Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (22,746)

Search Parameters:
Keywords = climatic modeling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 413 KiB  
Article
Institutional Ownership and Climate-Related Disclosures in Malaysia: The Moderating Role of Sustainability Committees
by Heba Mousa Mousa Hikal, Abbas Abdelrahman Adam Abdalla, Iman Babiker, Aida Osman Abdalla Bilal, Bashir Bakri Agib Babiker, Abubkr Ahmed Elhadi Abdelraheem and Shadia Daoud Gamer
Sustainability 2025, 17(14), 6528; https://doi.org/10.3390/su17146528 - 16 Jul 2025
Abstract
This study explores the relationship between institutional shareholders and climate-related disclosure (CRD) and how sustainability committees influence this relationship among publicly listed Malaysian firms. For the analysis, 990 firm-year observations were studied from 198 highly polluting firms from 2021 to 2024. A strong [...] Read more.
This study explores the relationship between institutional shareholders and climate-related disclosure (CRD) and how sustainability committees influence this relationship among publicly listed Malaysian firms. For the analysis, 990 firm-year observations were studied from 198 highly polluting firms from 2021 to 2024. A strong CRD index was designed using the recognized climate reporting frameworks and well-grounded literature to assess the level of climate-related disclosure. Fixed-effects and hierarchical panel regression models show that CRD increases when institutional investor ownership increases, meaning firms with more institutional investors disclose more information on climate-related topics. In addition, a sustainability committee at the board level greatly improves this relationship by highlighting the positive impact of strong internal governance. As a result, such committees establish climate management and improve communication with investors, making the firm’s actions more transparent. The findings of this study are consistent with agency and legitimacy theories because institutional investors assist in monitoring firms’ environmental performance, and sustainability committees help the company maintain these standards internally. Further, this study helps grow the understanding of corporate governance (CG) and sustainability by pointing out that the presence of institutional owners and sustainability committees can promote openness about climate matters. Accordingly, these findings can guide policymakers, investors, and business leaders in boosting responsible environmental reporting and sustainable business practices in developing countries. Full article
25 pages, 7522 KiB  
Article
Quantitative Estimation of Vegetation Carbon Source/Sink and Its Response to Climate Variability and Anthropogenic Activities in Dongting Lake Wetland, China
by Mengshen Guo, Nianqing Zhou, Yi Cai, Xihua Wang, Xun Zhang, Shuaishuai Lu, Kehao Liu and Wengang Zhao
Remote Sens. 2025, 17(14), 2475; https://doi.org/10.3390/rs17142475 - 16 Jul 2025
Abstract
Wetlands are critical components of the global carbon cycle, yet their carbon sink dynamics under hydrological fluctuations remain insufficiently understood. This study employed the Carnegie-Ames-Stanford Approach (CASA) model to estimate the net ecosystem productivity (NEP) of the Dongting Lake wetland and explored the [...] Read more.
Wetlands are critical components of the global carbon cycle, yet their carbon sink dynamics under hydrological fluctuations remain insufficiently understood. This study employed the Carnegie-Ames-Stanford Approach (CASA) model to estimate the net ecosystem productivity (NEP) of the Dongting Lake wetland and explored the spatiotemporal dynamics and driving mechanisms of carbon sinks from 2000 to 2022, utilizing the Theil-Sen median trend, Mann-Kendall test, and attribution based on the differentiating equation (ADE). Results showed that (1) the annual mean spatial NEP was 50.24 g C/m2/a, which first increased and then decreased, with an overall trend of −1.5 g C/m2/a. The carbon sink was strongest in spring, declined in summer, and shifted to a carbon source in autumn and winter. (2) Climate variability and human activities contributed +2.17 and −3.73 g C/m2/a to NEP, respectively. Human activities were the primary driver of carbon sink degradation (74.30%), whereas climate change mainly promoted carbon sequestration (25.70%). However, from 2000–2011 to 2011–2022, climate change shifted from enhancing to limiting carbon sequestration, mainly due to the transition from water storage and lake reclamation to ecological restoration policies and intensified climate anomalies. (3) NEP was negatively correlated with precipitation and water level. Land use adjustments, such as forest expansion and conversion of cropland and reed to sedge, alongside maintaining growing season water levels between 24.06~26.44 m, are recommended to sustain and enhance wetland carbon sinks. Despite inherent uncertainties in model parameterization and the lack of sufficient in situ flux validation, these findings could provide valuable scientific insights for wetland carbon management and policy-making. Full article
Show Figures

