Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = clinical phytopathogen

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2340 KiB  
Systematic Review
Macrophomina phaseolina: A Phytopathogen Associated with Human Ocular Infections—A Case Report of Endophthalmitis and Systematic Review of Human Infections
by Panagiotis Toumasis, Georgia Vrioni, Ioanna Gardeli, Aikaterini Michelaki, Maria Exindari and Maria Orfanidou
J. Clin. Med. 2025, 14(2), 430; https://doi.org/10.3390/jcm14020430 - 11 Jan 2025
Cited by 2 | Viewed by 1502
Abstract
Background: Macrophomina phaseolina is an important phytopathogenic fungus affecting over 500 plant species worldwide. However, this fungus rarely causes disease in humans. Methods: We reported the first case of endophthalmitis due to M. phaseolina, describing microbiological diagnostic approaches. Also, we [...] Read more.
Background: Macrophomina phaseolina is an important phytopathogenic fungus affecting over 500 plant species worldwide. However, this fungus rarely causes disease in humans. Methods: We reported the first case of endophthalmitis due to M. phaseolina, describing microbiological diagnostic approaches. Also, we performed a systematic review of human infections by this plant pathogen in literature. We searched PubMed, Scopus, and Web of Science databases from inception to 31 December 2024. Results: Our case involved a male patient who presented with photophobia and pain in his right eye. His recent medical history revealed a superficial corneal injury caused by a metal burr three months prior, managed unsuccessfully by topical treatment and subsequent conjunctival flap surgery two months later. Ophthalmological and microbiological investigations, including microscopic examination, cultures, and DNA sequencing of ocular specimens, revealed M. phaseolina endophthalmitis. Despite intravenous and intravitreal antifungal therapy, the patient’s condition continued to worsen, eventually leading to enucleation. Regarding the literature review, we identified 12 additional cases of M. phaseolina human infections previously reported in literature. Overall, M. phaseolina was primarily associated with ocular infections (76.9% of cases), followed by skin infections and combined skin–joint infections. The majority of patients with M. phaseolina infection (63.6%) had no known immunosuppressive factors. Clinical outcomes were unfavorable in 46.15% of cases. Conclusions: M. phaseolina is an emerging cause of human infections, even in immunocompetent hosts, with a predilection for ocular infections. Further research is warranted to elucidate the pathogenesis of fungal infections caused by plant pathogens in humans. Full article
(This article belongs to the Section Ophthalmology)
Show Figures

Figure 1

43 pages, 3135 KiB  
Review
Advancements in Green Nanoparticle Technology: Focusing on the Treatment of Clinical Phytopathogens
by Sunny Mukherjee, Anamika Verma, Lingxue Kong, Aravind Kumar Rengan and David Miles Cahill
Biomolecules 2024, 14(9), 1082; https://doi.org/10.3390/biom14091082 - 28 Aug 2024
Cited by 5 | Viewed by 3735
Abstract
Opportunistic pathogenic microbial infections pose a significant danger to human health, which forces people to use riskier, more expensive, and less effective drugs compared to traditional treatments. These may be attributed to several factors, such as overusing antibiotics in medicine and lack of [...] Read more.
Opportunistic pathogenic microbial infections pose a significant danger to human health, which forces people to use riskier, more expensive, and less effective drugs compared to traditional treatments. These may be attributed to several factors, such as overusing antibiotics in medicine and lack of sanitization in hospital settings. In this context, researchers are looking for new options to combat this worrying condition and find a solution. Nanoparticles are currently being utilized in the pharmaceutical sector; however, there is a persistent worry regarding their potential danger to human health due to the usage of toxic chemicals, which makes the utilization of nanoparticles highly hazardous to eukaryotic cells. Multiple nanoparticle-based techniques are now being developed, offering essential understanding regarding the synthesis of components that play a crucial role in producing anti-microbial nanotherapeutic pharmaceuticals. In this regard, green nanoparticles are considered less hazardous than other forms, providing potential options for avoiding the extensive harm to the human microbiome that is prevalent with existing procedures. This review article aims to comprehensively assess the current state of knowledge on green nanoparticles related to antibiotic activity as well as their potential to assist antibiotics in treating opportunistic clinical phytopathogenic illnesses. Full article
(This article belongs to the Special Issue Advanced Nanotechnology for Health and Diseases)
Show Figures

