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1. The Introductory Setting

Let us start with an interesting mathematical structure, suggested in [1–5], on the
space of smooth functions: consider a real-valued C∞-smooth differentiable Frobenius
manifold potential function F ∈ C∞(Rn;R) and denote their partial derivatives as

Fij(t) :=
∂2F(t)
∂ti∂tj

, Fijk(t) :=
∂3F(t)

∂ti∂tj∂tk
(1)

for i, j, and k = 1, n, n ∈ N. These partial derivatives are symmetrical, with respect
to permutations of their indices. Let us assume additionally that the symmetric matrix
η := {ηij(t) := Fij1(t) : i, j = 1, n} is non-degenerate, and call it an induced metric on the
Rn. In addition,

Fijk(t) = ∑
s∈ 1,n

ηis(t)Cs
ij(t), (2)

where, by definition,

Cs
ij(t) := ∑

k∈ 1,n

Fijk(t)ηks(t), ∑
k∈ 1,n

ηsk(t)ηkj(t) = δs
j (3)

for all i, j, and s ∈ N. Assume now that the set Rn represents a local coordinate frame [6,7]
of an a finite-dimensional manifold M. Then its tangent space Tt(M) at a point t ∈ M is
described by means of the local vector field system {∂/∂ti ∈ Tt(M) : i = 1, n}, which a
priori commute to each other: [∂/∂ti, ∂/∂tj] = 0 for all i, j = 1, n. Let us now assume that
the manifold M is a Frobenius manifold [8–10], i.e., its tangent space Tt(M) at any point
t ∈ M forms an associative Frobenius algebra FM with respect to some multiplication “◦”
on FM :
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∂/∂ti ◦ ∂/∂tj := ∑s∈ 1,n Cs
ij(t)∂/∂ts, (∂/∂ti ◦ ∂/∂tj) ◦ ∂/∂ts = ∂/∂ti ◦ (∂/∂tj ◦ ∂/∂ts) (4)

for any i, j and s = 1, n with the structure constants defined by the expression (3). De-
fine now a set of matrices Ci(t) := {Ck

ij(t) = Ck
ji(t) : j, k ∈ 1, n}, i = 1, n. Then, as it

easily follows from (4), the structure constants (3) should satisfy the following additional
constraints:

[Ci(t), Cj(t)] = 0, ∂Ci(t)/∂tj = ∂Cj(t)/∂ti (5)

for any t ∈ M and all i, j = 1, n. (5) are called the Witten–Dijkgraaf–Verlinde–Verlinde, or
oriented associativity WDVV equations. These equations were first investigated in [11–13]
for problems related with topological and string quantum field theory of elementary
particles. A nice introduction into the topic can be found in B. Dubrovin Lecture Notes [2].
Lie-algebraic aspects of these equations and related integrability properties can be found
in recent works [14,15].

The notion of a Frobenius manifold was first axiomatized and thoroughly studied by
B. Dubrovin [2–5] in the early nineties, and plays a central role in mirror field theory sym-
metry [16–18], theory of unfolding spaces of singularities [19], quantization theory [20,21],
quantum cohomology [8], and integrability theory [1,19,22–31] of dispersion-less many-
dimensional systems.

A full Frobenius structure on M consists of the data (◦, e, η, E). Here ◦ : T(M) ⊗S
T(M) → T(M) is an associative and commutative multiplication on the tangent sheaf,
so that T(M) becomes a sheaf of commutative algebras over the ring R{t} of conver-
gent series with identity e ∈ T(M), η is a metric on M (non-degenerate quadratic form
T(M)⊗S T(M)), and E is a so called Euler vector field. These structures are connected by
various constraints and compatibility conditions, and are presented in [2,3] and [32,33].
For example, the metric η must be flat and “◦”–invariant, i.e., 〈a|b ◦ c〉η = 〈a ◦ b|c〉η for the
metric 〈·|·〉η on M and any a, b, and c ∈ T(M). Various weaker versions of the Frobenius
structure are interesting in themselves and also appear in [19–21] in different contexts.

