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Abstract: We study the known coherent states of a quantum harmonic oscillator from the stand-
point of the originally developed noncommutative integration method for linear partial differential
equations. The application of the method is based on the symmetry properties of the Schrodinger
equation and on the orbit geometry of the coadjoint representation of Lie groups. We have shown that
analogs of coherent states constructed by the noncommutative integration can be expressed in terms
of the solution to a system of differential equations on the Lie group of the oscillatory Lie algebra.
The solutions constructed are directly related to irreducible representation of the Lie algebra on the
Hilbert space functions on the Lagrangian submanifold to the orbit of the coadjoint representation.

Keywords: quantum harmonic oscillator; noncommutative integration method; coadjoint representation

1. Introduction

The study of exact solutions to the Schrodinger equation for a general harmonic
oscillator has attracted considerable interest in the literature thanks to the pivotal role of
the oscillator in physics. Constructing exact solutions for a harmonic oscillator based on
various ideas and methods and finding connections between them expands the knowledge
about this fundamental system.

The well-known stationary states of a quantum harmonic oscillator in the coordinate
representation are obtained by the separation of variables in the Schrodinger equation
with the harmonic oscillator potential. Glauber proposed standard coherent states for a
harmonic oscillator, which is the prototype for most coherent states [1,2]. The coherent
states form a very convenient representation for problems in quantum mechanics. They
can be created from the ground state by the displacement operator and can be expanded in
terms of the harmonic oscillator Hamiltonian eigenstates. Coherent states are described in
a wealth of superb reference books and papers, e.g., [3-5].

An alternative to the separation-of-variables method is the noncommutative integration
method (NIM) proposed in [6] for linear partial differential equations and developed in [7-10]
(see Ref. [11] for details). This method essentially uses the symmetry of a differential equation
and its algebra of symmetry operators and allows one to construct a basis of solutions that, in
general, differ from solutions constructed by the separation of variables and from coherent
states. The NIM was effectively used to construct exact solutions to the Schrodinger, Klein—
Gordon [6,8], and Dirac [9,10,12] equations, and also for classification of external fields in
equations with symmetries in the Riemannian spaces of general relativity in [13-16].

This paper describes the development and application of the NIM for solving the
Schrodinger equation for a quantum harmonic oscillator, using symmetry in this problem.
We will be looking for the NIM solutions, which can be regarded as analogs of coherent
states in the sense of [4,17] in view of the close relation of NIM with the group symmetry of
the quantum harmonic oscillator.
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The paper is organized as follows. Section 2 introduces the basic notation and a special
A-representation of Lie algebras necessary for applying the method of noncommutative
integration. Section 3 considers the Schrodinger equation for a harmonic oscillator and
shows that its symmetry algebra in the class of first-order linear differential operators forms
the oscillatory Lie algebra gosc. The next Section 4 considers the A-representation of the
oscillatory Lie algebra gosc and the generalized Fourier transform on the Lie group Gysc
of the Lie algebra gos.. Section 5 shows that the Schrodinger equation for an oscillator is
equivalent to some right-invariant system of equations on the group G. Integrating this
system by noncommutative integration, we obtain a basis of solutions and compare it with
a system of coherent states. Section 6 contains some concluding remarks.

2. A-Representation of Lie Groups

Using the orbit method [18,19], we define an irreducible A representation of the Lie
algebra g, which is a key element of the NIM.

First, we recall some necessary definitions related to the orbit method on Lie groups,
which we will need in what follows. The degenerate Poisson-Lie bracket,

9 (f) 9p(f)
ofa  Ofy '

defines a Poisson structure in the space g* [18]. Here, f, are the coordinates of a linear
functional f = f,e? € g* relative to the dual basis {¢"}, [-, -] is a commutator in the Lie
algebra g, and the natural pairing between the spaces g* and g is denoted by (-,-). The
number indg of functionally independent Casimir functions K, (f), u = 1,...,indg, with
respect to the bracket (1) is called the index of the Lie algebra g.

The Lie group G acts on the coalgebra g* by the coadjoint representation Ad*: G x
g* — g" and splits g* into the coadjoint orbits (K-orbits). Orbits of maximum dimension
dim©®©®) = dimg — indg are called non-degenerate [18].