Graphical abstract

14 pages, 2648 KiB  
Article
Quantitative Analysis of Fungal Contamination of Different Herbal Medicines in China
by Gang Wang, Mingyue Jiao, Junqiang Hu, Yiren Xun, Longyun Chen, Jianbo Qiu, Fang Ji, Yin-Won Lee, Jianrong Shi and Jianhong Xu
Toxins 2024, 16(5), 229; https://doi.org/10.3390/toxins16050229 - 15 May 2024
Cited by 4 | Viewed by 2842
Abstract
Herbal medicines are widely used for clinical purposes worldwide. These herbs are susceptible to phytopathogenic fungal invasion during the culturing, harvesting, storage, and processing stages. The threat of fungal and mycotoxin contamination requires the evaluation of the health risks associated with these herbal [...] Read more.
Herbal medicines are widely used for clinical purposes worldwide. These herbs are susceptible to phytopathogenic fungal invasion during the culturing, harvesting, storage, and processing stages. The threat of fungal and mycotoxin contamination requires the evaluation of the health risks associated with these herbal medicines. In this study, we collected 138 samples of 23 commonly used herbs from 20 regions in China, from which we isolated a total of 200 phytopathogenic fungi. Through morphological observation and ITS sequencing, 173 fungal isolates were identified and classified into 24 genera, of which the predominant genera were Fusarium (27.74%) and Alternaria (20.81%), followed by Epicoccum (11.56%), Nigrospora (7.51%), and Trichocladium (6.84%). Quantitative analysis of the abundance of both Fusarium and Alternaria in herbal medicines via RT-qPCR revealed that the most abundant fungi were found on the herb Taraxacum mongolicum, reaching 300,000 copies/μL for Fusarium and 700 copies/μL for Alternaria. The in vitro mycotoxin productivities of the isolated Fusarium and Alternaria strains were evaluated by using liquid chromatography–tandem mass spectrometry (LC-MS/MS), and it was found that the Fusarium species mainly produced the acetyl forms of deoxynivalenol, while Alternaria species mainly produced altertoxins. These findings revealed widely distributed fungal contamination in herbal medicines and thus raise concerns for the sake of the quality and safety of herbal medicines. Full article
Show Figures

Figure 1

20 pages, 908 KiB  
Review
Fusarium Fungi Pathogens, Identification, Adverse Effects, Disease Management, and Global Food Security: A Review of the Latest Research
by Theodora Ijeoma Ekwomadu and Mulunda Mwanza
Agriculture 2023, 13(9), 1810; https://doi.org/10.3390/agriculture13091810 - 14 Sep 2023
Cited by 73 | Viewed by 22677
Abstract
Fusarium pathogens are ubiquitous and mainly associated with diseases in plants. They are the subject of great economic concern in agriculture due to crop losses to contamination of cereal grains with mycotoxins. Fusarium species are also considered agents of human and animal mycotic [...] Read more.
Fusarium pathogens are ubiquitous and mainly associated with diseases in plants. They are the subject of great economic concern in agriculture due to crop losses to contamination of cereal grains with mycotoxins. Fusarium species are also considered agents of human and animal mycotic infections, having a wide-ranging spectrum of clinical manifestations in immunocompromised patients. Fusarium phytopathogens infect a wide variety of plants and cause symptoms ranging from stunted growth, fruit or seed decay, yellowing, and wilting of the leaves and cankers to root or stem decay. The identification of these fungi is difficult due to their pleomorphic tendency and the presence of both homothallic and heterothallic strains in the same species, and so is identifying them at species level because of variation among isolates. However, molecular tools have so far been very powerful in species identification and phylogeny, as the great diversity of the Fusarium genus has compelled scientists to continuously revise previous taxons. Mostly, Fusarium diseases are difficult to control, as fungi easily overcome host resistance to various methods of control. We present an overview of the recent research on Fusarium fungi, its adverse effects, and its impacts on food security. We further elucidate various methods of identifying them to encourage much-needed research on integrated management of this unavoidable food contaminant to achieve sustainable global food security. Full article
(This article belongs to the Special Issue Integrated Management of Fungal Diseases in Crops)
Show Figures