Figure 1

32 pages, 20641 KiB  
Article
Mechanical Properties and Failure Mechanisms of Sandstone Under Combined Action of Cyclic Loading and Freeze–Thaw
by Taoying Liu, Huaheng Li, Longjun Dong and Ping Cao
Appl. Sci. 2025, 15(14), 7942; https://doi.org/10.3390/app15147942 - 16 Jul 2025
Abstract
In high-elevation mining areas, the roadbeds of certain surface ore haul roads are predominantly composed of sandstone. These sandstones are exposed to cold climatic conditions for long periods and are highly susceptible to erosion by the effects of freeze–thaw, which can degrade their [...] Read more.
In high-elevation mining areas, the roadbeds of certain surface ore haul roads are predominantly composed of sandstone. These sandstones are exposed to cold climatic conditions for long periods and are highly susceptible to erosion by the effects of freeze–thaw, which can degrade their support properties. This paper investigates the mechanism of strength deterioration of sandstone containing prefabricated cracks under cyclic loading and unloading after experiencing freeze–thaw. Sandstone specimens containing prefabricated cracks were prepared and subjected to 0, 20, 40, 60, and 80 freeze–thaw cycle tests. The strength changes were tested, and the crack extension process was analyzed using numerical simulation techniques. The study results show the following: 1. The wave propagation speed within the sandstone is more sensitive to changes in the number of freeze–thaw cycles. In contrast, mass damage shows significant changes only when more freeze–thaw cycles are experienced. 2. As the number of freeze–thaw cycles increases, the frequency of energy release from the numerical model accelerates. 3. The trend of the Cumulative Strain Difference (εc) reflects that the plastic strain difference between numerical simulation and actual measurement gradually decreases with increasing stress cycle level. 4. With the increase in freeze–thaw cycles, the damage morphology of the specimen undergoes a noticeable change, which is gradually transformed from monoclinic shear damage to X-shaped conjugate surface shear damage. 5. The number of tensile cracks dominated throughout the cyclic loading and unloading process, but with the increase in freeze–thaw cycles, the percentage of shear cracks increased. As the freeze–thaw cycles increase, sandstones are more inclined to undergo shear damage. These findings are important guidelines for road design and maintenance in alpine mining areas. Full article
Show Figures

