Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = co-adjoint orbits

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
57 pages, 10943 KB  
Review
Jean-Marie Souriau’s Symplectic Foliation Model of Sadi Carnot’s Thermodynamics
by Frédéric Barbaresco
Entropy 2025, 27(5), 509; https://doi.org/10.3390/e27050509 - 9 May 2025
Viewed by 1025
Abstract
The explanation of thermodynamics through geometric models was initiated by seminal figures such as Carnot, Gibbs, Duhem, Reeb, and Carathéodory. Only recently, however, has the symplectic foliation model, introduced within the domain of geometric statistical mechanics, provided a geometric definition of entropy as [...] Read more.
The explanation of thermodynamics through geometric models was initiated by seminal figures such as Carnot, Gibbs, Duhem, Reeb, and Carathéodory. Only recently, however, has the symplectic foliation model, introduced within the domain of geometric statistical mechanics, provided a geometric definition of entropy as an invariant Casimir function on symplectic leaves—specifically, the coadjoint orbits of the Lie group acting on the system, where these orbits are interpreted as level sets of entropy. We present a symplectic foliation interpretation of thermodynamics, based on Jean-Marie Souriau’s Lie group thermodynamics. This model offers a Lie algebra cohomological characterization of entropy, viewed as an invariant Casimir function in the coadjoint representation. The dual space of the Lie algebra is foliated into coadjoint orbits, which are identified with the level sets of entropy. Within the framework of thermodynamics, dynamics on symplectic leaves—described by the Poisson bracket—are associated with non-dissipative phenomena. Conversely, on the transversal Riemannian foliation (defined by the level sets of energy), the dynamics, characterized by the metric flow bracket, induce entropy production as transitions occur from one symplectic leaf to another. Full article
Show Figures

Figure 1

24 pages, 421 KB  
Article
Supersymmetric Integrable Hamiltonian Systems, Conformal Lie Superalgebras K(1, N = 1, 2, 3), and Their Factorized Semi-Supersymmetric Generalizations
by Anatolij K. Prykarpatski, Volodymyr M. Dilnyi, Petro Ya. Pukach and Myroslava I. Vovk
Symmetry 2024, 16(11), 1441; https://doi.org/10.3390/sym16111441 - 30 Oct 2024
Viewed by 801
Abstract
We successively reanalyzed modern Lie-algebraic approaches lying in the background of effective constructions of integrable super-Hamiltonian systems on functional N=1,2,3- supermanifolds, possessing rich supersymmetries and endowed with suitably related compatible Poisson structures. As an application, we [...] Read more.
We successively reanalyzed modern Lie-algebraic approaches lying in the background of effective constructions of integrable super-Hamiltonian systems on functional N=1,2,3- supermanifolds, possessing rich supersymmetries and endowed with suitably related compatible Poisson structures. As an application, we describe countable hierarchies of new nonlinear Lax-type integrable N=2,3-semi-supersymmetric dynamical systems and constructed their central extended superconformal Lie superalgebra K(1|3) and its finite-dimensional coadjoint orbits, generated by the related Casimir functionals. Moreover, we generalized these results subject to the suitably factorized super-pseudo-differential Lax-type representations and present the related super-Poisson brackets and compatible suitably factorized Hamiltonian superflows. As an interesting point, we succeeded in the algorithmic construction of integrable super-Hamiltonian factorized systems generated by Casimir invariants of the centrally extended super-pseudo-differential operator Lie superalgebras on the N=1,2,3-supercircle. Full article
(This article belongs to the Section Mathematics)
10 pages, 269 KB  
Article
A Momentum Map for the Heisenberg Group
by Richard Cushman
Symmetry 2024, 16(8), 1054; https://doi.org/10.3390/sym16081054 - 15 Aug 2024
Viewed by 818
Abstract
We look at a momentum map associated with the Heisenberg group. We show that the cocycle associated with its momentum mapping is the value of a modulus of an associated coadjoint orbit. Full article
(This article belongs to the Section Mathematics)
20 pages, 368 KB  
Article
On Some Aspects of the Courant-Type Algebroids, the Related Coadjoint Orbits and Integrable Systems
by Anatolij K. Prykarpatski and Victor A. Bovdi
Symmetry 2024, 16(1), 76; https://doi.org/10.3390/sym16010076 - 5 Jan 2024
Viewed by 1488
Abstract
Poisson structures related to affine Courant-type algebroids are analyzed, including those related with cotangent bundles on Lie-group manifolds. Special attention is paid to Courant-type algebroids and their related R structures generated by suitably defined tensor mappings. Lie–Poisson brackets that are invariant with respect [...] Read more.