Figure 1

16 pages, 1654 KiB  
Article
Antifungal Activity of Mycogenic Silver Nanoparticles on Clinical Yeasts and Phytopathogens
by Luiz Gustavo Ribeiro, Gabriella Sales Calaço Roque, Rafael Conrado and Ana Olívia De Souza
Antibiotics 2023, 12(1), 91; https://doi.org/10.3390/antibiotics12010091 - 5 Jan 2023
Cited by 25 | Viewed by 3829
Abstract
In this study, seven different silver nanoparticles (AgNPs) were obtained using the fungi species from the phylum Ascomycota, Aspergillus tubingensis, Aspergillus spp., Cladosporium pini-ponderosae, Fusarium proliferatum, Epicoccum nigrum, Exserohilum rostratum, and Bionectria ochroleuca, isolated from the Brazilian [...] Read more.
In this study, seven different silver nanoparticles (AgNPs) were obtained using the fungi species from the phylum Ascomycota, Aspergillus tubingensis, Aspergillus spp., Cladosporium pini-ponderosae, Fusarium proliferatum, Epicoccum nigrum, Exserohilum rostratum, and Bionectria ochroleuca, isolated from the Brazilian biodiversity, particularly from the mangrove and Caatinga biomes. The nanoparticles were coded as AgNP-AT, AgNP-Asp, AgNP-CPP, AgNP-FP, AgNP-EN, AgNP-ER, and AgNP-BO and characterized using spectrophotometry (UV-Vis), dynamic light scattering (DLS), zeta potential, transmission electron microcopy (TEM), and Fourier-transform infrared (FTIR) spectroscopy. All the AgNPs presented homogeneous size in the range from 43.4 to 120.6 nm (DLS) and from 21.8 to 35.8 nm (TEM), pH from 4.5 to 7.5, negative charge, and presence of protein coating on their surface. The antifungal activity of the AgNPs was evaluated on clinical strains of Candida albicans, and on the non-albicans species, Candida krusei, Candida glabrata, Candida parapsilosis, Candida tropicalis, and Candida guilliermondii, common in hospital infections, and against the phytopathogens Fusarium oxysporum, Fusarium phaseoli, Fusarium sacchari, Fusarium subglutinans, Fusarium verticillioides, and Curvularia lunata, which are species responsible for serious damage to agriculture production. The AgNPs were effective against the yeasts with MICs ranging from 1.25 to 40 µM and on the phytopathogens with MICs from 4 to 250 µM, indicating the promising possibility of application of these AgNPs as antifungal agents. The results indicated that the physicochemical parameters of the AgNPs, including the functional groups present on their surface, interfered with their antifungal activity. Overall, the results indicate that there is no specificity of the AgNPs for the yeasts or for the phytopathogens, which can be an advantage, increasing the possibility of application in different areas. Full article
(This article belongs to the Special Issue Silver and Gold Compounds as Antibiotics)
Show Figures

Figure 1

18 pages, 5560 KiB  
Article
Identification of Coumarins and Antimicrobial Potential of Ethanolic Extracts of Dipteryx odorata and Dipteryx punctata
by Bruna Cristine Martins de Sousa, Santana Pinto de Castro, Katiane Araújo Lourido, Aline Aparecida München Kasper, Geomarcos da Silva Paulino, Camila Delarmelina, Marta Cristina Teixeira Duarte, Adilson Sartoratto, Thiago Almeida Vieira, Denise Castro Lustosa and Lauro Euclides Soares Barata
Molecules 2022, 27(18), 5837; https://doi.org/10.3390/molecules27185837 - 8 Sep 2022
Cited by 9 | Viewed by 2791
Abstract
Dipteryx odorata and Dipteryx punctata are species native to the Amazonian, traded by extractivists to obtain coumarin. We aimed to analyze the presence of coumarin in the ethanolic extracts of leaves, branches and fruits of D. odorata and D. punctata and to evaluate [...] Read more.
Dipteryx odorata and Dipteryx punctata are species native to the Amazonian, traded by extractivists to obtain coumarin. We aimed to analyze the presence of coumarin in the ethanolic extracts of leaves, branches and fruits of D. odorata and D. punctata and to evaluate the antimicrobial activity of these extracts against phytopathogenic fungi and bacteria of clinical interest. Chemical analyses were performed by thin layer chromatography (TLC) and by gas chromatography coupled to mass spectrometry (GC-MS). For the antifungal assays, the fungi used were Cercospora longissima, Colletotrichum gloeosporioides, two isolates of Fusarium spp. and Sclerotium rolfsii, and the antibacterial assay was performed using the minimum inhibitory concentration (MIC) test with Burkholderia cepacia, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus bacteria. In D. odorata seed extracts and in D. punctata husks, endocarps, and seeds, we identified 1,2-benzopyrone. D. odorata endocarp extracts and D. punctata seeds provided the greatest decrease in mycelial growth of the evaluated phytopathogens, showing promise as an alternative control. The husk and endocarp extracts of both species had a weak effect on E. coli. This research is the first to compare the different parts of species of the genus Dipteryx and to evaluate the use of husks and endocarps of D. punctata fruits to obtain coumarin. Chemical analyses used to quantify the compounds existing in the extracts, and tests with phytopathogens in vitro and in vivo are currently being carried out. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure A1

