut. 2008, 33, 123–132. [Google Scholar] [CrossRef]
- Bothe, H.; Vogel Mikuš, K.; Pongrac, P.; Matevž, L.; Stepic, N.; Pelicon, P.; Vavpetič, P.; Jeromel, L.; Regvar, M. Metallophyte Status of Violets of the Section Melanium. Chemosphere 2013, 93, 1844–1855. [Google Scholar] [CrossRef]
- Hiruma, K.; Gerlach, N.; Sacristán, S.; Nakano, R.T.; Hacquard, S.; Kracher, B.; Neumann, U.; Ramírez, D.; Bucher, M.; O’Connell, R.J.; et al. Root Endophyte Colletotrichum Tofieldiae Confers Plant Fitness Benefits That Are Phosphate Status Dependent. Cell 2016, 165, 464–474. [Google Scholar] [CrossRef]
- Andersen, T.G.; Naseer, S.; Ursache, R.; Wybouw, B.; Smet, W.; De Rybel, B.; Vermeer, J.E.M.; Geldner, N. Diffusible Repression of Cytokinin Signalling Produces Endodermal Symmetry and Passage Cells. Nature 2018, 555, 529–533. [Google Scholar] [CrossRef]
- Holbein, J.; Shen, D.; Andersen, T.G. The Endodermal Passage Cell—Just Another Brick in the Wall? New Phytol. 2021, 230, 1321–1328. [Google Scholar] [CrossRef]
- Paungfoo-Lonhienne, C.; Rentsch, D.; Robatzek, S.; Webb, R.I.; Sagulenko, E.; Näsholm, T.; Schmidt, S.; Lonhienne, T.G.A. Turning the Table: Plants Consume Microbes as a Source of Nutrients. PLoS ONE 2010, 5, e11915. [Google Scholar] [CrossRef]
- Durr, J.; Reyt, G.; Spaepen, S.; Hilton, S.; Meehan, C.; Qi, W.; Kamiya, T.; Flis, P.; Dickinson, H.G.; Feher, A.; et al. A Novel Signaling Pathway Required for Arabidopsis Endodermal Root Organization Shapes the Rhizosphere Microbiome. Plant Cell Physiol. 2021, 62, 248–261. [Google Scholar] [CrossRef] [PubMed]
- Salas-González, I.; Reyt, G.; Flis, P.; Custódio, V.; Gopaulchan, D.; Bakhoum, N.; Dew, T.P.; Suresh, K.; Franke, R.B.; Dangl, J.L.; et al. Coordination between Microbiota and Root Endodermis Supports Plant Mineral Nutrient Homeostasis. Science 2021, 371, eabd0695. [Google Scholar] [CrossRef] [PubMed]
- Maciá-Vicente, J.G.; Nam, B.; Thines, M. Root Filtering, Rather than Host Identity or Age, Determines the Composition of Root-Associated Fungi and Oomycetes in Three Naturally Co-Occurring Brassicaceae. Soil. Biol. Biochem. 2020, 146, 107806. [Google Scholar] [CrossRef]
- Sharma, A.; Sinharoy, S.; Bisht, N.C. The Mysterious Non-Arbuscular Mycorrhizal Status of Brassicaceae Species. Environ. Microbiol. 2023, 25, 917–930. [Google Scholar] [CrossRef]
- Delaux, P.M.; Radhakrishnan, G.V.; Jayaraman, D.; Cheema, J.; Malbreil, M.; Volkening, J.D.; Sekimoto, H.; Nishiyama, T.; Melkonian, M.; Pokorny, L.; et al. Algal Ancestor of Land Plants Was Preadapted for Symbiosis. Proc. Natl. Acad. Sci. USA 2015, 112, 13390–13395. [Google Scholar] [CrossRef]
- Pongrac, P.; Vogel-Mikuš, K.; Poschenrieder, C.; Barceló, J.; Tolrà, R.; Regvar, M. Arbuscular Mycorrhiza in Glucosinolate-Containing Plants: The Story of the Metal Hyperaccumulator Noccaea (Thlaspi) praecox (Brassicaceae). In Molecular Microbial Ecology of the Rhizosphere; de Bruijn, F.J., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2013; pp. 1013–1022. [Google Scholar]
- Pongrac, P.; Vogel-Mikuš, K.; Regvar, M.; Tolrà, R.; Poschenrieder, C.; Barceló, J. Glucosinolate Profiles Change during the Life Cycle and Mycorrhizal Colonization in a Cd/Zn Hyperaccumulator Thlaspi praecox (Brassicaceae). J. Chem. Ecol. 2008, 34, 1038–1044. [Google Scholar] [CrossRef]