Poisson structures related to affine Courant-type algebroids are analyzed, including those related with cotangent bundles on Lie-group manifolds. Special attention is paid to Courant-type algebroids and their related R structures generated by suitably defined tensor mappings. Lie–Poisson brackets that are invariant with respect to the coadjoint action of the loop diffeomorphism group are created, and the related Courant-type algebroids are described. The corresponding integrable Hamiltonian flows generated by Casimir functionals and generalizing so-called heavenly-type differential systems describing diverse geometric structures of conformal type in finite dimensional Riemannian manifolds are described. Full article
(This article belongs to the Special Issue Symmetry in Differential Geometry and Geometric Analysis)
18 pages, 340 KB  
Article
On the Quantum Deformations of Associative Sato Grassmannian Algebras and the Related Matrix Problems
by Alexander A. Balinsky, Victor A. Bovdi and Anatolij K. Prykarpatski
Symmetry 2024, 16(1), 54; https://doi.org/10.3390/sym16010054 - 30 Dec 2023
Viewed by 1390
Abstract
We analyze the Lie algebraic structures related to the quantum deformation of the Sato Grassmannian, reducing the problem to studying co-adjoint orbits of the affine Lie subalgebra of the specially constructed loop diffeomorphism group of tori. The constructed countable hierarchy of linear matrix [...] Read more.
We analyze the Lie algebraic structures related to the quantum deformation of the Sato Grassmannian, reducing the problem to studying co-adjoint orbits of the affine Lie subalgebra of the specially constructed loop diffeomorphism group of tori. The constructed countable hierarchy of linear matrix problems made it possible, in part, to describe some kinds of Frobenius manifolds within the Dubrovin-type reformulation of the well-known WDVV associativity equations, previously derived in topological field theory. In particular, we state that these equations are equivalent to some bi-Hamiltonian flows on a smooth functional submanifold with respect to two compatible Poisson structures, generating a countable hierarchy of commuting to each other’s hydrodynamic flows. We also studied the inverse problem aspects of the quantum Grassmannian deformation Lie algebraic structures, related with the well-known countable hierarchy of the higher nonlinear Schrödinger-type completely integrable evolution flows. Full article
44 pages, 525 KB  
Article
Integrable Systems: In the Footprints of the Greats
by Velimir Jurdjevic
Mathematics 2023, 11(4), 1063; https://doi.org/10.3390/math11041063 - 20 Feb 2023
Cited by 3 | Viewed by 2142
Abstract
In his 1842 lectures on dynamics C.G. Jacobi summarized difficulties with differential equations by saying that the main problem in the integration of differential equations appears in the choice of right variables. Since there is no general rule for finding the right choice, [...] Read more.
In his 1842 lectures on dynamics C.G. Jacobi summarized difficulties with differential equations by saying that the main problem in the integration of differential equations appears in the choice of right variables. Since there is no general rule for finding the right choice, it is better to introduce special variables first, and then investigate the problems that naturally lend themselves to these variables. This paper follows Jacobi’s prophetic observations by introducing certain “meta” variational problems on semi-simple reductive groups G having a compact subgroup K. We then use the Maximum Principle of optimal control to generate the Hamiltonians whose solutions project onto the extremal curves of these problems. We show that there is a particular sub-class of these Hamiltonians that admit a spectral representation on the Lie algebra of G. As a consequence, the spectral invariants associated with the spectral curve produce a large number of integrals of motion, all in involution with each other, that often meet the Liouville complete integrability criteria. We then show that the classical integrals of motion associated, with the Kowalewski top, the two-body problem of Kepler, and Jacobi’s geodesic problem on the ellipsoid can be all derived from the aforementioned Hamiltonian systems. We also introduce a rolling geodesic problem that admits a spectral representation on symmetric Riemannian spaces and we then show the relevance of the corresponding integrals on the nature of the curves whose elastic energy is minimal. Full article
(This article belongs to the Special Issue Completely Integrable Equations: Algebraic Aspects and Applications)
13 pages, 340 KB  
Article
New Exact Solutions Describing Quantum Asymmetric Top
by Alexander Breev and Dmitry Gitman
Symmetry 2023, 15(2), 503; https://doi.org/10.3390/sym15020503 - 14 Feb 2023
Cited by 1 | Viewed by 1841
Abstract
In this work, using the noncommutative integration method of linear differential equations, we obtain a complete set of solutions to the Schrodinger equation for a quantum asymmetric top in Euler angles. It is shown that the noncommutative reduction of the Schrodinger equation leads [...] Read more.