Let O, be a non-degenerate coajoint orbit passing through a general covector A € g*.
Locally, one can always introduce the Darboux coordinates (p,q) € P x Q on the orbit O,
in which the Kirillov form w, defining a symplectic structure on the coajoint orbits has the
canonical form wy = dp? Adgs,a =1,...,dim O, /2, and (p, q) are called the canonical
coordinates. We assume that the transition from the local coordinates f on the orbit O, to
the canonical coordinates (p,q) is given if the set of functions fx = fx(p,4,A), X € g* is
defined in such a way that

dfx dfy dfxdfy _ B

%aq” %W = f[X,Y]/ fX(O/Oz/\) - <)\/X>/
fs s
agh’ dpy,

{9, 93(f) = (£, [ (f), dp()]) = Copfe ¢, € C¥(g"), 1)

rank

=dim0,, X,Yeg.

Consider the functions fx = fx(p,q,A), which are linear in the variables p,:

fx(p.qA) = ak(@)pa+xx(q,A), q€Q, peP. )

Denote by gc a complex extension of the Lie algebra g. It was shown in Ref. [7] that
canonical functions (2) can be constructed if for the functional A there exists a subalgebra
h C g* in the complex extension g* of the Lie algebra g satisfying the conditions

1
(A, [b,8]) =0, dimh = dimg— EdimO;\. 3)
The subalgebra | is called the polarization of the functional A. In this case, the vector fields

ax(q) = a%(q)9y are infinitesimal generators of a local transformation group G¢ = exp(gc)
of a partially holomorphic manifold Q. Equation (3) assumes that the functionals from g* can
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be prolonged to g* by linearity. Note that for non-degenerate coajoint orbits, there always
exist the canonical functions with the form (2).

Let Lp(Q,du(q)) be a space of complex functions on the manifold Q with a measure
du(g) and inner product given by

(1, 92) = /Qmwzw)dy(q), du(q) = plq)dq, ()

where ¢ (7) denotes the complex conjugate of 1 (g). Functions of the space L(Q, du(q))
are square-integrable on the manifold Q.
The linear operators

i ] i , 3
lx(q,A) = %fx(—lhaq,q,)\) = a%(q)g + £[XX(‘%/\) +ihPx], Og = 3
Ky(—iht(q,A)) = Ku(A), ()
1
[£x(q,99,A), by (4,94, A)] = €1x,v)(4,93,4),  pz = —5Tr(adsly), X, Y €g, (6)

implement the irrep A-representation of a Lie algebra g in L,(Q, dy(g)) and can be seen as
the result of gp-quantization on the coajoint orbit O, [6,7].

We assume that with respect to the inner product (4) the operators —iftfx(q,94,A) are
Hermitian.

Let x(g) = (Lg)«X and 17x(g) = —(Rg)«X be left- and right-invariant vector fields
on a Lie group G, respectively. We will be interested in generalized solutions of the system
of equations

(1x(8) + £x(q,95,A)) Z3(8) = 0, 7)

(x(&) + (005, 0)) 24y () = 0, Zpy(e) = (g.4), ®)
The functions ‘@é\q’ (g) provide the lift of the A-representation of the Lie algebra g to the
local unitary representation T of its Lie group G,

(T3 9)(q) = /Q ¥(4) 2 (8)du(q), %(Tﬁxp(txw)

t:O(q) =Ux(q,99,M)e(q), 9)

and satisfy the relations
Ty (0132) = [ T2 (82)an(q"), Z3(3) = T (3,

where g1, > € G. Note that by properly defining the measure dj(A) in the parameter space
J, we can check the completeness and orthogonality properties for the functions 9%, (g),

[ 7 ()73 ($)auls) = 5(0, )0 4101, ),

/QXQX ]%%/ (9)du(g)du(r) = 53871, (10)

where 4(g) is the generalized Dirac delta function with respect to the right Haar measure
du(g) on the Lie group G.