Let us also mention an additional notion of a unital Frobenius manifold FM, introduced
in [10] and further studied in [9]. This structure consists of an associative and commutative
multiplication “◦” on the tangent sheaf as above, satisfying the following properties:
10) a flat structure T(M) on M subject to a flat connection dω : Γ(Λ(M) ⊗ T(M)) →
Γ(Λ(M)⊗ T(M)), dωdω = 0, is compatible with a multiplication “◦”, if in a neighborhood
of any point there exists a vector field C ∈ Γ(T(M)), such that for arbitrary local flat vector
fields X, Y ∈ Γ(T(M)) one has

X ◦Y = [X, [Y, C]], (6)

where C ∈ Γ(T(M)) is called a local vector potential for ◦; 20) T(M) is called compatible
with (◦, e), e ∈ Γ(T(M)) is an identity element, if 10) holds and moreover, the identity
element e := ∂/∂t1 is flat, that is the corresponding covariant derivative ∇ω

Xe = 0 for any
X ∈ Γ(T(M)). From (6) one easily ensues the relationships (5), where

Ck
ij(t) = ∂/∂ti∂/∂tjCk(t), ∂/∂t1 ◦ ∂/∂ti = ∂/∂ti, (7)

for any i, j, and k = 1, n and t ∈ M.
As a very interesting example of the above construction can be obtained for the special

case n = 3. We can take into account a reduction of the commuting matrices Cj ∈ End
E3, j = 1, 3, presented in [1–3]. Namely, assume that a smooth Frobenius manifold potential
function F ∈ C∞(Rn;R) is representable as

F(t) =
1
2

t2
1t3 +

1
2

t1t2
2 + f (t1, t2, t3), (8)
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where a smooth mapping f : R3 → R satisfies, following from (4) in the form (∂/∂t2 ◦
∂/∂t2) ◦ ∂/∂t3 = ∂/∂t2 ◦ (∂/∂t2 ◦ ∂/∂t3), ∂/∂t1 ◦ ∂/∂tj = ∂/∂tj, j = 1, 3, such a partial
differential equation:

f 2
t2t2t3

− ft3t3t3 − ft2t2t2 ft2t3t3 = 0 (9)

for any (t1, t2, t3) ∈ R3. In particular, as it was shown by B. Dubrovin and
Y. Manin [2,3,32,33], the Equation (9) allows the following system of compatible (for any
parameter p ∈ C\{0}) linear differential equations:

∂x
∂t1

=
1
p

C1x,
∂x
∂t2

=
1
p

C2x,
∂x
∂t3

=
1
p

C3x (10)

on vectors x := (x1, x2, x3) ∈ E3, determined by matrices

C1 =

 1 0 0
0 1 0
0 0 1

, C2 =

 0 b c
1 a b
0 1 0

, C3 =

 0 c b2 − ac
0 b c
1 0 0

, (11)

where a := ft2t2t2 , b := ft2t2t3 , c := ft2t3t3 and generating the corresponding loop D̃i f f (R3)-
group diffeomorphisms. It is easy also to check that matrices (11) satisfy the matrix
Equation (5), that is

[C2, C3] = 0 = [C1, Cj], (12)

∂C3/∂t2 = ∂C2/∂t3, [C2, C3] = 0 = ∂Cj/∂t1,

for t ∈ M, j = 1, 3. An effective Lie-algebraic analysis of the Dubrovin–Manin linear
system (10) was recently presented in [14,15].

