Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (156)

Search Parameters:
Keywords = climate legacy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 8044 KiB  
Article
Transboundary Water–Energy–Food Nexus Management in Major Rivers of the Aral Sea Basin Through System Dynamics Modelling
by Sara Pérez Pérez, Iván Ramos-Diez and Raquel López Fernández
Water 2025, 17(15), 2270; https://doi.org/10.3390/w17152270 - 30 Jul 2025
Viewed by 202
Abstract
Central Asia (CA) faces growing Water–Energy–Food (WEF) Nexus challenges, due to its complex transboundary water management, legacy Soviet-era water infrastructure, and increasing climate and socio-economic pressures. This study presents the development of a System Dynamics Model (SDM) to evaluate WEF interdependencies across the [...] Read more.
Central Asia (CA) faces growing Water–Energy–Food (WEF) Nexus challenges, due to its complex transboundary water management, legacy Soviet-era water infrastructure, and increasing climate and socio-economic pressures. This study presents the development of a System Dynamics Model (SDM) to evaluate WEF interdependencies across the Aral Sea Basin (ASB), including the Amu Darya and Syr Darya river basins and their sub-basins. Different downscaling strategies based on the area, population, or land use have been applied to process open-access databases at the national level in order to match the scope of the study. Climate and socio-economic assumptions were introduced through the integration of already defined Shared Socioeconomic Pathways (SSPs) and Representative Concentration Pathways (RCPs). The resulting SDM incorporates more than 500 variables interacting through mathematical relationships to generate comprehensive outputs to understand the WEF Nexus concerns. The SDM was successfully calibrated and validated across three key dimensions of the WEF Nexus: final water discharge to the Aral Sea (Mean Absolute Error, MAE, <5%), energy balance (MAE = 4.6%), and agricultural water demand (basin-wide MAE = 1.2%). The results underscore the human-driven variability of inflows to the Aral Sea and highlight the critical importance of transboundary coordination to enhance future resilience. Full article
Show Figures

Figure 1

19 pages, 3677 KiB  
Article
Land-Use Changes Largely Determine the Trajectory of Plant Species Distributions Under Climatic Uncertainty in a Mediterranean Landscape
by Spyros Tsiftsis, Anna Mastrogianni, Diogenis A. Kiziridis, Fotios Xystrakis, Magdalini Pleniou and Ioannis Tsiripidis
Land 2025, 14(7), 1438; https://doi.org/10.3390/land14071438 - 9 Jul 2025
Viewed by 520
Abstract
We investigated the combined effects of climate and land-use change on plant diversity in northwestern Greece, a region representative of broader European trends in land abandonment. We based our study on comprehensive field data on plants’ distribution and modelling of land-use changes based [...] Read more.
We investigated the combined effects of climate and land-use change on plant diversity in northwestern Greece, a region representative of broader European trends in land abandonment. We based our study on comprehensive field data on plants’ distribution and modelling of land-use changes based on socio-economic trends. We build distribution models for 358 taxa based on current (2015) and future (2055) conditions according to the combinations of three climate and three land-use change scenarios. We compared species distribution changes between current and future conditions for each scenario, and we investigated species trends concerning their ecological indicator values and strategies. Additionally, by analyzing the distribution changes in aggregated differential taxa representing the various plant communities in the study area, we identified patterns of distribution shifts at the community level. Our results indicated more pronounced differences between land-use scenarios than between climate ones, which was attributed to the local scale of the study area, its climatic and physiographic characteristics, and its complex land-use legacy. Both climate and land-use changes drastically reduced the distribution of some species, with species distribution loss exceeding 80% under certain combinations of socioeconomic and climate change scenarios. Species ecological indicator values and strategies showed a buffering effect of forest microclimate against climate change, which, however, may favor only species of forest communities. At the community level, land-use change had again a stronger impact than climate change, with consistent patterns within major vegetation types (forests and open habitats) but contrasting trends between them. Our results highlight the need for appropriate conservation plans to counteract the negative impacts of land abandonment and to take advantage of its positive impacts. Full article
Show Figures