Note that the functions @;q, (g) are defined globally on the Lie group G iff the Kirillov
condition of integerness of the orbit O, holds [18]:

1
— Wy =N, € 2. 11
27 /AXEHI(OA) A K -
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Here, H;(0,) is a one-dimensional homology group of the stationarity subgroup G* =
{§ € G| AdgA = A}
Let Ly(G,du(g)) be the space of functions having the form

8) = /Qtﬁ(qlq’,?t)%/ (&7")dn(a)du(q)du(r). (12)

The function ¢(g,4’, A) belongs to the space Ly(Q, h, A) with respect to the variables g and
q’. Within the framework of the NIM, the relation (12) is a generalization of the Fourier
transform with kernel .@é\q, (g71) to the case of the Lie group G. From the relations, (10)
follows the expression for the inverse Fourier transform in the form

¥(q,q9',A) /lP 20 (7 V)du(g). (13)

The transformations (12) and (13) induce the corresponding transformation of the left- and
right-invariant fields on the Lie group G:

Ex(9)¢*(8) <= (4,00, (a4, M),
nx($)¥*(8) <= Lx(q, 9y, 1)p(4,4', A). (14)
It follows from (14) that functions from the space L, (G, dj(g)) that have the form (12) are
eigenfunctions of the Casimir operators K(,i)u (ihg) = K;,S) (—ihn):
Ky (i) (8) <= w0 (M) (a,7',A),

K (—int(q,9,,0)) = k0 (A), = (1) = x5 (1), m@)m) — WP (M)

Since the left- and right-invariant vector fields on the Lie group G are transformed into
A-representation operators under the transformation (12), the Casimir operators in the
A-representation are constants.

3. Symmetry Algebra of a Quantum Harmonic Oscillator

The states of a one-dimensional quantum harmonic oscillator in the coordinate rep-
resentation £ = x, p = —ihd, are described by the wave function ¢ = (¢, x), which
satisfies the nonstationary Schrodinger equation

. . . 2 mw?
ihd, = Ay, H= 2;771 + -2, (15)

where m > 0 is the mass of the quantum particle, w > 0 is the frequency of the harmonic
oscillator, and % is Planck’s constant.

The well-known wave functions of the harmonic oscillator in terms of the Hermite
polynomials Hy(z) are [4]

(e, 3) = exp(—i% ) (),

En—hw(n—i—;), n=20,12,.... (16)

The eigenstates |1) for the Hamiltonian H are called Fock’s or number states, H|n) = E,|n).
The Fock states are orthonormal and form a complete basis such that any other state of the
harmonic oscillator may be written in terms of them.



Symmetry 2023, 15, 282

50f11

We can define the annihilation and creation operators by the formulas

i 1(,/”“"“ i ) fz*—1<,/m‘”f—i > [, =1
V2 h \/an)mp ’ V2 h \/hwmp ’ ’ ’

respectively. The time dependent-coherent states |z, t) are eigenstates of the annihilation
operator 4,

alz, t) = z(t)|z,t), =z(t) = ze Wt

where the eigenvalue of the operator @ is a complex number z(t), which is a function of
time t. The coherent states may be written as

2,8y = et/ 2 =R Y 2y g (17)
, = ] 7 7 7 - 4
n=0 V1.

In the coordinate representation, we have

2
a(t,x;z) = (x| zt) = (%)1/4 exp lzc;t — (, / Trzl;‘l)xz(t)) + Z(ziz — |22|2] (18)

The real and imaginary parts of the quantum number z characterize the mean values of
position and momentum operators:

(2(0) = | L Re(a(t)), {p(t)) = VImhwlm((1)).

Equation (15) admits four integrals of motion in the class of the first-order linear differential
operators:

iXy = (hw) o, po = ihdy,

hoo ,
—iXp = —i % (el‘"tﬁ - e_“"tﬁJr) = cos(wt)p + mwx sin(wt),
hyo. .
—iX3 = — % (el“’tfz + e*’“’tf) = sin(wt)p — mwx cos(wt), (19)
—iXy = mwh.

These operators form the Lie algebra g,sc with non-zero commutation relations
[Xl/XZ] = _X3/ [X1/X3} = X2/ [XZI X3} = _X4' (20)

The algebra g,s with the commutation relations (20) is called the oscillatory Lie algebra. In
the next section, we will construct a special irreducible A-representation of this Lie algebra,
which is necessary for solving the Equation (15) in terms of the noncommutative integration
method.