- Regvar, M.; Vogel-Mikuš, K. Arbuscular Mycorrhiza in Metal Hyperaccumulating Plants. In Mycorrhiza: State of the Art, Genetics and Molecular Biology, Eco-Function, Biotechnology, Eco-Physiology, Structure and Systematics, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 261–280. [Google Scholar] [CrossRef]
- Yang, J.; Song, N.; Zhao, X.; Qi, X.; Hu, Z.; Zhang, M. Genome Survey Sequencing Provides Clues into Glucosinolate Biosynthesis and Flowering Pathway Evolution in Allotetrapolyploid Brassica juncea. BMC Genom. 2014, 15, 107. [Google Scholar] [CrossRef]
- Grubb, C.D.; Abel, S. Glucosinolate Metabolism and Its Control. Trends Plant Sci. 2006, 11, 89–100. [Google Scholar] [CrossRef]
- Agerbirk, N.; Olsen, C.E. Glucosinolate Structures in Evolution. Phytochemistry 2012, 77, 16–45. [Google Scholar] [CrossRef]
- Tolrà, R.P.; Poschenrieder, C.; Alonso, R.; Barceló, D.; Barceló, J. Influence of Zinc Hyperaccumulation on Glucosinolates in Thlaspi caerulescens. New Phytol. 2001, 151, 621–626. [Google Scholar] [CrossRef]
- de Graaf, R.M.; Krosse, S.; Swolfs, A.E.; Brinke, E.T.; Prill, N.; Leimu, R.; van Galen, P.M.; Wang, Y.; Aarts, M.G.; van Dam, N.M. Isolation and Identification of 4-α-Rhamnosyloxy Benzyl Glucosinolate in Noccaea caerulescens Showing Intraspecific Variation. Phytochemistry 2015, 110, 166–171. [Google Scholar] [CrossRef]
- Jeon, B.W.; Oh, M.H.; Kim, H.S.; Kim, E.O.; Chae, W.B. Glucosinolate Variation among Organs, Growth Stages and Seasons Suggests Its Dominant Accumulation in Sexual over Asexual-Reproductive Organs in White Radish. Sci. Hortic. 2022, 291, 110617. [Google Scholar] [CrossRef]
- Tolrà, R.; Pongrac, P.; Poschenrieder, C.; Vogel-Mikuš, K.; Regvar, M.; Barceló, J. Distinctive Effects of Cadmium on Glucosinolate Profiles in Cd Hyperaccumulator Thlaspi praecox and Non-Hyperaccumulator Thlaspi arvense. Plant Soil 2006, 288, 333–341. [Google Scholar] [CrossRef]
- Morina, F.; Mijovilovich, A.; Mishra, A.; Brückner, D.; Vujić, B.; Bokhari, S.N.H.; Špak, J.; Falkenberg, G.; Küpper, H. Cadmium and Zn Hyperaccumulation Provide Efficient Constitutive Defense against Turnip Yellow Mosaic Virus Infection in Noccaea caerulescens. Plant Sci. 2023, 336, 111864. [Google Scholar] [CrossRef] [PubMed]
- Unger, K.; Raza, S.A.K.; Mayer, T.; Reichelt, M.; Stuttmann, J.; Hielscher, A.; Wittstock, U.; Gershenzon, J.; Agler, M.T. Glucosinolate Structural Diversity Shapes Recruitment of a Metabolic Network of Leaf-Associated Bacteria. Nat. Commun. 2024, 15, 8496. [Google Scholar] [CrossRef] [PubMed]
- Anthony, M.A.; Celenza, J.L.; Armstrong, A.; Frey, S.D. Indolic Glucosinolate Pathway Provides Resistance to Mycorrhizal Fungal Colonization in a Non-Host Brassicaceae. Ecosphere 2020, 11, e03100. [Google Scholar] [CrossRef]
- Szucs, Z.; Plaszkó, T.; Cziáky, Z.; Kiss-Szikszai, A.; Emri, T.; Bertóti, R.; Sinka, L.T.; Vasas, G.; Gonda, S. Endophytic Fungi from the Roots of Horseradish (Armoracia rusticana) and Their Interactions with the Defensive Metabolites of the Glucosinolate-Myrosinase-Isothiocyanate System. BMC Plant Biol. 2018, 18, 85. [Google Scholar] [CrossRef]
- Chen, J.; Ullah, C.; Reichelt, M.; Beran, F.; Yang, Z.L.; Gershenzon, J.; Hammerbacher, A.; Vassão, D.G. The Phytopathogenic Fungus Sclerotinia Sclerotiorum Detoxifies Plant Glucosinolate Hydrolysis Products via an Isothiocyanate Hydrolase. Nat. Commun. 2020, 11, 3090. [Google Scholar] [CrossRef]