Figure 1

19 pages, 677 KiB  
Article
Rural Entrepreneurs and Forest Futures: Pathways to Emission Reduction and Sustainable Energy
by Ephraim Daka
Sustainability 2025, 17(14), 6526; https://doi.org/10.3390/su17146526 - 16 Jul 2025
Abstract
Rural areas around the world are increasingly dealing with energy and environmental challenges. These challenges are particularly acute in developing countries, where persistent reliance on traditional energy sources—such as wood fuel—intersects with concerns about forest conservation and energy sustainability. While wood fuel use [...] Read more.
Rural areas around the world are increasingly dealing with energy and environmental challenges. These challenges are particularly acute in developing countries, where persistent reliance on traditional energy sources—such as wood fuel—intersects with concerns about forest conservation and energy sustainability. While wood fuel use is often portrayed as unsustainable, it is important to acknowledge that much of it remains ecologically viable and socially embedded. This study explores the role of rural entrepreneurs in shaping low-carbon transitions at the intersection of household energy practices and environmental stewardship. Fieldwork was carried out in four rural Zambian communities in 2016 and complemented by 2024 follow-up reports. It examines the connections between household energy choices, greenhouse gas emissions, and forest resource dynamics. Findings reveal that over 60% of rural households rely on charcoal for cooking, with associated emissions estimated between 80 and 150 kg CO2 per household per month. Although this is significantly lower than the average per capita carbon footprint in industrialized countries, such emissions are primarily biogenic in nature. While rural communities contribute minimally to global climate change, their practices have significant local environmental consequences. This study draws attention to the structural constraints as well as emerging opportunities within Zambia’s rural energy economy. It positions rural entrepreneurs not merely as policy recipients but as active agents of innovation, environmental monitoring, and participatory resource governance. A model is proposed to support sustainable rural energy transitions by aligning forest management with context-sensitive emissions strategies. Full article
20 pages, 2707 KiB  
Article
Quantifying Multifactorial Drivers of Groundwater–Climate Interactions in an Arid Basin Based on Remote Sensing Data
by Zheng Lu, Chunying Shen, Cun Zhan, Honglei Tang, Chenhao Luo, Shasha Meng, Yongkai An, Heng Wang and Xiaokang Kou
Remote Sens. 2025, 17(14), 2472; https://doi.org/10.3390/rs17142472 - 16 Jul 2025
Abstract
Groundwater systems are intrinsically linked to climate, with changing conditions significantly altering recharge, storage, and discharge processes, thereby impacting water availability and ecosystem integrity. Critical knowledge gaps persist regarding groundwater equilibrium timescales, water table dynamics, and their governing factors. This study develops a [...] Read more.
Groundwater systems are intrinsically linked to climate, with changing conditions significantly altering recharge, storage, and discharge processes, thereby impacting water availability and ecosystem integrity. Critical knowledge gaps persist regarding groundwater equilibrium timescales, water table dynamics, and their governing factors. This study develops a novel remote sensing framework to quantify factor controls on groundwater–climate interaction characteristics in the Heihe River Basin (HRB). High-resolution (0.005° × 0.005°) maps of groundwater response time (GRT) and water table ratio (WTR) were generated using multi-source geospatial data. Employing Geographical Convergent Cross Mapping (GCCM), we established causal relationships between GRT/WTR and their drivers, identifying key influences on groundwater dynamics. Generalized Additive Models (GAM) further quantified the relative contributions of climatic (precipitation, temperature), topographic (DEM, TWI), geologic (hydraulic conductivity, porosity, vadose zone thickness), and vegetative (NDVI, root depth, soil water) factors to GRT/WTR variability. Results indicate an average GRT of ~6.5 × 108 years, with 7.36% of HRB exhibiting sub-century response times and 85.23% exceeding 1000 years. Recharge control dominates shrublands, wetlands, and croplands (WTR < 1), while topography control prevails in forests and barelands (WTR > 1). Key factors collectively explain 86.7% (GRT) and 75.9% (WTR) of observed variance, with spatial GRT variability driven primarily by hydraulic conductivity (34.3%), vadose zone thickness (13.5%), and precipitation (10.8%), while WTR variation is controlled by vadose zone thickness (19.2%), topographic wetness index (16.0%), and temperature (9.6%). These findings provide a scientifically rigorous basis for prioritizing groundwater conservation zones and designing climate-resilient water management policies in arid endorheic basins, with our high-resolution causal attribution framework offering transferable methodologies for global groundwater vulnerability assessments. Full article
(This article belongs to the Special Issue Remote Sensing for Groundwater Hydrology)
Show Figures