Figure 1

24 pages, 2803 KiB  
Review
Mammal Fauna Changes in Baltic Countries During Last Three Decades
by Linas Balčiauskas, Valdis Pilāts and Uudo Timm
Diversity 2025, 17(7), 464; https://doi.org/10.3390/d17070464 - 1 Jul 2025
Viewed by 623
Abstract
We examined three decades of changes in the mammal fauna of Estonia, Latvia, and Lithuania in the context of climate variability, land use transformation, and anthropogenic pressures. We compiled distributional, abundance, and status data from publications, atlases, official game statistics, and long-term monitoring [...] Read more.
We examined three decades of changes in the mammal fauna of Estonia, Latvia, and Lithuania in the context of climate variability, land use transformation, and anthropogenic pressures. We compiled distributional, abundance, and status data from publications, atlases, official game statistics, and long-term monitoring programs, and we evaluated trends using compound annual growth rates or temporal indices. Our review identified losses such as regional extinctions of garden dormice and European mink, declines in small insectivores (e.g., pond bats and shrews) and herbivores (e.g., Microtus voles), and the contraction of boreal specialists (e.g., Siberian flying squirrels). However, we also identified gains, including increases in ungulate numbers (e.g., roe deer, red deer, fallow deer, moose, and wild boars before African swine fewer outbreak) and the recovery of large carnivores (e.g., wolves and lynxes). Invasions by non-native species (e.g., American mink, raccoon dog, and raccoon) and episodic disturbances, such as African swine fever and the “anthropause” caused by the SARS-CoV-2 pandemic, have further reshaped community composition. The drivers encompass climatic warming, post-socialist forest succession, intensified hunting management, and rewilding policies, with dispersal capacity mediating the responses of species. Our results underscore the dual legacy of historical land use and contemporary climate forcing in structuring the fauna dynamics of Baltic mammal communities in the face of declining specialists and invasive taxa. Full article
(This article belongs to the Special Issue Diversity in 2025)
Show Figures

Figure 1

31 pages, 3056 KiB  
Review
A Review of Key Challenges and Evaluation of Well Integrity in CO2 Storage: Insights from Texas Potential CCS Fields
by Bassel Eissa, Marshall Watson, Nachiket Arbad, Hossein Emadi, Sugan Thiyagarajan, Abdel Rehman Baig, Abdulrahman Shahin and Mahmoud Abdellatif
Sustainability 2025, 17(13), 5911; https://doi.org/10.3390/su17135911 - 26 Jun 2025
Viewed by 751
Abstract
Increasing concern over climate change has made Carbon Capture and Storage (CCS) an important tool. Operators use deep geologic reservoirs as a form of favorable geological storage for long-term CO2 sequestration. However, the success of CCS hinges on the integrity of wells [...] Read more.
Increasing concern over climate change has made Carbon Capture and Storage (CCS) an important tool. Operators use deep geologic reservoirs as a form of favorable geological storage for long-term CO2 sequestration. However, the success of CCS hinges on the integrity of wells penetrating these formations, particularly legacy wells, which often exhibit significant uncertainties regarding cement tops in the annular space between the casing and formation, especially around or below the primary seal. Misalignment of cement plugs with the primary seal increases the risk of CO2 migrating beyond the seal, potentially creating pathways for fluid flow into upper formations, including underground sources of drinking water (USDW). These wells may not be leaking but might fail to meet the legal requirements of some federal and state agencies such as the Environmental Protection Agency (EPA), Railroad Commission of Texas (RRC), California CalGEM, and Pennsylvania DEP. This review evaluates the impact of CO2 exposure on cement and casing integrity including the fluid transport mechanisms, fracture behaviors, and operational stresses such as cyclic loading. Findings revealed that slow fluid circulation and confining pressure, primarily from overburden stress, promote self-sealing through mineral precipitation and elastic crack closure, enhancing well integrity. Sustained casing pressure can be a good indicator of well integrity status. While full-physics models provide accurate leakage prediction, surrogate models offer faster results as risk assessment tools. Comprehensive data collection on wellbore conditions, cement and casing properties, and environmental factors is essential to enhance predictive models, refine risk assessments, and develop effective remediation strategies for the long-term success of CCS projects. Full article
Show Figures