4. A-Representation of the Oscillatory Lie Algebra

Let {e,} be some fixed basis of the Lie algebra gosc, 2 = 1,...,4, and let [, -] be the
commutator in gysc,

[81,62] = —e3, [61,63] = ey, [62/63] = —é4.

An arbitrary element X € g, is determined by its components X? with respect to the
chosen basis, X = X“,. In turn, an arbitrary element f € g, of the dual space g*
is determined by the components of f, with respect to the basis {e} dual to the basis

{ea}, f = fae", <eb,e,1) = 51117-
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The Lie algebra gosc admits two Casimir functions

Ki(f) =2fifa+ f3+f3 Ko(f) =far f € Qs

Nondegenerate orbits of the coadjoint representation (K-orbits) pass through the parametrized
covector A = (j1,0,0,/2),

Oy ={Ki(f) =2j1j2, Ka(f)=jo, —~(2=f3=f1=0)}.

Denote by Gosc = exp gosc the local Lie group of the Lie algebra gosc. Let us introduce
canonical coordinates of the second kind, x = (x1, x2, X3, x4), on the group Gy as

g(xq,xp,x3,x4) = e*44e™3%3722M1° € Gy, (21)
The group composition law in the coordinates (21) has the form

g =8(x1,x2,x3,%4), §=28W1,Y2,Y3,Y4),

93 = (g8) |x1 +y1,x2 + Y2 cos X1 + Y3 sinxy, X3 + Y3 cos X1 — Yo sinxy,

sin(2xq) |-

)
X4+ Y4+ x2(y1 sinxg — yzcosxq) + Yoy sin® x1 + %

The Lie group Gosc acts on itself by the left Lo and right R, shifts. The left-invariant vector
fields &,(g) = (Lg)«eq on the group Gosc in local coordinates (21) are

§1 =101, (C1=0y4
$o = €Os X107 — sin x103 + Xp Sin X710y,
{3 = sinx1dy + COS X193 — Xp COS X104. (22)

The right-invariant vector fields 77,(¢) = —(Rg)«e, are in turn defined by the expressions
3= —01, 14 = —04
1
m = 781 — X382 + Xzag, + E (x% — x§>84,
172 = —82 + X3a4.

The Lie group Gosc is unimodular and the Haar measure coincides with the Lebesgue
measure du(g) = dxidxydxsdxy. Suppose that the coordinates x; values take values in R!.

There exists a three-dimensional complex subalgebra ) = span{ey, e + ie3, e4} of the
complex extension g¢*¢ of the algebra gosc subject to the functional A(j), so that (A(j), [b, b]) = 0.
This subalgebra is a complex polarization corresponding to the linear functional A(j). This
polarization corresponds to the canonical transition

A pA) =ipg+h, falgpA) = —ép + 24,
f(paA) = %P —ipq, fa(p.q.A) = fo-
The A-representation operators are of the form
01(q,94,A) = i[qaq - ;(jjqz —h)], (2(q,9q,A) = —i<a,, - ];fq>

i,
£3(q/aq//\) = aq/ ‘64(‘1/ aq/ A) = ﬁ]ZI Q 6 (C/
Ky(=inl) = —(h—2j1)j2,  Ko(—ihl) = fa. (23)
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The function space

Fr = span{(pn(q) = q”exp(ﬁlcf) | n = 0,1,2,...}

is invariant under the A-representation operators and is a Hilbert space with respect to the
scalar product (4) with the measure

dujz(q)—eXP[ 2 q)}—eXP[ L q)}

The functions of the space .#* are entire analytic functions of the complex variable g.
The generalized Dirac function in the space .7*,

/¢ 8,(q,9)du,(q), peF

is defined by the expression

ooy 2 e (=je/2n)" N_ 2 2
00) = g Ly @enld) = g pew| g (q 7) |-
By integrating the system of Equation (7), we obtain
T (871) = UMa, )8, (a8~ 7).
A _ Y D ) 2 o —2ixg ) 2 he o —ixg
u*(q,g) exp{ zhxl i7% +4h{(1 e )q —|—2<x2 2ige )xz}}, (24)

where gg ! = gexp(—ix;) +ixy — x3 is the action of the group Gsc on the complex manifold
Q, which is given by the generators

a1(q) =igdy, aa2(q) = —idy, a3(q) =9y,

so we have

9(48)" _
ck(9) ogh~ ~ 9x(4g), qe=q, X€g

The representation (9) becomes an induced representation of the Lie group Gosc and,
according to (24), has the form

(Tra9) (@) = UM g, 8)y(ag ),
UMg,gg) = UM(g,8)UMq87",8), UM(ge) =1.