Figure 1

34 pages, 3212 KiB  
Article
Ecological Status of the Small Rivers of the East Kazakhstan Region
by Natalya Seraya, Gulzhan Daumova, Olga Petrova, Ricardo Garcia-Mira and Arina Polyakova
Sustainability 2025, 17(14), 6525; https://doi.org/10.3390/su17146525 - 16 Jul 2025
Abstract
The article presents a long-term assessment of the surface water quality of six small rivers in the East Kazakhstan region (Breksa, Tikhaya, Ulba, Glubochanka, Krasnoyarka, and Oba) based on hydrochemical monitoring data from the Kazhydromet State Enterprise for the period 2017–2024. A unified [...] Read more.
The article presents a long-term assessment of the surface water quality of six small rivers in the East Kazakhstan region (Breksa, Tikhaya, Ulba, Glubochanka, Krasnoyarka, and Oba) based on hydrochemical monitoring data from the Kazhydromet State Enterprise for the period 2017–2024. A unified water quality classification system was applied, along with statistical methods, including multiple linear regression. The Glubochanka and Krasnoyarka rivers were identified as the most polluted (reaching classes 4–5), with multiple exceedances of Zn (up to 2.96 mg/dm3), Cd (up to 0.8 mg/dm3), and Cu (up to 0.051 mg/dm3). The most stable and highest water quality was recorded in the Oba River, where from 2021 to 2024, water consistently corresponded to Class 2. Regression models of water quality class as a function of time and annual precipitation were constructed to assess the influence of climatic factors. Statistical analysis revealed no consistent linear correlation between average annual precipitation and water quality (correlation coefficients ranging from −0.49 to +0.37), indicating a complex interplay between climatic and anthropogenic factors. Significant relationships were found for the Breksa (R2 = 0.903), Glubochanka (R2 = 0.602), and Tikhaya (R2 = 0.555) rivers, suggesting an influence of temporal and climatic factors on water quality. In contrast, the Oba (R2 = 0.130), Ulba (R2 = 0.100), and Krasnoyarka (R2 = 0.018) rivers exhibited low coefficients, indicating the predominance of other, likely local, sources of pollution. It was found that summer periods are characterized by the highest pollution due to low water flow, while episodes of acid runoff occur in spring. A decrease in pH below 7.0 was first recorded in 2023–2024 in the Ulba and Tikhaya rivers. Forecasts to 2030 suggest relative stability in water quality under current climatic conditions; however, by 2050, the risk of water quality deterioration is expected to rise due to increased precipitation and extreme weather events. This study presents, for the first time, a systematic long-term analysis of small rivers in the East Kazakhstan region, offering deeper insight into the dynamics of surface water quality and providing a scientific foundation for developing adaptive strategies for the protection and sustainable use of water resources under climate change and anthropogenic pressure. The results emphasize the importance of prioritizing rivers with high variability in water quality for regular monitoring and the development of adaptive conservation measures. The research holds strong applied significance for shaping a sustainable water use strategy in the region. Full article
21 pages, 5333 KiB  
Article
Climate Extremes, Vegetation, and Lightning: Regional Fire Drivers Across Eurasia and North America
by Flavio Justino, David H. Bromwich, Jackson Rodrigues, Carlos Gurjão and Sheng-Hung Wang
Fire 2025, 8(7), 282; https://doi.org/10.3390/fire8070282 - 16 Jul 2025
Abstract
This study examines the complex interactions among soil moisture, evaporation, extreme weather events, and lightning, and their influence on fire activity across the extratropical and Pan-Arctic regions. Leveraging reanalysis and remote-sensing datasets from 2000 to 2020, we applied cross-correlation analysis, a modified Mann–Kendall [...] Read more.
This study examines the complex interactions among soil moisture, evaporation, extreme weather events, and lightning, and their influence on fire activity across the extratropical and Pan-Arctic regions. Leveraging reanalysis and remote-sensing datasets from 2000 to 2020, we applied cross-correlation analysis, a modified Mann–Kendall trend test, and assessments of interannual variability to key variables including soil moisture, fire frequency and risk, evaporation, and lightning. Results indicate a significant increase in dry days (up to 40%) and heatwave events across Central Eurasia and Siberia (up to 50%) and Alaska (25%), when compared to the 1980–2000 baseline. Upward trends have been detected in evaporation across most of North America, consistent with soil moisture trends, while much of Eurasia exhibits declining soil moisture. Fire danger shows a strong positive correlation with evaporation north of 60° N (r ≈ 0.7, p ≤ 0.005), but a negative correlation in regions south of this latitude. These findings suggest that in mid-latitude ecosystems, fire activity is not solely driven by water stress or atmospheric dryness, highlighting the importance of region-specific surface–atmosphere interactions in shaping fire regimes. In North America, most fires occur in temperate grasslands, savannas, and shrublands (47%), whereas in Eurasia, approximately 55% of fires are concentrated in forests/taiga and temperate open biomes. The analysis also highlights that lightning-related fires are more prevalent in Eastern Europe and Southeastern Asia. In contrast, Western North America exhibits high fire incidence in temperate conifer forests despite relatively low lightning activity, indicating a dominant role of anthropogenic ignition. These findings underscore the importance of understanding land–atmosphere interactions in assessing fire risk. Integrating surface conditions, climate extremes, and ignition sources into fire prediction models is crucial for developing more effective wildfire prevention and management strategies. Full article
(This article belongs to the Section Fire Science Models, Remote Sensing, and Data)
Show Figures