17 pages, 3495 KiB  
Article
Antifungal Activity, Structural Stability, and Immunomodulatory Effects on Human Immune Cells of Defensin from the Lentil Lens culinaris
by Ekaterina I. Finkina, Ivan V. Bogdanov, Anastasia A. Ignatova, Marina D. Kanushkina, Ekaterina A. Egorova, Alexander D. Voropaev, Elena A. Stukacheva and Tatiana V. Ovchinnikova
Membranes 2022, 12(9), 855; https://doi.org/10.3390/membranes12090855 - 31 Aug 2022
Cited by 9 | Viewed by 2611
Abstract
An increase in the frequency of mycoses and spreading of multidrug-resistant fungal pathogens necessitates the search for new antifungal agents. Earlier, we isolated the novel defensin from lentil Lensculinaris seeds, designated as Lc-def, which inhibited the growth of phytopathogenic fungi. Here, we [...] Read more.
An increase in the frequency of mycoses and spreading of multidrug-resistant fungal pathogens necessitates the search for new antifungal agents. Earlier, we isolated the novel defensin from lentil Lensculinaris seeds, designated as Lc-def, which inhibited the growth of phytopathogenic fungi. Here, we studied an antifungal activity of Lc-def against human pathogenic Candida species, structural stability of the defensin, and its immunomodulatory effects that may help to prevent fungal infection. We showed that Lc-def caused 50% growth inhibition of clinical isolates of Candida albicans, C. krusei, and C. glabrata at concentrations of 25–50 μM, but was not toxic to different human cells. The lentil defensin was resistant to proteolysis by C. albicans and was not cleaved during simulated gastroduodenal digestion. By using the multiplex xMAP assay, we showed for the first time for plant defensins that Lc-def increased the production of such essential for immunity to candidiasis pro-inflammatory cytokines as IL-12 and IL-17 at the concentration of 2 μM. Thus, we hypothesized that the lentil Lc-def and plant defensins in general may be effective in suppressing of mucocutaneous candidiasis due to their antifungal activity, high structural stability, and ability to activate a protective immune response. Full article
(This article belongs to the Special Issue Modern Studies on Membrane-Targeting Antimicrobial Peptides)
Show Figures