In the present work, based on a modification of the Adler–Kostant–Symes integrability
scheme, applied to the co-adjoint orbits of the loop diffeomorphism group of circle, a
new two-parametric hierarchy of commuting to each other Monge type Hamiltonian
vector fields

ut1 = ux, vt1 = vx, ut2 = −(u2 + 2v)x, vt2 = (v2 − 2uv)x, (13)

and

ut3 = (
3
2

v2 − 6uv− u3)x, vt3 = (−v3 − 3u2v + 3uv2 − 3v2)x, ..., (14)

on a pair of smooth functions (u, v) ∈ C∞(M;R2) is constructed. Making use of a suitably
constructed reciprocal transformation, applied to this hierarchy, one gives rise to construct-
ing a Frobenius manifold potential function in terns of solutions to these Hamiltonian
systems. In particular, we succeeded in describing a class of Frobenius manifold structures,
generated by the non-linear Monge type evolution systems (13) and (14).

Proposition 1. Let a function F : M→ R be defined by the following differential relationships

∂2F(t1, t2, t3)

∂t1∂t2
= v,

∂2F(t1, t2, t3)

∂t1∂t3
= v(2u− v), (15)

∂2F(t1, t2, t3)

∂t1∂t4
= 2v[v2 + 3v− 3u(u− v)],

where the pair of functions (u, v) ∈ C∞(M;R2) satisfies the evolution flows (13) and (14). Then
this function F : M→ R is a potential function of the Frobenius manifold M, describing the related
Frobenius manifold algebraic structures.
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2. Frobenius Manifolds, the Related Compatible Co-Adjoint Loop Lie Algebra
and Integrability

Consider now the functional Lie algebra G ' (C∞(T∗(S1);R); {·, ·}), generated by
special Hamiltonian vector fields on the cotangent space T∗(S1) to the circle S1 and
endowed with the canonical Lie commutator

{a, b}(x; p) :=
∂

∂p
a(x; p)

∂

∂x
b(x; p)− ∂

∂p
b(x; p)

∂

∂x
a(x; λ) (16)

for any a, b ∈ G at point (x, p) ∈ T∗(S1). This algebra possesses the following symmetric
and non-degenerate bi-linear form:

(a|b) :=
∫
R

dp
∫
S1

dxa(x; p)b(x; p)dx, (17)

with respect to which G∗ ' G. Moreover, the Lie algebra is metrized with respect to the
bilinear form (17) as it is ad-invariant: (a|[b, c]) = ([a, b]|c) for any a, b, and c ∈ G.

Below, we will consider the case when the Lie algebra G allows splitting into the direct
sum of two sub-algebras: G = G+ ⊕ G−, where

G+ := {a(x; p) = ∑
j∈ N

aj(x)pj ∈ G} (18)

and
G− := {b(x; p) = ∑

0≤j�∞
bj(x)p−j ∈ G}, (19)

as p→ ∞, for which the following dual isomorphisms G∗+ ' G−, G∗− ' G+ hold.
Proceed now to describing via the classical Adler–Kostant–Symes scheme [34–39] com-

muting co-adjoint orbits of the Lie algebra G on the adjoint space G∗ ' G, generated by
smooth Casimir functionals h ∈ I(G∗) with respect to the classical Lie-Poisson bracket on
G∗ ' G :

{h(l), (l|a)} := (l|[∇h(l), a]) = 0 (20)

for l ∈ G∗ and arbitrary a ∈ G, where, by definition, d
dε h(l + εb)|ε=0 := (∇h(l)|b) for any

b ∈ G. Namely, the following Hamiltonian flows on G∗

∂l/∂tk = −ad∗
∇h(k)+ (l)

l = [∇h(k)+ (l), l] = [l,∇h(k)− (l)], (21)

where, by definition, ∇h(k)± (l) := ∇h(k)(l)|G± , are commuting to each other subject to the
corresponding evolution parameters tk ∈ R, k ∈ Z+, for arbitrary infinite hierarchy of
smooth functionally independent Casimir functionals h(k) ∈ I(G∗), k ∈ Z+. The latter is,
evidently, equivalent to the following Lax-Sato type vector field representations:

[∂/∂tk + ∇̃h(k)+ (l), ∂/∂tm + ∇̃h(m)
+ (l)] = 0 (22)

for all k, m ∈ Z+, where, by definition, any element a ∈ G via the expression ã(x; p) :=
∂a
∂p