Figure 1

29 pages, 28225 KiB  
Review
Toxic Legacy—Environmental Impacts of Historic Metal Mining and Metallurgy in the Harz Region (Germany) at Local, Regional and Supra-Regional Levels
by Louisa Friederike Steingräber, Friedhart Knolle, Horst Kierdorf, Catharina Ludolphy and Uwe Kierdorf
Environments 2025, 12(7), 215; https://doi.org/10.3390/environments12070215 - 26 Jun 2025
Viewed by 1212
Abstract
As a legacy of historical metal mining and the processing and smelting of metalliferous ores, metal pollution is a serious environmental problem in many areas around the globe. This review summarizes the history, technical development and environmental hazards of historic metal mining and [...] Read more.
As a legacy of historical metal mining and the processing and smelting of metalliferous ores, metal pollution is a serious environmental problem in many areas around the globe. This review summarizes the history, technical development and environmental hazards of historic metal mining and metallurgical activities in the Harz Region (Germany), one of the oldest and most productive mining landscapes in Central Europe. The release of large amounts of metal-containing waste into rivers during historic ore processing and the ongoing leaching of metals from slag heaps, tailings dumps and contaminated soils and sediments are the main sources of metal pollution in the Harz Mountains and its foreland. This pollution extends along river systems with tributaries from the Harz Mountains and can even be detected in mudflats of the North Sea. In addition to fluvial discharges, atmospheric pollution by smelter smoke has led to long-term damage to soils and vegetation in the Harz Region. Currently, the ecological hazards caused by the legacy pollution from historical metal mining and metallurgy in the Harz Region are only partially known, particularly regarding the effects of changes in river ecosystems as a consequence of climate change. This review discusses the complexity and dynamics of human–environment interactions in the Harz Mountains and its surroundings, with a focus on lead (Pb) pollution. The paper also identifies future research directions with respect to metal contamination. Full article
Show Figures

Figure 1

19 pages, 1224 KiB  
Review
Environmental Impact of Wastewater on Surface and Groundwater in Central Asia
by Marzhan S. Kalmakhanova, Assel A. Kurtebayeva, Zhanna T. Tleuova, Bagdat Satybaldiev, Seitzhan A. Orynbayev, Arindam Malakar, Helder T. Gomes and Daniel D. Snow
Sustainability 2025, 17(12), 5370; https://doi.org/10.3390/su17125370 - 11 Jun 2025
Viewed by 647
Abstract
This review aims to increase attention on present water quality issues on Central Asia, finding gaps in the literature on ways to address treatment needs, and help ensure future use of Central Asia surface waters and groundwater for all beneficial uses. Central Asia [...] Read more.
This review aims to increase attention on present water quality issues on Central Asia, finding gaps in the literature on ways to address treatment needs, and help ensure future use of Central Asia surface waters and groundwater for all beneficial uses. Central Asia is a landlocked region known for its harsh climatic conditions and scarce water resources, despite being home to some of the world’s largest internal drainage basins. The available literature suggests that increasing salinity has rendered water unsuitable for irrigation and consumption; hazardous trace elements are found throughout Central Asia, most often associated with mining and industrial sources; and that legacy pesticides influence water quality, particularly in agriculturally influenced basins. This study also focuses on the effects of municipal and industrial wastewater discharge. Additionally, the impact of inadequately treated wastewater on water resources is analyzed through a review of available data and reports regarding surface and groundwater quantity and quality. Given the challenges of water scarcity and accessibility, the reuse of treated wastewater is becoming increasingly important, offering a valuable alternative that necessitates careful oversight to ensure public health, environmental sustainability, and water security. However, due to insufficient financial and technical resources, along with underdeveloped regulatory frameworks, many urban areas lack adequate wastewater treatment facilities, significantly constraining their safe and sustainable reuse. Proper management of wastewater effluent is critical, as it directly influences the quality of both surface and groundwater, which serve as key sources for drinking water and irrigation. Due to their persistent and biologically active nature even at trace levels, we discuss contaminants of emerging concern such as antibiotics, pharmaceuticals, and modern agrochemicals. This review thus highlights gaps in the literature reporting on impacts of wastewater inputs to water quality in Central Asia. It is recommended that future research and efforts should focus on exploring sustainable solutions for water quality management and pollution control to assure environmental sustainability and public health. Full article
Show Figures