Figure 1

15 pages, 2497 KiB  
Article
Valorization and Potential Antimicrobial Use of Olive Mill Wastewater (OMW) from Italian Olive Oil Production
by Eleonora Russo, Andrea Spallarossa, Antonio Comite, Marcello Pagliero, Patrizia Guida, Vittorio Belotti, Debora Caviglia and Anna Maria Schito
Antioxidants 2022, 11(5), 903; https://doi.org/10.3390/antiox11050903 - 4 May 2022
Cited by 30 | Viewed by 4742
Abstract
The production of olive oil generates olive mill wastewater (OMW) which essentially derives from the processing, treatment and pressing of olives in mills. Traditional milling processes require a quantity of water varying between 40 and 120 L per quintal of pressed olives, generating [...] Read more.
The production of olive oil generates olive mill wastewater (OMW) which essentially derives from the processing, treatment and pressing of olives in mills. Traditional milling processes require a quantity of water varying between 40 and 120 L per quintal of pressed olives, generating a considerable amount of wastewater. It is thus necessary to reduce process water and enhance its use to implement the concept of a circular economy. To this end, our preliminary work was dedicated to water purification by means of suitable and efficient filtration systems. The microfiltered OMW was firstly concentrated through reverse osmosis. Then, an additional concentration step was carried out via vacuum membrane distillation using hydrophobic hollow fiber membranes. The application of the membrane-based processes allowed the recovery of a purified water and the concentration of valuable polyphenols in a smaller volume. The different fractions obtained from the purification have been tested for the determination of the antioxidant power (DPPH assay) and dosage of polyphenols (Folin–Ciocalteu assay) and were characterized using IR spectroscopy. All samples showed relevant antioxidant activity (percentage range: 10–80%) and total phenolic content in the 1.5–15 g GAE/L range. The obtained fractions were tested for their antimicrobial effect on numerous clinical isolates of Gram-positive and Gram-negative species, resistant and multi-resistant to current antibiotic drugs. OMW samples showed widespread activity against the considered (phyto)pathogens (MIC range 8–16 mg/mL) thus supporting the value of this waste material in the (phyto)pharmaceutical field. Full article
Show Figures

Graphical abstract

20 pages, 962 KiB  
Article
Effect of Extraction Methods on Polyphenols, Flavonoids, Mineral Elements, and Biological Activities of Essential Oil and Extracts of Mentha pulegium L.
by Mohammed Messaoudi, Abdelkrim Rebiai, Barbara Sawicka, Maria Atanassova, Hamza Ouakouak, Imane Larkem, Chukwuebuka Egbuna, Chinaza Godswill Awuchi, Sihem Boubekeur, Mohamed Amine Ferhat, Samir Begaa and Naima Benchikha
Molecules 2022, 27(1), 11; https://doi.org/10.3390/molecules27010011 - 21 Dec 2021
Cited by 65 | Viewed by 7975
Abstract
Our study evaluated the in vitro antioxidant properties, antibacterial and antifungal activities, anti-inflammatory properties, and chemical composition of the essential oils (EOs), total phenol, and total flavonoid of wild Mentha pulegium L. This study also determined the mineral (nutritional and toxic) elements in [...] Read more.
Our study evaluated the in vitro antioxidant properties, antibacterial and antifungal activities, anti-inflammatory properties, and chemical composition of the essential oils (EOs), total phenol, and total flavonoid of wild Mentha pulegium L. This study also determined the mineral (nutritional and toxic) elements in the plant. The EOs were extracted using three techniques—hydro distillation (HD), steam distillation (SD), and microwave-assisted distillation (MAD)—and were analyzed using chromatography coupled with flame ionization (GC-FID) and gas chromatography attached with mass spectrometry detector (GC-MS). The antioxidant effects of the EOs were tested with 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ABTS (2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), while the antibacterial and antifungal activities of the EO and methanolic extract were tested using Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, Escherichia coli, and Candida albicans. Twenty-six compounds were identified in the essential oil, representing 97.73% of the total oil, with 0.202% yield. The major components were pulegone (74.81%), menthone (13.01%) and piperitone (3.82%). Twenty-one elements, including macro- and micro-elements (Ba, Br, Ca, Cl, Co, Cr, Cs, Eu, Fe, K, Mg, Mn, Mo, Na, Rb, Sb, Sc, Sr, Th, U and Zn), were detected using neutron activation analysis (INAA) and inductively coupled plasma optical emission spectrometry (ICP-OES), with the concentration of mineral element close to the FAO recommendation. The results show that the EOs and extracts from Mentha pulegium L. had significant antimicrobial activities against the microorganisms, including five human pathogenic bacteria, one yeast (Candida albicans), and one phytopathogenic fungi. The in vivo anti-inflammatory activities of the leaf extracts were confirmed. The results indicate that the EOs and extracts from Mentha pulegium L. have promising applications in the pharmaceutical industries, clinical applications, and in medical research. Full article
Show Figures