It can be shown that any A-representation of the Lie algebra in the class of the first-
order linear partial differential operators leads to the induced representation of the Lie
group constructed in the framework of the Kirillov orbit method (see Refs. [6,7,9]). The
relations (10) are satisfied with respect to the measure

du(A) = (27]172h)3dj1dj2, / / djy / )j2df2.

The direct Fourier transform (12) in the space Ly (G, du(g)) has the form

= /Q (50N 7 (871 ) A (@)dns (dn(n), ¢ € F7 (25)
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For an invariant second-order differential equation on the group G,sc written as
H(—ihn)¥(g) = 0,H(f) = A" fufy + B*fa+ C, (26)

where A%, B? and C are constants, the general solution is sought in the form (25) in the
framework of NIM. Then, we have the reduced equation for the function ¥(g;q,A),

H(—iht(q',04,A))¢(q";q,A) =0, (27)

which is an ordinary differential equation with respect to the independent variable 4'.
Equation (27) will be called the Equation (26) in the A-representation, and the transition
from (26) to (27) will be called the non-commutative reduction of Equation (26).

5. The Schrédinger Equation on the Oscillatory Lie Group

Let us show that the Schrodinger Equation (15) describing the quantum harmonic
oscillator is equivalent to the following system of equations on the Lie group Gs. :

Ky (—ih¢)¥(g) =0, (28)
Ko(—ih¢)¥ (g) = hm¥(g), (29)
n3t(g) = 0. (30)

Indeed, the general solution to the Equations (29) and (30) can be written as

‘I’(g) _ w(fj’ \/Zx2>eimx4'

Substituting ¥ (g) into the second Equation (28), we obtain the Schrodinger equation for
the function (¢, x) in the form

Hl/J, Yp=9(tx), x1=wt x= %x. (31)

., 0P
zhg =
Thus, we have reduced the Schrodinger equation to the system of Equations (29)
and (30) on the Lie group Gosc, for which the set of basic left-invariant vector fields (22) is a
set of non-commuting integrals of motion forming the Lie algebra gos..
Let us integrate the system (29) and (30) using the NIM. We are looking for a solution
to this system in the form (25). Then, we obtain the non-commutative reduced system of
equations for the function ¢(4’;¢,A) as

. h / . / /
(]1—2)¢<q;q,A>:0, (2 + m)p(q'39,4) =0, yyp(q59,4) =0. (32)

The system (32) says that the quantum harmonic oscillator corresponds to the orbit of
the coadjoint representation O, of the group G,s:, which passes through the parameterized
covector o = (1/2,0,0, —m), and the function (g’; g, A) describing the quantum harmonic
oscillator in terms of the A-representation does not depend on variable 4. From (32),
we have

AV
$(@5q.4) = 4’(‘1)5(]1 - 2)5(12 +Tm). (33)

Substituting (33) into (25) yields the general solution
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() = | $@ 7 (s )du ()

J1=N/2, jp=—hm
h
= [ v @17 (1525555, ~m ) na),
Ay i) = | Z (37 (o) = UM, 9). (34)

Equation (25) gives the general solution to the system of Equations (29) and (30).
According to Equation (31), the general solution to the Schrodinger equation is obtained
from (34) by setting x1 = wt, xp = xv/w /N, x3 = x4 = 0. It is convenient to represent the
general solution to the Schrodinger equation as follows. Let us introduce a set of functions

Vhm rwm\1/4 w
D(t,x|u;p) = w?<ﬁ) Dk (wt, \/;x,o,,uh,mh), (35)

which satisfies the completeness and orthogonality conditions:

/RZ D(t,x | H;p)D(t, x| w;p)dtdx = 5(u, T)6(u — i),
/j; du /(c1 du(u)2(Ex | w;u)2(t,x | u;p) = 6(t—1)d(x — %),

mwh mowh

O(u, ) = o exp{— 1 (u—ﬁ)z], dy(u):exp{nﬁm(u—u)z].