∂
∂x −

∂a
∂x

∂
∂p ∈ Γ(T(x,p)(T∗(S1))) generates a canonical Hamiltonian vector field on T∗(S1)

at point (x; p) ∈ T∗(S1).
Take now an analytic at the momentum p ∈ R element l ∈ G∗ ' G in the following

asymptoptic as p→ ∞ form:

l(x; p) = p + u(x) + ∑
j∈ N

lj(x)p−j , (23)
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where the element p ∈ G∗ is considered here as an infinitesimal Lie algebra G character,
satisfying the conditions [G±, p] ∈ G±, that can be easily checked by direct computations.
The flows (21) are equivalent to the following co-adjoint action

∂l−/∂tk = −ad∗
∇h(k)+ (l)

l− = [∇h(k)+ (l), l−]− (24)

on G∗ ' G with respect to the evolution parameters tk ∈ R for all k ∈ Z+.
It is worthy to observe now that in the case of the Casimir functionals

h(k) := 1
k+1 (l

k|l), k ∈ Z+, the flows (24) can be equivalently rewritten as the Hamilto-
nian systems

∂l̃(x; p)/∂tk = [l̃k
+(x; p), l̃(x; p)] (25)

on G∗ for all k ∈ Z+, where, by definition, l̃(x; p) := ∂l
∂p

∂
∂x −

∂l
∂x

∂
∂p ∈ Γ(T(x,p)(T∗(S1))) at

point (x; p) ∈ T∗(S1). Using the Lie bracket (16), Equation (25) can be rewritten as the
Hamiltonian flows on the cotangent space T∗(S1)

∂l(x; p)/∂tk = {Hk(x, p), l(x; p)}, (26)

where, by definitions, Hk(x; p) = lk
+(x; p) for any k ∈ N, (x; p) ∈ T∗(S1).

Remark 1. It is worth also to remark here that we can pose the following vector field iso-
spectral problem

l̃(x; p)ψ(x; p|z) = z ψ(x; p|z), (27)

where ψ(·; z) ∈ C∞(T∗(S1);C) is the eigenfunction corresponding to an eigenvalue z ∈ C, which
is a priori invariant with respect to all vector fields (25). The latter naturally allows to apply to (27)
the modified inverse scattering transform technique developed in [40] and describe many classes
of symbols l ∈ G, generating important dispersion-less heavenly type [41] dynamical systems,
important for applications in modern mathematical physics.

As the point variables (x; p) ∈ T∗(S1) are constant parameters for the evolution
flows (25) on analytic at p = ∞ element l ∈ G∗, one can put, by definition, l(x; p) = z ∈ C
and resolve the functional equation l(x; p) = z with respect to the symbol parameter p ∈ R,
obtaining the following expression:

p := ξ(x; z) = z− u− ∑
j∈ N

ξ j(x)z−j (28)

with coefficients ξ j ∈ C∞(S1;R), j ∈ N, characterized by the following lemma.

Lemma 1. The element ξ ∈ C∞(S1 × R;C) satisfies the following hierarchy of compatible
evolution equations

∂

∂tk
ξ(x; z) =

∂Hk(x; z)
∂x

, (29)

where the elementsHk(x; z) := lk
+(x; ξ(x; z)), k ∈ N, are determined, using the following simple

algebraic expressions:
Hk(x; z) := Hk(x; ξ(x; z)), (30)

which hold jointly with compatibility relationships

∂Hs(x; z)
∂tk

=
∂Hk(x; z)

∂ts
(31)

for all k, s ∈ N.
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Proof. Making use of the Equation (25), one can easily calculate for any k ∈ N the evolution
equations

∂

∂tk

(
1

ξ(x; z)− p

)
:=
{

Hk(x; p),
(

1
ξ(x; z)− p

)}
,

giving rise to the following expressions

∂ξ(x; z)
∂tk

=
∂Hk(x; p)

∂x
+

∂Hk(x; p)
∂p

∣∣∣∣
p=ξ(x;z)

∂ξ(x; z)
∂x

= (32)

= dHk(x; ξ(x; z)/dx :=
∂Hk(x; z)

∂x
,

which hold for all k ∈ N and all z ∈ R. The compatibility relationships are obvious,
following from the commuting to each other flows (29).