- Lysak, M.A.; Koch, M.A.; Beaulieu, J.M.; Meister, A.; Leitch, I.J. The Dynamic Ups and Downs of Genome Size Evolution in Brassicaceae. Mol. Biol. Evol. 2009, 26, 85–98. [Google Scholar] [CrossRef]
- Bennett, M.D.; Leitch, I.J.; Price, H.J.; Johnston, J.S. Comparisons with Caenorhabditis (∼100 Mb) and Drosophila (∼175 Mb) Using Flow Cytometry Show Genome Size in Arabidopsis to Be ∼157 Mb and Thus ∼25% Larger than the Arabidopsis Genome Initiative Estimate of ∼125 Mb. Ann. Bot. 2003, 91, 547. [Google Scholar] [CrossRef]
- Nagl, W.; Jeanjour, M.; Kling, H.; Kuhner, S.; Michels, I.; Muller, T.; Stein, B. Genome and chromatic organization in higher plants. Biol. Zentralbl. 1983, 102, 129–148. [Google Scholar] [CrossRef]
- Houben, A.; Demidov, D.; Gernand, D.; Meister, A.; Leach, C.R.; Schubert, I. Methylation of Histone H3 in Euchromatin of Plant Chromosomes Depends on Basic Nuclear DNA Content. Plant J. 2003, 33, 967–973. [Google Scholar] [CrossRef] [PubMed]
- Schmuths, H.; Meister, A.; Horres, R.; Bachmann, K. Genome Size Variation among Accessions of Arabidopsis thaliana. Ann. Bot. 2004, 93, 317–321. [Google Scholar] [CrossRef] [PubMed]
- Dart, S.; Kron, P.; Mable, B.K. Characterizing Polyploidy in Arabidopsis lyrata Using Chromosome Counts and Flow Cytometry. Can. J. Bot. 2011, 82, 185–197. [Google Scholar] [CrossRef]
- Wolf, D.E.; Steets, J.A.; Houliston, G.J.; Takebayashi, N. Genome Size Variation and Evolution in Allotetraploid Arabidopsis kamchatica and Its Parents, Arabidopsis lyrata and Arabidopsis halleri. AoB Plants 2014, 6, plu025. [Google Scholar] [CrossRef]
- Loureiro, J.; Castro, M.; de Oliveira, J.C.; Mota, L.; Torices, R. Genome Size Variation and Polyploidy Incidence in the Alpine Flora from Spain. An. Jardín Botánico Madr. 2013, 70, 39–47. [Google Scholar] [CrossRef]
- Suda, J.; Kyncl, T.; Freiová, R. Nuclear DNA Amounts in Macaronesian Angiosperms. Ann. Bot. 2003, 92, 153. [Google Scholar] [CrossRef]
- Bou Dagher-Kharrat, M.; Abdel-Samad, N.; Douaihy, B.; Bourge, M.; Fridlender, A.; Siljak-Yakovlev, S.; Brown, S.C. Nuclear DNA C-Values for Biodiversity Screening: Case of the Lebanese Flora. Plant Biosyst. Int. J. Deal. All Asp. Plant Biol. 2013, 147, 1228–1237. [Google Scholar] [CrossRef]
- Pustahija, F.; Brown, S.C.; Bogunić, F.; Bašić, N.; Muratović, E.; Ollier, S.; Hidalgo, O.; Bourge, M.; Stevanović, V.; Siljak-Yakovlev, S. Small Genomes Dominate in Plants Growing on Serpentine Soils in West Balkans, an Exhaustive Study of 8 Habitats Covering 308 Taxa. Plant Soil 2013, 373, 427–453. [Google Scholar] [CrossRef]
- Vallès, J.; Bašić, N.; Bogunić, F.; Bourge, M.; Brown, S.C.; Garnatje, T.; Hajrudinović, A.; Muratović, E.; Pustahija, F.; Šolić, M.E.; et al. Contribution to Plant Genome Size Knowledge: First Assessments in Five Genera and 30 Species of Angiosperms from Western Balkans. Bot. Serb. 2014, 38, 25–34. Available online: https://botanicaserbica.bio.bg.ac.rs/arhiva/pdf/2014_38_1_595_full.pdf (accessed on 29 July 2025).
- Kenton, A.Y. (Birkbeck College, University of London, London, UK); Owens, S.J. (Royal Botanic Gardens, Kew, Richmond, London, UK). Personal communication, 1988.