Then the general solution of the Schrodinger equation, according to (34), is written as

P(t,x) = /(Cl o(u)2(t,x | u;1/2)du, (36)
u=g/VwheC!, ¢eFt, A,= G,o,o, —mwh). (37)

Moreover, for the solution norm (36), we have

I = [ gt Pax = 2% [ () Pdutu) = 2= gl

As a result, using the NIM, we have found a general solution (36) to the Schrodinger
equation for the quantum harmonic oscillator. We say that this solution describes the H-state
of the harmonic oscillator. Let us show that for a given solution (36), stationary solutions are
obtained, which are determined from the equation

poyp(t,x) = Eyp(t, x). (38)

Substituting (36) into (38) by the function ¢(u), we obtain the equation
—iwhty(u, 0y, Aw)@(u) = E@(u).

From here, we obtain
1 mZ)h u2

pu) = uwi 2
The function ¢(u) belongs to the space .F v iff E/wh —1/2 = n, and 7 is an integer.
This condition results in the well-known spectrum of the quantum harmonic oscillator:
E, = hw(n +1/2). The corresponding wave functions on the manifold Q coincide with
the basis functions ¢, (q) up to a normalization factor:
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n.— mwh u2

on(u) = Cyulle™ 41,

nf W —1/2 hm
Co= (=) (5= llgullp) " =/ g (—meo)"’2. (39)

Then, (36) provides the well-known expression for the wave functions of the harmonic
oscillator in terms of the Hermite polynomials (16) as

Pu(t, x) = /Cl o2 (1, x | 1u;1/2)dp(u).

Thus, Fock’s states |1) of the harmonic oscillator in the A-representation (39) generate
the space .#"« in which the A-representation of the oscillatory group acts.

Comparing (18) and (35), we obtain the relationship between the H-states and the
harmonic oscillator coherent states in the form

D(t,x|u;1/2) = ;\/Fzmzx<t,x;i\/ m(zuhe_i“’tu> exp [mz}h (u2 - |u|2)]

From here, we can see that the H-solution (36) is related to coherent states of the har-
monic oscillator, but it differs from the latter by a constant factor. In bracket notation, the
solution (36) can be represented as

() = [ dup(ulu, 1),
w

h
|u,t>—2n\/%exp[—’”jf (u2—|u|2)}|z,t>, (| u,t) = S=6(u,7),  (40)

z(t) =i 5

Here |z,t) is a coherent state with a wave function (18), and the wave function (36)
corresponds to the state |u, ). Accordingly, for mean values, one can obtain

(2())g = (u,t| £(t) | ut) = _m(;‘):>2exp {_mz;h (uz _ |u|2)}1m<eiwtu),
(P(D)g = (ut| p(t) | u,t) = hm(;;)z\/%exp[_"?(uz _ |u|z)}Re<e,~wtu).

From (17), it is easy to write out the expansion of H-states |u, t) in terms of Fock’s states:

L w i mwh 5] & (mwh\" (=1)" 2"
lu, t) = vahmexp[—zwt— 5 ¢ ] nZ()( 5 ) N e |n).

Thus, as the result of applying the NIM to the system of Equations (29) and (30), we
have obtained the H-states (40) of the harmonic oscillator, which, up to a normalization
factor, coincide with known coherent states | z, t).

6. Conclusions

In this paper, we have shown that the oscillatory Lie algebra g,s naturally arises as the
Lie algebra formed by the symmetry operators (19) of the Schrodinger equation, (15) and
the Schrodinger equation itself for the harmonic oscillator is equivalent to a system of right-
invariant equations on the corresponding Lie group Gosc. As a result of the noncommutative
integration of this system, a complete set of solutions (36) (H-solutions) is found. Moreover,
the quantum harmonic oscillator corresponds to the only non-degenerate orbit O, of the
adjoint representation of the Lie group Gys.. It is shown that the Fock states of the harmonic
oscillator in the A-representation form a Hilbert space .#"«, which is invariant under the
operators of the A-representation (23) constructed along the given orbit. It turns out that
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the H-solutions are eigenvalues for the annihilation operator 4, and therefore, they differ
from the known coherent states of the harmonic oscillator by a factor that does not depend
on f and x (see Equation (40)) but depends on the complex quantum number u.
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