In this work, using the noncommutative integration method of linear differential equations, we obtain a complete set of solutions to the Schrodinger equation for a quantum asymmetric top in Euler angles. It is shown that the noncommutative reduction of the Schrodinger equation leads to the Lame equation. The resulting set of solutions is determined by the Lame polynomials in a complex parameter, which is related to the geometry of the orbits of the coadjoint representation of the rotation group. The spectrum of an asymmetric top is obtained from the condition that the solutions are invariant with respect to a special irreducible λ-representation of the rotation group. Full article
(This article belongs to the Section Physics)
11 pages, 309 KB  
Article
Harmonic Oscillator Coherent States from the Standpoint of Orbit Theory
by Alexander Shapovalov and Alexander Breev
Symmetry 2023, 15(2), 282; https://doi.org/10.3390/sym15020282 - 19 Jan 2023
Cited by 3 | Viewed by 1637
Abstract
We study the known coherent states of a quantum harmonic oscillator from the standpoint of the originally developed noncommutative integration method for linear partial differential equations. The application of the method is based on the symmetry properties of the Schrödinger equation and on [...] Read more.
We study the known coherent states of a quantum harmonic oscillator from the standpoint of the originally developed noncommutative integration method for linear partial differential equations. The application of the method is based on the symmetry properties of the Schrödinger equation and on the orbit geometry of the coadjoint representation of Lie groups. We have shown that analogs of coherent states constructed by the noncommutative integration can be expressed in terms of the solution to a system of differential equations on the Lie group of the oscillatory Lie algebra. The solutions constructed are directly related to irreducible representation of the Lie algebra on the Hilbert space functions on the Lagrangian submanifold to the orbit of the coadjoint representation. Full article
(This article belongs to the Special Issue Symmetry, Algebraic Methods and Applications)
7 pages, 280 KB  
Proceeding Paper
Homogeneous Symplectic Spaces and Central Extensions
by Andrew Beckett
Phys. Sci. Forum 2022, 5(1), 24; https://doi.org/10.3390/psf2022005024 - 12 Dec 2022
Cited by 1 | Viewed by 1874
Abstract
We summarise recent work on the classical result of Kirillov that any simply connected homogeneous symplectic space of a connected group G is a hamiltonian G^-space for a one-dimensional central extension G^ of G, and is thus (by a [...] Read more.
We summarise recent work on the classical result of Kirillov that any simply connected homogeneous symplectic space of a connected group G is a hamiltonian G^-space for a one-dimensional central extension G^ of G, and is thus (by a result of Kostant a cover of a coadjoint orbit of G^. We emphasise that existing proofs in the literature assume that G is simply connected and that this assumption can be removed by application of a theorem of Neeb. We also interpret Neeb’s theorem as relating the integrability of one-dimensional central extensions of Lie algebras to the integrability of an associated Chevalley–Eilenberg 2-cocycle. Full article
36 pages, 3506 KB  
Article
Symplectic Foliation Structures of Non-Equilibrium Thermodynamics as Dissipation Model: Application to Metriplectic Nonlinear Lindblad Quantum Master Equation
by Frédéric Barbaresco
Entropy 2022, 24(11), 1626; https://doi.org/10.3390/e24111626 - 9 Nov 2022
Cited by 6 | Viewed by 3305
Abstract
The idea of a canonical ensemble from Gibbs has been extended by Jean-Marie Souriau for a symplectic manifold where a Lie group has a Hamiltonian action. A novel symplectic thermodynamics and information geometry known as “Lie group thermodynamics” then explains foliation structures of [...] Read more.