Graphical abstract

18 pages, 1239 KiB  
Article
Antifungal Activity and DNA Topoisomerase Inhibition of Hydrolysable Tannins from Punica granatum L.
by Virginia Brighenti, Ramona Iseppi, Luca Pinzi, Annamaria Mincuzzi, Antonio Ippolito, Patrizia Messi, Simona Marianna Sanzani, Giulio Rastelli and Federica Pellati
Int. J. Mol. Sci. 2021, 22(8), 4175; https://doi.org/10.3390/ijms22084175 - 17 Apr 2021
Cited by 37 | Viewed by 4798
Abstract
Punica granatum L. (pomegranate) fruit is known to be an important source of bioactive phenolic compounds belonging to hydrolysable tannins. Pomegranate extracts have shown antifungal activity, but the compounds responsible for this activity and their mechanism/s of action have not been completely elucidated [...] Read more.
Punica granatum L. (pomegranate) fruit is known to be an important source of bioactive phenolic compounds belonging to hydrolysable tannins. Pomegranate extracts have shown antifungal activity, but the compounds responsible for this activity and their mechanism/s of action have not been completely elucidated up to now. The aim of the present study was the investigation of the inhibition ability of a selection of pomegranate phenolic compounds (i.e., punicalagin, punicalin, ellagic acid, gallic acid) on both plant and human fungal pathogens. In addition, the biological target of punicalagin was identified here for the first time. The antifungal activity of pomegranate phenolics was evaluated by means of Agar Disk Diffusion Assay and minimum inhibitory concentration (MIC) evaluation. A chemoinformatic analysis predicted for the first time topoisomerases I and II as potential biological targets of punicalagin, and this prediction was confirmed by in vitro inhibition assays. Concerning phytopathogens, all the tested compounds were effective, often similarly to the fungicide imazalil at the label dose. Particularly, punicalagin showed the lowest MIC for Alternaria alternata and Botrytis cinerea, whereas punicalin was the most active compound in terms of growth control extent. As for human pathogens, punicalagin was the most active compound among the tested ones against Candida albicans reference strains, as well as against the clinically isolates. UHPLC coupled with HRMS indicated that C. albicans, similarly to the phytopathogen Coniella granati, is able to hydrolyze both punicalagin and punicalin as a response to the fungal attack. Punicalagin showed a strong inhibitory activity, with IC50 values of 9.0 and 4.6 µM against C. albicans topoisomerases I and II, respectively. Altogether, the results provide evidence that punicalagin is a valuable candidate to be further exploited as an antifungal agent in particular against human fungal infections. Full article
Show Figures

Figure 1

21 pages, 2231 KiB  
Review
Rare Sugars: Recent Advances and Their Potential Role in Sustainable Crop Protection
by Nikola Mijailovic, Andrea Nesler, Michele Perazzolli, Essaid Aït Barka and Aziz Aziz
Molecules 2021, 26(6), 1720; https://doi.org/10.3390/molecules26061720 - 19 Mar 2021
Cited by 56 | Viewed by 9666
Abstract
Rare sugars are monosaccharides with a limited availability in the nature and almost unknown biological functions. The use of industrial enzymatic and microbial processes greatly reduced their production costs, making research on these molecules more accessible. Since then, the number of studies on [...] Read more.
Rare sugars are monosaccharides with a limited availability in the nature and almost unknown biological functions. The use of industrial enzymatic and microbial processes greatly reduced their production costs, making research on these molecules more accessible. Since then, the number of studies on their medical/clinical applications grew and rare sugars emerged as potential candidates to replace conventional sugars in human nutrition thanks to their beneficial health effects. More recently, the potential use of rare sugars in agriculture was also highlighted. However, overviews and critical evaluations on this topic are missing. This review aims to provide the current knowledge about the effects of rare sugars on the organisms of the farming ecosystem, with an emphasis on their mode of action and practical use as an innovative tool for sustainable agriculture. Some rare sugars can impact the plant growth and immune responses by affecting metabolic homeostasis and the hormonal signaling pathways. These properties could be used for the development of new herbicides, plant growth regulators and resistance inducers. Other rare sugars also showed antinutritional properties on some phytopathogens and biocidal activity against some plant pests, highlighting their promising potential for the development of new sustainable pesticides. Their low risk for human health also makes them safe and ecofriendly alternatives to agrochemicals. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