Figure 1

27 pages, 6791 KiB  
Review
Holocene Forest Dynamics in Western Mediterranean Islands: Rates, Periodicity, and Trends
by Fabrizio Michelangeli, Elisa De Luca, Donatella Magri, Simone De Santis, Alessandra Celant, Matthieu Ghilardi, Matteo Vacchi, Jordi Revelles, Rita Teresa Melis, Juan Ochando, José Carrión, Roberta Pini, Gabriel Servera-Vives and Federico Di Rita
Forests 2025, 16(5), 808; https://doi.org/10.3390/f16050808 - 13 May 2025
Cited by 1 | Viewed by 847
Abstract
The forest ecosystems of large Mediterranean islands are critical hubs of evolutionary diversity with unique floristic composition and distinctive vegetation patterns reflecting long-term population dynamics and ecological legacies. Mediterranean islands provide invaluable natural archives, preserving crucial insights into the resilience of past forest [...] Read more.
The forest ecosystems of large Mediterranean islands are critical hubs of evolutionary diversity with unique floristic composition and distinctive vegetation patterns reflecting long-term population dynamics and ecological legacies. Mediterranean islands provide invaluable natural archives, preserving crucial insights into the resilience of past forest ecosystems and their responses to climate variability. In this paper, we provide a comprehensive overview of the Holocene vegetation history of major western Mediterranean islands, with the twofold aim of examining the timing, extent, and rates of vegetation changes over the last few thousand years, and evaluating the influence of Rapid Climate Changes (RCCs) on forest ecosystems. The rate of change analysis allowed the identification of a distinct pattern of rapid shifts in forest composition, corresponding to periods of climate instability. These shifts align with the periodicity of Bond events, suggesting synchronicity between changes in forest ecosystems and centennial-scale climatic oscillations at a supra-regional scale. A REDFIT spectral analysis applied to palynological proxies of forest cover changes identified prominent periodicities suggesting a direct influence of solar activity and/or a relation with complex ocean–atmosphere circulation mechanisms triggered by global climate forcings. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

23 pages, 4214 KiB  
Article
The Impacts of Ethanol and Freeze–Thaw Cycling on Arsenic Mobility in a Contaminated Boreal Wetland
by Joseph Radford, Kimber E. Munford, Nadia Mykytczuk and Susan Glasauer
Soil Syst. 2025, 9(2), 37; https://doi.org/10.3390/soilsystems9020037 - 21 Apr 2025
Viewed by 495
Abstract
Pyrite-bearing waste rock from legacy gold mines is a source of elevated arsenic, sulfate, and iron in the surrounding environments due to leaching. Waste rock in environments that experience cold winters is of particular concern because freeze–thaw cycling may mobilize elements through degradation [...] Read more.
Pyrite-bearing waste rock from legacy gold mines is a source of elevated arsenic, sulfate, and iron in the surrounding environments due to leaching. Waste rock in environments that experience cold winters is of particular concern because freeze–thaw cycling may mobilize elements through degradation and release of organic matter and accelerated mineral weathering. In boreal zones, wetlands are common recipients of mine-waste run-off, and microbial processes in wetland soil may promote the retention of mobilized elements, such as arsenic. We investigated the impacts of freeze–thaw cycling and ethanol amendment on soil from an arsenic-contaminated wetland in anoxic microcosms. Ethanol-amended microcosms exhibited enhanced microbial sulfate reduction, leading to sulfide precipitation and increased retention of arsenic in the soil. Sequential extraction studies indicated a shift of arsenic into more stable sulfide-bound fractions. The addition of ethanol significantly increased the growth of Geobacter spp. and other select sulfate-reducing bacteria. Freeze–thaw cycling increased dissolved arsenic over short time periods only and had no detectable impacts on microbial activity. These findings suggest that the use of ethanol as an amendment to wetlands during spring thaw may enhance arsenic sequestration in mining-impacted soils and may provide a viable remediation strategy for cold-climate environments, where seasonal freeze–thaw cycling could otherwise contribute to arsenic mobilization. Full article
(This article belongs to the Special Issue Soil Bioremediation)
Show Figures