- Hanson, L.; Leitch, I.J.; Bennett, M.D. Unpublished data from the Jodrell Laboratory, Royal Botanic Gardens, Kew.
- Kubešová, M.; Moravcová, L.; Jarošik, V.; Pyšek, P. Naturalized Plants Have Smaller Genomes than Their Non-Invading Relatives: A Flow Cytometric Analysis of the Czech Alien Flora/Naturalizované Rostliny Mají Menší Genom Než Neinvadující Druhy: Cytometrická Analýza Nepůvodních Druhů České Květeny. Preslia 2010, 82, 81–96. Available online: https://www.preslia.cz/article/225 (accessed on 29 July 2025).
- Marhold, K.; Kudoh, H.; Pak, J.H.; Watanabe, K.; Španiel, S.; Lihová, J. Cytotype Diversity and Genome Size Variation in Eastern Asian Polyploid Cardamine (Brassicaceae) Species. Ann. Bot. 2010, 105, 249–264. [Google Scholar] [CrossRef] [PubMed]
- Mowforth, M.A.; Grime, J.P. Intra-Population Variation in Nuclear DNA Amount, Cell Size and Growth Rate in Poa annua L. Funct. Ecol. 1989, 3, 289. [Google Scholar] [CrossRef]
- Lihová, J.; Shimizu, K.K.; Marhold, K. Allopolyploid Origin of Cardamine asarifolia (Brassicaceae): Incongruence between Plastid and Nuclear Ribosomal DNA Sequences Solved by a Single-Copy Nuclear Gene. Mol. Phylogenet. Evol. 2006, 39, 759–786. [Google Scholar] [CrossRef]
- Sonnier, G. (Centre National de la Recherche Scientifique, Gif-sur-Yvette, Île-de-France, France). Personal communication, 2016.
- Band, S.R. (University of Reading, Reading, Berkshire, UK). Personal communication, 1984.
- Bai, C.; Alverson, W.S.; Follansbee, A.; Waller, D.M. New Reports of Nuclear DNA Content for 407 Vascular Plant Taxa from the United States. Ann. Bot. 2012, 110, 1623–1629. [Google Scholar] [CrossRef]
- Doležel, J.; Sgorbati, S.; Lucretti, S. Comparison of Three DNA Fluorochromes for Flow Cytometric Estimation of Nuclear DNA Content in Plants. Physiol. Plant 1992, 85, 625–631. [Google Scholar] [CrossRef]
- Olszewska, M.J.; Osiecka, R. The Relationship between 2 C DNA Content, Life Cycle Type, Systematic Position and the Dynamics of DNA Endoreplication in Parenchyma Nuclei during Growth and Differentiation of Roots in Some Dicotyledonous Herbaceous Species. Biochem. Physiol. Pflanz. 1983, 178, 581–599. [Google Scholar] [CrossRef]
- Arumuganathan, K.; Earle, E.D. Nuclear DNA Content of Some Important Plant Species. Plant Mol. Biol. Rep. 1991, 9, 208–218, Erratum in Plant Mol. Biol. Rep. 1991, 9, 415. https://doi.org/10.1007/BF02672016. [Google Scholar] [CrossRef]
- Nagpal, R.; Raina, S.N.; Sodhi, Y.S.; Mukhopadhyay, A.; Arumugam, N.; Pradhan, A.K.; Pental, D. Transfer of Brassica tournefortii (TT) Genes to Allotetraploid Oilseed Brassica Species (B. juncea AABB, B. napus AACC, B. carinata BBCC): Homoeologous Pairing Is More Pronounced in the Three-Genome Hybrids (TACC, TBAA, TCAA, TCBB) as Compared to Allodiploids (TA, TB, TC). Theor. Appl. Genet. 1996, 92, 566–571. [Google Scholar] [CrossRef]
- Bennett, M.D.; Smith, J.B. Nuclear DNA Amounts in Angiosperms. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1976, 274, 227–274. [Google Scholar] [CrossRef]
- Verma, S.C.; Rees, H. Nuclear DNA and the Evolution of Allotetraploid Brassicae. Heredity 1974, 33, 61–68. [Google Scholar] [CrossRef]
- Ingle, J.; Timmis, J.N.; Sinclair, J. The Relationship between Satellite Deoxyribonucleic Acid, Ribosomal Ribonucleic Acid Gene Redundancy, and Genome Size in Plants. Plant Physiol. 1975, 55, 496–501. [Google Scholar] [CrossRef] [PubMed]