11 pages, 1212 KiB  
Review
The Medical Relevance of Fusarium spp.
by Herbert Hof
J. Fungi 2020, 6(3), 117; https://doi.org/10.3390/jof6030117 - 24 Jul 2020
Cited by 40 | Viewed by 7708
Abstract
The most important medical relevance of Fusarium spp. is based on their phytopathogenic property, contributing to hunger and undernutrition in the world. A few Fusarium spp., such as F. oxysporum and F. solani, are opportunistic pathogens and can induce local infections, i.e., [...] Read more.
The most important medical relevance of Fusarium spp. is based on their phytopathogenic property, contributing to hunger and undernutrition in the world. A few Fusarium spp., such as F. oxysporum and F. solani, are opportunistic pathogens and can induce local infections, i.e., of nails, skin, eye, and nasal sinuses, as well as occasionally, severe, systemic infections, especially in immunocompromised patients. These clinical diseases are rather difficult to cure by antimycotics, whereby the azoles, such as voriconazole, and liposomal amphotericin B give relatively the best results. There are at least two sources of infection, namely the environment and the gut mycobiome of a patient. A marked impact on human health has the ability of some Fusarium spp. to produce several mycotoxins, for example, the highly active trichothecenes. These mycotoxins may act either as pathogenicity factors, which means that they damage the host and hamper its defense, or as virulence factors, enhancing the aggressiveness of the fungi. Acute intoxications are rare, but chronic exposition by food items is a definite health risk, although in an individual case, it remains difficult to describe the role of mycotoxins for inducing disease. Mycotoxins taken up either by food or produced in the gut may possibly induce an imbalance of the intestinal microbiome. A particular aspect is the utilization of F. venetatum to produce cholesterol-free, protein-rich food items. Full article
(This article belongs to the Special Issue Epidemiology, Diagnosis of Fungal Infections)
Show Figures

Figure 1

15 pages, 1986 KiB  
Article
Aspergillus flavus as a Model System to Test the Biological Activity of Botanicals: An Example on Citrullus colocynthis L. Schrad. Organic Extracts
by Francesca Degola, Belsem Marzouk, Antonella Gori, Cecilia Brunetti, Lucia Dramis, Stefania Gelati, Annamaria Buschini and Francesco M. Restivo
Toxins 2019, 11(5), 286; https://doi.org/10.3390/toxins11050286 - 22 May 2019
Cited by 15 | Viewed by 4170
Abstract
Citrullus colocynthis L. Schrader is an annual plant belonging to the Cucurbitaceae family, widely distributed in the desert areas of the Mediterranean basin. Many pharmacological properties (anti-inflammatory, anti-diabetic, analgesic, anti-epileptic) are ascribed to different organs of this plant; extracts and derivatives of C. [...] Read more.
Citrullus colocynthis L. Schrader is an annual plant belonging to the Cucurbitaceae family, widely distributed in the desert areas of the Mediterranean basin. Many pharmacological properties (anti-inflammatory, anti-diabetic, analgesic, anti-epileptic) are ascribed to different organs of this plant; extracts and derivatives of C. colocynthis are used in folk Berber medicine for the treatment of numerous diseases—such as rheumatism arthritis, hypertension bronchitis, mastitis, and even cancer. Clinical studies aimed at confirming the chemical and biological bases of pharmacological activity assigned to many plant/herb extracts used in folk medicine often rely on results obtained from laboratory preliminary tests. We investigated the biological activity of some C. colocynthis stem, leaf, and root extracts on the mycotoxigenic and phytopathogenic fungus Aspergillus flavus, testing a possible correlation between the inhibitory effect on aflatoxin biosynthesis, the phytochemical composition of extracts, and their in vitro antioxidant capacities. Full article
(This article belongs to the Special Issue Biocontrol Agents and Natural Compounds against Mycotoxinogenic Fungi)
Show Figures