Figure 1

21 pages, 4708 KiB  
Review
Challenges to the Sustainability of Urban Cultural Heritage in the Anthropocene: The Case of Suzhou, Yangtze River Delta, China
by Yong Huang and Michael Edward Meadows
Land 2025, 14(4), 778; https://doi.org/10.3390/land14040778 - 4 Apr 2025
Viewed by 1272
Abstract
Among the diverse challenges to the sustainability of China’s rich tangible cultural heritage, climate change, associated with increased temperatures, altered precipitation regimes, and the augmented frequency and magnitude of extreme events, is regarded as one of the most prominent. However, there is a [...] Read more.
Among the diverse challenges to the sustainability of China’s rich tangible cultural heritage, climate change, associated with increased temperatures, altered precipitation regimes, and the augmented frequency and magnitude of extreme events, is regarded as one of the most prominent. However, there is a diverse range of rapidly emerging environmental and socio-economic hazards that threaten cultural heritage in the country but have thus far received scant attention in this context. Without adequate attention and intervention, the sustainability of the country’s historic urban heritage is highly vulnerable. Anthropocene threats to this important legacy include climate change, sea level rise, land subsidence, water and air pollution, rampant urbanization, and tourism. Suzhou, situated in the low-elevation Yangtze River delta within one or two meters of current sea level, lies in the heart of one of the fastest socio-economically developing and urbanizing regions in the world and is especially vulnerable to the range of threats. As one of the jewels in the crown of China’s architectural heritage, Suzhou represents a model case in which to consider the conflicting interests of socio-economic development and environmental and cultural conservation in the context of rapidly changing environmental conditions. In this review, we consider the diverse risks to the sustainability of Suzhou’s cultural heritage posed by these circumstances, highlight key problems, and prioritize the most urgent issues requiring attention. In recognizing the spatial and temporal nature of these multiple challenges, we highlight the need for integrated approaches to safeguard the sustainability of such valuable resources. Moreover, considering the imperative of accelerating progress towards the UN Sustainable Development Goals and reflecting on current theories of sustainable management of urban cultural heritage, we outline the potential policy and practice implications for the conservation of Suzhou’s historic buildings, canals, and gardens. Full article
Show Figures