Consider now the functional identity

1
ξ(x; z)− p

= ∑
k∈ N

z−k

k
∂

∂p
Hk(x; p), (33)

which is satisfied as z→ ∞, owing to the following residuum calculation:

1
2πi
∮ zk−1dz

ξ(x;z)−p = 1
2πi
∮ zk−1dz

[z−l(x;p)] [ξ(x;z)−p]
[z−l(x;p)]

=

= l(x;p)k−1

∂ξ(x;z)/∂z

∣∣∣
z→∞

= l(x; p)k−1∂l(x; p)/∂p
∣∣∣
z→∞

= 1
k

∂
∂p Hk(x; p)|+,

(34)

which holds for any k ∈ N. Consider now Hamiltonian functions Hk : T∗(S1)→ R, k ∈ N,
and consider the related canonical Hamiltonian vector fields on the cotangent space T∗(R) :

∂x
∂tk

=
∂Hk(x; p)

∂p
,

∂p
∂tk

= −∂Hk(x; p)
∂x

(35)

with respect to a point (x, p) ∈ T∗(S1) subject to the evolution parameter tk ∈ R, k ∈ N.
Taking into account the evolution flows (35) and the fact that ∂/∂t1 = ∂/∂x, the identity (33)
can be rewritten as

1
ξ(x; z)− p

= ∑
k∈ N

z−k

k
∂x
∂tk

= D(z)x(t),

from which and the relationships (31) one ensues the functional representation

ξ(x; z) = z− ∂F (t)
∂x

− D(z)
∂F (t)

∂x
(36)

for some smooth function F : M → R. Based now on Lemma 1 and relationships (33),
(34) one can state now the following proposition.

Proposition 2. Let F : M→ R be a potential function on the Frobenius manifold M, defined by
means of the set of asymptotic relationship

D(y)F(t) + D(y)D(z)F(t) = − ln(1− z/y)− ∑
k∈ N

y−k

k
Hk(x; z) (37)

where, by definition, the operator D(α) = ∑k∈ N
α−k

k
∂

∂tk
, α ∈ R, is the well known vertex operator.

Then the element (28) satisfies the asymptotic representation (36) for all x ∈ S1 as z→ ∞.
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Proof. The functional identity (37) easily reduces to the set of asymptotic expressions

Hk(x; z) = zk − ∂F/∂tk − D(z)∂F/∂tk (38)

for all k ∈ N as z→ ∞. Simultaneously one can observe that the expression (29) and (30)
reduce to the representation (36), proving the proposition.

This proposition is useful for constructing Frobenius manifolds, naturally related with
some generating function F : M→ R, satisfying the relationship (36). As an example, we
suggest the following element

l(x; p) = p + u(x) + ln
(

1 +
v(x)

p

)
∈ G∗, (39)

where u, v ∈ C∞(S1;R) are some functional parameters. The corresponding Casimir
functions h(t1) := (l|l)/2, h(t2) := (l2|l)/3 and h(t3) := (l3|l)/4, h(t4) := (l4|l)/5, etc.,
generate the following Hamiltonian flows on G∗ ' G :