Figure 1

23 pages, 2707 KiB  
Article
Whole Genome Analyses Suggests that Burkholderia sensu lato Contains Two Additional Novel Genera (Mycetohabitans gen. nov., and Trinickia gen. nov.): Implications for the Evolution of Diazotrophy and Nodulation in the Burkholderiaceae
by Paulina Estrada-de los Santos, Marike Palmer, Belén Chávez-Ramírez, Chrizelle Beukes, Emma T. Steenkamp, Leah Briscoe, Noor Khan, Marta Maluk, Marcel Lafos, Ethan Humm, Monique Arrabit, Matthew Crook, Eduardo Gross, Marcelo F. Simon, Fábio Bueno Dos Reis Junior, William B. Whitman, Nicole Shapiro, Philip S. Poole, Ann M. Hirsch, Stephanus N. Venter and Euan K. Jamesadd Show full author list remove Hide full author list
Genes 2018, 9(8), 389; https://doi.org/10.3390/genes9080389 - 1 Aug 2018
Cited by 175 | Viewed by 19633
Abstract
Burkholderia sensu lato is a large and complex group, containing pathogenic, phytopathogenic, symbiotic and non-symbiotic strains from a very wide range of environmental (soil, water, plants, fungi) and clinical (animal, human) habitats. Its taxonomy has been evaluated several times through the analysis of [...] Read more.
Burkholderia sensu lato is a large and complex group, containing pathogenic, phytopathogenic, symbiotic and non-symbiotic strains from a very wide range of environmental (soil, water, plants, fungi) and clinical (animal, human) habitats. Its taxonomy has been evaluated several times through the analysis of 16S rRNA sequences, concantenated 4–7 housekeeping gene sequences, and lately by genome sequences. Currently, the division of this group into Burkholderia, Caballeronia, Paraburkholderia, and Robbsia is strongly supported by genome analysis. These new genera broadly correspond to the various habitats/lifestyles of Burkholderia s.l., e.g., all the plant beneficial and environmental (PBE) strains are included in Paraburkholderia (which also includes all the N2-fixing legume symbionts) and Caballeronia, while most of the human and animal pathogens are retained in Burkholderia sensu stricto. However, none of these genera can accommodate two important groups of species. One of these includes the closely related Paraburkholderia rhizoxinica and Paraburkholderia endofungorum, which are both symbionts of the fungal phytopathogen Rhizopus microsporus. The second group comprises the Mimosa-nodulating bacterium Paraburkholderia symbiotica, the phytopathogen Paraburkholderia caryophylli, and the soil bacteria Burkholderia dabaoshanensis and Paraburkholderia soli. In order to clarify their positions within Burkholderia sensu lato, a phylogenomic approach based on a maximum likelihood analysis of conserved genes from more than 100 Burkholderia sensu lato species was carried out. Additionally, the average nucleotide identity (ANI) and amino acid identity (AAI) were calculated. The data strongly supported the existence of two distinct and unique clades, which in fact sustain the description of two novel genera Mycetohabitans gen. nov. and Trinickia gen. nov. The newly proposed combinations are Mycetohabitans endofungorum comb. nov., Mycetohabitansrhizoxinica comb. nov., Trinickia caryophylli comb. nov., Trinickiadabaoshanensis comb. nov., Trinickia soli comb. nov., and Trinickiasymbiotica comb. nov. Given that the division between the genera that comprise Burkholderia s.l. in terms of their lifestyles is often complex, differential characteristics of the genomes of these new combinations were investigated. In addition, two important lifestyle-determining traits—diazotrophy and/or symbiotic nodulation, and pathogenesis—were analyzed in depth i.e., the phylogenetic positions of nitrogen fixation and nodulation genes in Trinickia via-à-vis other Burkholderiaceae were determined, and the possibility of pathogenesis in Mycetohabitans and Trinickia was tested by performing infection experiments on plants and the nematode Caenorhabditis elegans. It is concluded that (1) T. symbiotica nif and nod genes fit within the wider Mimosa-nodulating Burkholderiaceae but appear in separate clades and that T. caryophyllinif genes are basal to the free-living Burkholderia s.l. strains, while with regard to pathogenesis (2) none of the Mycetohabitans and Trinickia strains tested are likely to be pathogenic, except for the known phytopathogen T. caryophylli. Full article
(This article belongs to the Special Issue Genetics and Genomics of the Rhizobium-Legume Symbiosis)
Show Figures

Figure 1

Back to TopTop