- Greilhuber, J. “Self-Tanning”—A New and Important Source of Stoichiometric Error in Cytophotometric Determination of Nuclear DNA Content in Plants. Plant Syst. Evol. 1988, 158, 87–96. [Google Scholar] [CrossRef]
- Benett, M.D.; Smith, J.B.; Heslop-Harrison, J.S. Nuclear DNA Amounts in Angiosperms. Proc. R. Soc. Lond. B Biol. Sci. 1982, 216, 179–199. [Google Scholar] [CrossRef]
- Barow, M.; Meister, A. Endopolyploidy in Seed Plants Is Differently Correlated to Systematics, Organ, Life Strategy and Genome Size. Plant Cell Environ. 2003, 26, 571–584. [Google Scholar] [CrossRef]
- Peer, W.A.; Mahmoudian, M.; Freeman, J.L.; Lahner, B.; Richards, E.L.; Reeves, R.D.; Murphy, A.S.; Salt, D.E. Assessment of Plants from the Brassicaceae Family as Genetic Models for the Study of Nickel and Zinc Hyperaccumulation. New Phytol. 2006, 172, 248–260. [Google Scholar] [CrossRef]
- Siljak-Yakovlev, S.; Pustahija, F.; Šolić, E.M.; Bogunić, F.; Muratović, E.; Bašić, N.; Catrice, O.; Brown, S.C. Towards a Genome Size and Chromosome Number Database of Balkan Flora: C-Values in 343 Taxa with Novel Values for 242. Adv. Sci. Lett. 2010, 3, 190–213. [Google Scholar] [CrossRef]
- Peer, W.A.; Mamoudian, M.; Lahner, B.; Reeves, R.D.; Murphy, A.S.; Salt, D.E. Identifying Model Metal Hyperaccumulating Plants: Germplasm Analysis of 20 Brassicaceae Accessions from a Wide Geographical Area. New Phytol. 2003, 159, 421–430. [Google Scholar] [CrossRef]
- Krisai, R.; Greilhuber, J. Cochlearia pyrenaica DC., Das Löffelkraut, in Oberösterreich (Mit Anmerkungen Zur Karyologie Und Zur Genomgröße). Beitr. Naturk. Oberösterreichs 1997, 5, 151–160. [Google Scholar]
- Kochjarová, J.; Valachovič, M.; Bureš, P.; Mráz, P. The Genus Cochlearia L. (Brassicaceae) in the Eastern Carpathians and Adjacent Area. Bot. J. Linn. Soc. 2006, 151, 355–364. [Google Scholar] [CrossRef]
- Zonneveld, B.J.M.; Leitch, I.J.; Bennett, M.D. First Nuclear DNA Amounts in More than 300 Angiosperms. Ann. Bot. 2005, 96, 229. [Google Scholar] [CrossRef]
- Greilhuber, J.; Obermayer, R. Cryptopolyploidy in Bunias (Brassicaceae) Revisited—A Flow-Cytometric and Densitometric Study. Plant Syst. Evol. 1999, 218, 1–4. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Regvar, M.; Bočaj, V.; Mravlje, J.; Pelko, T.; Likar, M.; Pongrac, P.; Vogel-Mikuš, K. Towards Understanding the Factors Shaping the Composition and Function of the Noccaea Microbiome in Metal-Contaminated Environments. Int. J. Mol. Sci. 2025, 26, 8748. https://doi.org/10.3390/ijms26178748
Regvar M, Bočaj V, Mravlje J, Pelko T, Likar M, Pongrac P, Vogel-Mikuš K. Towards Understanding the Factors Shaping the Composition and Function of the Noccaea Microbiome in Metal-Contaminated Environments. International Journal of Molecular Sciences. 2025; 26(17):8748. https://doi.org/10.3390/ijms26178748
Chicago/Turabian StyleRegvar, Marjana, Valentina Bočaj, Jure Mravlje, Teja Pelko, Matevž Likar, Paula Pongrac, and Katarina Vogel-Mikuš. 2025. "Towards Understanding the Factors Shaping the Composition and Function of the Noccaea Microbiome in Metal-Contaminated Environments" International Journal of Molecular Sciences 26, no. 17: 8748. https://doi.org/10.3390/ijms26178748
APA StyleRegvar, M., Bočaj, V., Mravlje, J., Pelko, T., Likar, M., Pongrac, P., & Vogel-Mikuš, K. (2025). Towards Understanding the Factors Shaping the Composition and Function of the Noccaea Microbiome in Metal-Contaminated Environments. International Journal of Molecular Sciences, 26(17), 8748. https://doi.org/10.3390/ijms26178748