The idea of a canonical ensemble from Gibbs has been extended by Jean-Marie Souriau for a symplectic manifold where a Lie group has a Hamiltonian action. A novel symplectic thermodynamics and information geometry known as “Lie group thermodynamics” then explains foliation structures of thermodynamics. We then infer a geometric structure for heat equation from this archetypal model, and we have discovered a pure geometric structure of entropy, which characterizes entropy in coadjoint representation as an invariant Casimir function. The coadjoint orbits form the level sets on the entropy. By using the KKS 2-form in the affine case via Souriau’s cocycle, the method also enables the Fisher metric from information geometry for Lie groups. The fact that transverse dynamics to these symplectic leaves is dissipative, whilst dynamics along these symplectic leaves characterize non-dissipative phenomenon, can be used to interpret this Lie group thermodynamics within the context of an open system out of thermodynamics equilibrium. In the following section, we will discuss the dissipative symplectic model of heat and information through the Poisson transverse structure to the symplectic leaf of coadjoint orbits, which is based on the metriplectic bracket, which guarantees conservation of energy and non-decrease of entropy. Baptiste Coquinot recently developed a new foundation theory for dissipative brackets by taking a broad perspective from non-equilibrium thermodynamics. He did this by first considering more natural variables for building the bracket used in metriplectic flow and then by presenting a methodical approach to the development of the theory. By deriving a generic dissipative bracket from fundamental thermodynamic first principles, Baptiste Coquinot demonstrates that brackets for the dissipative part are entirely natural, just as Poisson brackets for the non-dissipative part are canonical for Hamiltonian dynamics. We shall investigate how the theory of dissipative brackets introduced by Paul Dirac for limited Hamiltonian systems relates to transverse structure. We shall investigate an alternative method to the metriplectic method based on Michel Saint Germain’s PhD research on the transverse Poisson structure. We will examine an alternative method to the metriplectic method based on the transverse Poisson structure, which Michel Saint-Germain studied for his PhD and was motivated by the key works of Fokko du Cloux. In continuation of Saint-Germain’s works, Hervé Sabourin highlights the, for transverse Poisson structures, polynomial nature to nilpotent adjoint orbits and demonstrated that the Casimir functions of the transverse Poisson structure that result from restriction to the Lie–Poisson structure transverse slice are Casimir functions independent of the transverse Poisson structure. He also demonstrated that, on the transverse slice, two polynomial Poisson structures to the symplectic leaf appear that have Casimir functions. The dissipative equation introduced by Lindblad, from the Hamiltonian Liouville equation operating on the quantum density matrix, will be applied to illustrate these previous models. For the Lindblad operator, the dissipative component has been described as the relative entropy gradient and the maximum entropy principle by Öttinger. It has been observed then that the Lindblad equation is a linear approximation of the metriplectic equation. Full article
(This article belongs to the Special Issue Geometric Structure of Thermodynamics: Theory and Applications)
Show Figures

Figure 1

13 pages, 308 KB  
Article
Coadjoint Orbits of the Poincaré Group for Discrete-Spin Particles in Any Dimension
by Ismael Ahlouche Lahlali, Nicolas Boulanger and Andrea Campoleoni
Symmetry 2021, 13(9), 1749; https://doi.org/10.3390/sym13091749 - 19 Sep 2021
Cited by 5 | Viewed by 2161
Abstract
Considering the Poincaré group ISO(d1,1) in any dimension d>3, we characterise the coadjoint orbits that are associated with massive and massless particles of discrete spin. We also comment on how our [...] Read more.
Considering the Poincaré group ISO(d1,1) in any dimension d>3, we characterise the coadjoint orbits that are associated with massive and massless particles of discrete spin. We also comment on how our analysis extends to the case of continuous spin. Full article
(This article belongs to the Special Issue Manifest and Hidden Symmetries in Field and String Theories)
9 pages, 281 KB  
Article
On Symmetry Properties of Frobenius Manifolds and Related Lie-Algebraic Structures
by Anatolij K. Prykarpatski and Alexander A. Balinsky
Symmetry 2021, 13(6), 979; https://doi.org/10.3390/sym13060979 - 31 May 2021
Cited by 2 | Viewed by 2485
Abstract
The aim of this paper is to develop an algebraically feasible approach to solutions of the oriented associativity equations. Our approach was based on a modification of the Adler–Kostant–Symes integrability scheme and applied to the co-adjoint orbits of the diffeomorphism loop group of [...] Read more.
The aim of this paper is to develop an algebraically feasible approach to solutions of the oriented associativity equations. Our approach was based on a modification of the Adler–Kostant–Symes integrability scheme and applied to the co-adjoint orbits of the diffeomorphism loop group of the circle. A new two-parametric hierarchy of commuting to each other Monge type Hamiltonian vector fields is constructed. This hierarchy, jointly with a specially constructed reciprocal transformation, produces a Frobenius manifold potential function in terms of solutions of these Monge type Hamiltonian systems. Full article
(This article belongs to the Special Issue Symmetry of Hamiltonian Systems: Classical and Quantum Aspects)
10 pages, 746 KB  
Article
Relativistic Symmetries and Hamiltonian Formalism
by Piotr Kosiński and Paweł Maślanka
Symmetry 2020, 12(11), 1810; https://doi.org/10.3390/sym12111810 - 1 Nov 2020
Cited by 4 | Viewed by 2382
Abstract
The relativistic (Poincaré and conformal) symmetries of classical elementary systems are briefly discussed and reviewed. The main framework is provided by the Hamiltonian formalism for dynamical systems exhibiting symmetry described by a given Lie group. The construction of phase space and canonical variables [...] Read more.