Graphical abstract

15 pages, 3200 KiB  
Review
Research Hotspots and Trends in Soil Infiltration at the Watershed Scale Using the SWAT Model: A Bibliometric Analysis
by Yuxin Ouyang, S. M. Asik Ullah and Chika Takatori
Water 2025, 17(14), 2119; https://doi.org/10.3390/w17142119 - 16 Jul 2025
Abstract
Understanding soil infiltration at the watershed level is crucial to hydrological studies, as it significantly influences surface runoff, groundwater replenishment, and ecosystem sustainability. Research in this area—particularly employing the Soil and Water Assessment Tool (SWAT)—has seen sustained scholarly interest, with an upward trend [...] Read more.
Understanding soil infiltration at the watershed level is crucial to hydrological studies, as it significantly influences surface runoff, groundwater replenishment, and ecosystem sustainability. Research in this area—particularly employing the Soil and Water Assessment Tool (SWAT)—has seen sustained scholarly interest, with an upward trend in related publications. This study analyzed 141 peer-reviewed articles from the Web of Science (WOS) Core Collection. By applying bibliometric techniques through CiteSpace visualization software, it explored the key themes and emerging directions in the use of the SWAT model for soil infiltration studies across watersheds. Findings revealed that this field integrates multiple disciplines. Notably, the Journal of Hydrology and Hydrological Processes emerged as two of the most impactful publication venues. Researchers and institutions from the United States, China, and Ethiopia were the core contributors to this area. “Land use” and “climate change” are currently the hotspots of interest in this field. There are three development trends: (1) The scale of research is continuously expanding. (2) The research subjects are diversified, ranging from initially focusing on agricultural watersheds to surrounding areas such as hillsides, grasslands, and forests. (3) The research content becomes more systematic, emphasizing regional coordination and ecological sustainability. Overall, the research on soil infiltration at the watershed scale using the SWAT model presents a promising and thriving field. This study provides researchers with a framework that objectively presents the research hotspots and trends in this area, serving as a valuable resource for advancing academic inquiry in this domain. Full article
Show Figures

Figure 1

19 pages, 4022 KiB  
Article
Optical Monitoring of Particulate Matter: Calibration Approach, Seasonal and Diurnal Dependency, and Impact of Meteorological Vectors
by Salma Zaim, Bouchra Laarabi, Hajar Chamali, Abdelouahed Dahrouch, Asmae Arbaoui, Khalid Rahmani, Abdelfettah Barhdadi and Mouhaydine Tlemçani
Environments 2025, 12(7), 244; https://doi.org/10.3390/environments12070244 - 16 Jul 2025
Abstract
The worldwide air pollution situation reveals significant environmental challenges. In addition to being a major contributor to the deterioration of air quality, particulate matter (PM) is also an important factor affecting the performance of solar energy systems given its ability to decrease light [...] Read more.
The worldwide air pollution situation reveals significant environmental challenges. In addition to being a major contributor to the deterioration of air quality, particulate matter (PM) is also an important factor affecting the performance of solar energy systems given its ability to decrease light transmission to solar panels. As part of our research, the present investigation involves monitoring concentrations of PM using a high-performance optical instrument, the in situ calibration protocol of which is described in detail. For the city of Rabat, observations revealed significant variations in concentrations between day and night, with peaks observed around 8 p.m. correlating with high relative humidity and low wind speeds, and the highest levels recorded in February with a monthly average value reaching 75 µm/m3. In addition, an experimental protocol was set up for an analysis of the elemental composition of particles in the same city using SEM/EDS, providing a better understanding of their morphology. To assess the impact of meteorological variables on PM concentrations in two distinct climatic environments, a database from the city of Marrakech for the year 2024 was utilized. Overall, the distribution of PM values during this period did not fluctuate significantly, with a monthly average value not exceeding 45 µm/m3. The random forest method identified the most influential variables on these concentrations, highlighting the strong influence of the type of environment. The findings provide crucial information for the modeling of solar installations’ soiling and for improving understanding of local air quality. Full article
Show Figures