∂l/∂x = [l+, l], ∂l/∂y = [l2
+, l], ∂l/∂t = [l3

+, l], ∂l/∂s = [l4
+, l] (40)

with respect to the evolution parameters x = t1 ∈ R, t2, t3 ∈ R, etc., where, for instance,

l2
+ : = H2(x; p) = p2 + 2pu ∈ G+, (41)

l3
+ : = H3(x; p) = p3 + 3p2u + 3pu2 + 3pv ∈ G+

and so on. The above commutator expressions with respect to the evolution parameters
t1, t2 and t3 ∈ R reduce to the next commuting to each other non-linear Monge type
evolution systems

ut1 = ux, vt1 = vx, ut2 = −(u2 + 2v)x, vt2 = (v2 − 2uv)x, (42)

and

ut3 = (
3
2

v2 − 6uv− u3)x, vt3 = (−v3 − 3u2v + 3uv2 − 3v2)x, (43)

being also compatible dispersion-less Hamiltonian flows on the corresponding functional
phase. Moreover, the evolution systems (42) and (43) are equivalent to the Lax-Sato vector
field commutator representation (22), where

∇h(t1)
+ (l̃) = (p + u)

∂

∂x
− ux p

∂

∂p
, (44)

∇h(t1)
+ (l̃) = (p2 + 2up + 2v + u2)

∂

∂x
− (ux p2 + vx p + 2uux p)

∂

∂p
.

The vector fields (44), being considered as elements of the Lie algebra G̃ ' di f f (S1 ×
C) of holomorphic with respect to the variable p ∈ C vector fields on S1 ×C, naturally
splits into the direct sum of two sub-algebras G̃ = G̃+⊕ G̃−, holomorphic in the parameter
p ∈ C inside D1

+(0) of the unit circle D1
+(0) ⊂ C and outside D1

−(0) of this disk, respectively,
appear to be generated by the corresponding Casimir functionals on the adjoint space
G̃∗ ' Ω1(S1 × C) at some root element l̃ ∈ G̃∗ subject to the following canonical non-
degenerate bi-linear form on G̃∗ × G̃ :

(l̃|ã) :=
∫ 2π

0
resp〈l|a〉dx, (45)

where we put, by definition, l̃ := 〈l|dx〉, ã := 〈a|∂/∂x〉,x:= (p; x) ∈ C× S1. Based on the
definition of Casimir functionals, one easily enough obtains that this root element equals
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l̃ = (ux p2 + (v + u2)x p)dx + (p2 + 2up + v + u2)dp = (46)

= d
(

1
3

p3 + up2 + (v + u2)p
)

,

being a complete derivative of the scalar element η̃ = 1
3 p3 + up2 + (v + u2)p ∈

Ω0(S1 × C), l̃ = dη̃, for all (p; x) ∈ C× S1. Moreover, the system of evolution
equations (42) and (43) becomes equivalent to the following co-adjoint flows

∂l̃/∂y = −ad∗
∇h(t2)+ (l̃)

l̃, ∂l̃/∂t = −ad∗
∇h

(t3)
+ (l̃)

l̃ (47)

on the adjoint space G̃∗, generated by the corresponding Casimir functionals h(t2), h(t3) ∈
I(G̃∗) and satisfying the determining relationships ad∗

∇h(t2)(l̃)
l̃ = 0, ad∗

∇h(t3)(l̃)
l̃ = 0. As

now the basic Lie algebra G̃ ' di f f (S1 ×C) of holomorphic vector fields on S1 ×C is not,
evidently, metrized, the flows (47) on G̃∗ do not possess the standard Lax type commutator
representation.

Taking into account the expressions (36) and (39), one can formulate the following
proposition.

Proposition 3. Let a function F : M→ R be defined by the following differential relationships

∂2F(t1, t2, t3)

∂t1∂t2
= v,

∂2F(t1, t2, t3)

∂t1∂t3
= v(2u− v), (48)

∂2F(t1, t2, t3)

∂t1∂t3
= 2v[v2 + 3v− 3u(u− v)],

where the pair of functions (u, v) ∈ C∞(M;R2) satisfies the evolution flows (42) and (43). Then
it is a potential function of the Frobenius manifold M, describing the related Frobenius manifold
algebraic structures.

This result makes it possible to describe a wide variety of Frobenius manifold potential
functions in terns of solutions to these Monge type Hamiltonian systems (42) and (43).
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