The relativistic (Poincaré and conformal) symmetries of classical elementary systems are briefly discussed and reviewed. The main framework is provided by the Hamiltonian formalism for dynamical systems exhibiting symmetry described by a given Lie group. The construction of phase space and canonical variables is given using the tools from the coadjoint orbits method. It is indicated how the “exotic” Lorentz transformation properties for particle coordinates can be derived; they are shown to be the natural consequence of the formalism. Full article
64 pages, 4369 KB  
Article
Lie Group Statistics and Lie Group Machine Learning Based on Souriau Lie Groups Thermodynamics & Koszul-Souriau-Fisher Metric: New Entropy Definition as Generalized Casimir Invariant Function in Coadjoint Representation
by Frédéric Barbaresco
Entropy 2020, 22(6), 642; https://doi.org/10.3390/e22060642 - 9 Jun 2020
Cited by 22 | Viewed by 8078
Abstract
In 1969, Jean-Marie Souriau introduced a “Lie Groups Thermodynamics” in Statistical Mechanics in the framework of Geometric Mechanics. This Souriau’s model considers the statistical mechanics of dynamic systems in their “space of evolution” associated to a homogeneous symplectic manifold by a Lagrange 2-form, [...] Read more.
In 1969, Jean-Marie Souriau introduced a “Lie Groups Thermodynamics” in Statistical Mechanics in the framework of Geometric Mechanics. This Souriau’s model considers the statistical mechanics of dynamic systems in their “space of evolution” associated to a homogeneous symplectic manifold by a Lagrange 2-form, and defines in case of non null cohomology (non equivariance of the coadjoint action on the moment map with appearance of an additional cocyle) a Gibbs density (of maximum entropy) that is covariant under the action of dynamic groups of physics (e.g., Galileo’s group in classical physics). Souriau Lie Group Thermodynamics was also addressed 30 years after Souriau by R.F. Streater in the framework of Quantum Physics by Information Geometry for some Lie algebras, but only in the case of null cohomology. Souriau method could then be applied on Lie groups to define a covariant maximum entropy density by Kirillov representation theory. We will illustrate this method for homogeneous Siegel domains and more especially for Poincaré unit disk by considering SU(1,1) group coadjoint orbit and by using its Souriau’s moment map. For this case, the coadjoint action on moment map is equivariant. For non-null cohomology, we give the case of Lie group SE(2). Finally, we will propose a new geometric definition of Entropy that could be built as a generalized Casimir invariant function in coadjoint representation, and Massieu characteristic function, dual of Entropy by Legendre transform, as a generalized Casimir invariant function in adjoint representation, where Souriau cocycle is a measure of the lack of equivariance of the moment mapping. Full article
Show Figures

Figure 1

52 pages, 578 KB  
Article
Lie Group Cohomology and (Multi)Symplectic Integrators: New Geometric Tools for Lie Group Machine Learning Based on Souriau Geometric Statistical Mechanics
by Frédéric Barbaresco and François Gay-Balmaz
Entropy 2020, 22(5), 498; https://doi.org/10.3390/e22050498 - 25 Apr 2020
Cited by 25 | Viewed by 6187
Abstract
In this paper, we describe and exploit a geometric framework for Gibbs probability densities and the associated concepts in statistical mechanics, which unifies several earlier works on the subject, including Souriau’s symplectic model of statistical mechanics, its polysymplectic extension, Koszul model, and approaches [...] Read more.
In this paper, we describe and exploit a geometric framework for Gibbs probability densities and the associated concepts in statistical mechanics, which unifies several earlier works on the subject, including Souriau’s symplectic model of statistical mechanics, its polysymplectic extension, Koszul model, and approaches developed in quantum information geometry. We emphasize the role of equivariance with respect to Lie group actions and the role of several concepts from geometric mechanics, such as momentum maps, Casimir functions, coadjoint orbits, and Lie-Poisson brackets with cocycles, as unifying structures appearing in various applications of this framework to information geometry and machine learning. For instance, we discuss the expression of the Fisher metric in presence of equivariance and we exploit the property of the entropy of the Souriau model as a Casimir function to apply a geometric model for energy preserving entropy production. We illustrate this framework with several examples including multivariate Gaussian probability densities, and the Bogoliubov-Kubo-Mori metric as a quantum version of the Fisher metric for quantum information on coadjoint orbits. We exploit this geometric setting and Lie group equivariance to present symplectic and multisymplectic variational Lie group integration schemes for some of the equations associated with Souriau symplectic and polysymplectic models, such as the Lie-Poisson equation with cocycle. Full article
Back to TopTop