Graphical abstract

23 pages, 3626 KiB  
Article
A Framework for Predicting Winter Wheat Yield in Northern China with Triple Cross-Attention and Multi-Source Data Fusion
by Shuyan Pan and Liqun Liu
Plants 2025, 14(14), 2206; https://doi.org/10.3390/plants14142206 - 16 Jul 2025
Abstract
To solve the issue that existing yield prediction methods do not fully capture the interaction between multiple factors, we propose a winter wheat yield prediction framework with triple cross-attention for multi-source data fusion. This framework consists of three modules: a multi-source data processing [...] Read more.
To solve the issue that existing yield prediction methods do not fully capture the interaction between multiple factors, we propose a winter wheat yield prediction framework with triple cross-attention for multi-source data fusion. This framework consists of three modules: a multi-source data processing module, a multi-source feature fusion module, and a yield prediction module. The multi-source data processing module collects satellite, climate, and soil data based on the winter wheat planting range, and constructs a multi-source feature sequence set by combining statistical data. The multi-source feature fusion module first extracts deeper-level feature information based on the characteristics of different data, and then performs multi-source feature fusion through a triple cross-attention fusion mechanism. The encoder part in the production prediction module adds a graph attention mechanism, forming a dual branch with the original multi-head self-attention mechanism to ensure the capture of global dependencies while enhancing the preservation of local feature information. The decoder section generates the final predicted output. The results show that: (1) Using 2021 and 2022 as test sets, the mean absolute error of our method is 385.99 kg/hm2, and the root mean squared error is 501.94 kg/hm2, which is lower than other methods. (2) It can be concluded that the jointing-heading stage (March to April) is the most crucial period affecting winter wheat production. (3) It is evident that our model has the ability to predict the final winter wheat yield nearly a month in advance. Full article
(This article belongs to the Section Plant Modeling)
44 pages, 4778 KiB  
Review
Simulation of Urban Thermal Environment Based on Urban Weather Generator: Narrative Review
by Long He, Xiao-Wei Geng, Hong-Yuan Huo, Yi Lian, Qianrui Xi, Wei Feng, Min-Cheng Tu and Pei Leng
Urban Sci. 2025, 9(7), 275; https://doi.org/10.3390/urbansci9070275 - 16 Jul 2025
Abstract
The thermal environment problem is one of the main focuses of current urban environment research. At present, there are various methods used in urban space thermal environment (USTE) research. As a simulation method to quantify the USTE, the urban weather generator (UWG) has [...] Read more.
The thermal environment problem is one of the main focuses of current urban environment research. At present, there are various methods used in urban space thermal environment (USTE) research. As a simulation method to quantify the USTE, the urban weather generator (UWG) has undergone great development and achieved many progressive results. It is necessary to establish and review its current research status by synthesizing UWG multi-scale applications. This review adopts a literature review approach, leveraging the Web of Science Core Collection to obtain previous relevant publications from 2010 to 2025 using “urban weather generator” and “thermal environment” as keywords. The literature is categorized by research themes, including model development, parameter optimization, and application cases. Through innovative analyses of spatio-temporal-scale classification, parameter optimization, the integration of anthropogenic heat emissions, and the multi-domain simulation potential of the UWG, this review synthesizes the application outcomes of the UWG model in multi-scale research, addressing gaps in current urban climate studies. The paper aims to elaborate and analyze the model’s current research status considering the following six aspects. First, the basic parameters in UWG simulation are introduced, including the data and parameter determination settings used in such simulations. Secondly, we introduce the simulation model and its basic principles, the simulation process, and the main steps of this process. Third, we classify and define UWG simulations of spatial thermal environments at different time scales and spatial scales. Fourth, regarding how to improve the accuracy of the UWG model, the deterministic parameters and uncertainty parameters settings are analyzed, respectively. Then, the impacts of anthropogenic heat during the simulation process are also discussed. Fifth, the applications of the UWG model in some major fields and its possible future development directions are addressed. Finally, the existing problems are summarized, the future development trends are prospected, and research on possible expected mitigation measures for the USTE is described. Full article
Show Figures

Figure 1

36 pages, 3457 KiB  
Article
Evaluating CHIRPS and ERA5 for Long-Term Runoff Modelling with SWAT in Alpine Headwaters
by Damir Bekić and Karlo Leskovar
Water 2025, 17(14), 2116; https://doi.org/10.3390/w17142116 - 16 Jul 2025
Abstract
Reliable gridded precipitation products (GPPs) are essential for effective hydrological simulations, particularly in mountainous regions with limited ground-based observations. This study evaluates the performance of two widely used GPPs, CHIRPS and ERA5, in estimating precipitation and supporting runoff generation using the Soil and [...] Read more.
Reliable gridded precipitation products (GPPs) are essential for effective hydrological simulations, particularly in mountainous regions with limited ground-based observations. This study evaluates the performance of two widely used GPPs, CHIRPS and ERA5, in estimating precipitation and supporting runoff generation using the Soil and Water Assessment Tool (SWAT) across three headwater catchments (Sill, Drava and Isel) in the Austrian Alps from 1991 to 2018. The region’s complex topography and climatic variability present a rigorous test for GPP application. The evaluation methods combined point-to-point comparisons with gauge observations and assessments of generated runoff and runoff trends at annual, seasonal and monthly scales. CHIRPS showed a lower precipitation error (RMAE = 25%) and generated more consistent runoff results (RMAE = 12%), particularly in smaller catchments, whereas ERA5 showed higher spatial consistency but higher overall precipitation bias (RMAE = 37%). Although both datasets successfully reproduced the seasonal runoff regime, CHIRPS outperformed ERA5 in trend detection and monthly runoff estimates. Both GPPs systematically overestimate annual and seasonal precipitation amounts, especially at lower elevations and during the cold season. The results highlight the critical influence of GPP spatial resolution and its alignment with catchment morphology on model performance. While both products are viable alternatives to observed precipitation, CHIRPS is recommended for hydrological modelling in smaller, topographically complex alpine catchments due to its higher spatial resolution. Despite its higher precipitation bias, ERA5’s superior correlation with observations suggests strong potential for improved model performance if bias correction techniques are applied. The findings emphasize the importance of selecting GPPs based on the scale and geomorphological and climatic conditions of the study area. Full article
(This article belongs to the Special Issue Use of Remote Sensing Technologies for Water Resources Management)
Show Figures

Figure 1

19 pages, 1404 KiB  
Article
Comprehensive Evaluation of the Resilience of China’s Oil and Gas Industry Chain: Analysis and Thinking from Multiple Perspectives
by Yanqiu Wang, Lixia Yao, Xiangyun Li and Zhaoguo Qin
Sustainability 2025, 17(14), 6505; https://doi.org/10.3390/su17146505 - 16 Jul 2025
Abstract
Enhancing the resilience of the oil and gas industry chain is essential for achieving sustainable energy development amid global industrial restructuring and the accelerating low-carbon transformation. This study identifies the core contradictions in the development of China’s OGI and constructs a comprehensive evaluation [...] Read more.
Enhancing the resilience of the oil and gas industry chain is essential for achieving sustainable energy development amid global industrial restructuring and the accelerating low-carbon transformation. This study identifies the core contradictions in the development of China’s OGI and constructs a comprehensive evaluation index system to assess the resilience of the industry from the four sustainability-aligned dimensions of resistance, recovery, innovation, and transformation. Using the entropy weight comprehensive evaluation model, obstacle degree model, and coupling coordination degree model, the resilience performance of China’s OGI chain is evaluated from 2001 to 2022. The results show a significant upward trend in overall resilience, with evident stage characteristics. Resistance remains relatively stable, recovery shows the most improvement, innovation steadily increases, and transformation accelerates after 2019, particularly in response to China’s dual carbon goals. Key barriers include limited CCUS deployment and insufficient downstream innovation capacity. The improved coupling coordination among resilience subsystems highlights enhanced systemic synergy. These findings offer valuable implications for strengthening the sustainability and security of energy supply chains under climate and geopolitical pressures. Full article
Show Figures

Figure 1

20 pages, 29094 KiB  
Article
Retrieval of Cloud, Atmospheric, and Surface Properties from Far-Infrared Spectral Radiances Measured by FIRMOS-B During the 2022 HEMERA Stratospheric Balloon Campaign
by Gianluca Di Natale, Claudio Belotti, Marco Barucci, Marco Ridolfi, Silvia Viciani, Francesco D’Amato, Samuele Del Bianco, Bianca Maria Dinelli and Luca Palchetti
Remote Sens. 2025, 17(14), 2458; https://doi.org/10.3390/rs17142458 - 16 Jul 2025
Abstract
The knowledge of the radiative properties of clouds and the atmospheric state is of fundamental importance in modelling phenomena in numerical weather predictions and climate models. In this study, we show the results of the retrieval of cloud properties, along with the atmospheric [...] Read more.
The knowledge of the radiative properties of clouds and the atmospheric state is of fundamental importance in modelling phenomena in numerical weather predictions and climate models. In this study, we show the results of the retrieval of cloud properties, along with the atmospheric state and the surface temperature, from far-infrared spectral radiances, in the 100–1000 cm−1 range, measured by the Far-Infrared Radiation Mobile Observation System-Balloon version (FIRMOS-B) spectroradiometer from a stratospheric balloon launched from Timmins (Canada) in August 2022 within the HEMERA 3 programme. The retrieval study is performed with the Optimal Estimation inversion approach, using three different forward models and retrieval codes to compare the results. Cloud optical depth, particle effective size, and cloud top height are retrieved with good accuracy, despite the relatively high measurement noise of the FIRMOS-B observations used for this study. The retrieved atmospheric profiles, computed simultaneously with cloud parameters, are in good agreement with both co-located radiosonde measurements and ERA-5 profiles, under all-sky conditions. The findings are very promising for the development of an optimised retrieval procedure to analyse the high-precision FIR spectral measurements, which will be delivered by the ESA FORUM mission. Full article
Show Figures

Figure 1

31 pages, 16050 KiB  
Article
Biomimetic Opaque Ventilated Façade for Low-Rise Buildings in Hot Arid Climate
by Ahmed Alyahya, Simon Lannon and Wassim Jabi
Buildings 2025, 15(14), 2491; https://doi.org/10.3390/buildings15142491 - 16 Jul 2025
Abstract
Enhancing the thermal performance of building façades is vital for reducing energy demand in hot desert climates, where envelope heat gain increases cooling loads. This study investigates the integration of biomimicry into opaque ventilated façade (OVF) systems as a novel approach to reduce [...] Read more.
Enhancing the thermal performance of building façades is vital for reducing energy demand in hot desert climates, where envelope heat gain increases cooling loads. This study investigates the integration of biomimicry into opaque ventilated façade (OVF) systems as a novel approach to reduce façade surface temperatures. Thirteen bio-inspired façade configurations, modeled after strategies observed in nature, were evaluated using computational fluid dynamics simulations to assess their effectiveness in increasing airflow and reducing inner skin surface temperatures. Results show that all proposed biomimetic solutions outperformed the baseline OVF in terms of thermal performance, with the wide top mound configuration achieving the greatest temperature reduction—up to 5.9 °C below the baseline OVF and 16.4 °C below an unventilated façade. The study introduces an innovative methodology that derives façade design parameters from nature and validates them through simulation. These findings highlight the potential of nature-based solutions to improve building envelope performance in extreme climates. Full article
Show Figures

Figure 1

Back to TopTop