Figure 1

17 pages, 24696 KiB  
Article
Energy Transition and Heritage in Anthropocene Era—Proposal for a Methodological Analysis at Local Scale
by Belén Pérez-Pérez and Eva Chacón-Linares
Urban Sci. 2025, 9(4), 112; https://doi.org/10.3390/urbansci9040112 - 4 Apr 2025
Viewed by 887
Abstract
In the Anthropocene era, climate change highlights the need to abandon the centralized energy generation model using large installations located far from consumption centers, and to move towards an urban energy transition based on decentralized self-consumption models—both individual and collective—and local energy communities. [...] Read more.
In the Anthropocene era, climate change highlights the need to abandon the centralized energy generation model using large installations located far from consumption centers, and to move towards an urban energy transition based on decentralized self-consumption models—both individual and collective—and local energy communities. These approaches reduce emissions and external dependency, strengthening resilience, urban sustainability, and promoting energy justice and citizen participation. This work aims to develop a model for integrating photovoltaic solar systems in urban centers of high heritage value, combining the protection of cultural legacy with climate change adaptation strategies. A methodology is designed to integrate solar energy into urban areas while respecting cultural heritage in the most reasonable way possible. The proposed methodology consists of carrying out a characterization of the municipalities under study, considering legal, demographic, energy, and heritage aspects. Next, a territorial zoning is proposed that differentiates between protected and unprotected areas in each municipality. Visibility maps are developed to assess the impact of the installations by sector from the main visual consumption points, facilitating differentiated decisions to protect the most sensitive environments. In addition, specific measures are proposed, such as locating the installations in non-visible areas and using materials and techniques adapted to the construction typology, to preserve areas of higher cultural value and to implement energy communities and collective self-consumption outside culturally protected zones. This methodology is applied to two urban areas in the province of Jaén (South of Andalusia): Alcalá la Real and Cazorla, which, due to their different characteristics, demonstrate its versatility and adaptability. It is concluded that the transition toward decentralized models is an effective way to adapt cities to climate change, reinforcing social cohesion, contributing to the fight against energy vulnerability, and protecting historical heritage. Full article
Show Figures

Figure 1

19 pages, 442 KiB  
Article
Nature-Based Solutions as Tradition in India: Lessons for Water Sustainability in the Peri-Urban
by Nandita Singh and Shivangi Shreya
Water 2025, 17(7), 995; https://doi.org/10.3390/w17070995 - 28 Mar 2025
Viewed by 1115
Abstract
The discourse around ‘nature-based solutions’ (NBSs) is quite recent, but this paper contends that, as knowledge and practice, the notion of NBS is not novel. Indigenous and rural communities are known to work closely with nature to fulfil their water needs, eke out [...] Read more.
The discourse around ‘nature-based solutions’ (NBSs) is quite recent, but this paper contends that, as knowledge and practice, the notion of NBS is not novel. Indigenous and rural communities are known to work closely with nature to fulfil their water needs, eke out sustainable livelihoods, and cope with climate variability and the impacts of natural disasters. India is a country where NBS has been a tradition for millennia. Water has been sustainably managed here and related societal challenges successfully met through the use of nature, natural systems, or natural processes within rural as well as urban settings. However, despite the merits, in recent times, many of the old NBSs have come to be neglected and degraded, being increasingly replaced by gray infrastructure. These changes are deepening the water crisis in the country, with the rapidly transforming peri-urban locations being an important area of concern. This paper outlines some of the major NBS forms traditionally established and used in different parts of India. Thereafter, using an integrated analytical framework for assessing sustainability of NBS (developed under project NATWIP), the value of the NBS legacy in India will be analyzed. Finally, the paper proposes important lessons as a way forward for enhancing water sustainability in peri-urban India that is based on the adoption and rejuvenation of the disappearing NBS science in the country. Full article
(This article belongs to the Special Issue Balancing Competing Demands for Sustainable Water Development)
Show Figures

Figure 1

10 pages, 6289 KiB  
Proceeding Paper
Structural Optimisation for Mass Estimation of Large-Aspect-Ratio Wings with Distributed Hybrid Propulsion
by João Carvalho, Rauno Cavallaro and Andrea Cini
Eng. Proc. 2025, 90(1), 85; https://doi.org/10.3390/engproc2025090085 - 27 Mar 2025
Viewed by 389
Abstract
The current commitment towards aviation climate neutrality and decarbonisation is boosting research programmes on disruptive aircraft configurations featuring sustainable powertrains and fuel-efficient airframes. This trend is pushing the design towards high-aspect-ratio wings made of lightweight structures housing distributed propulsion systems. Airframe preliminary sizing [...] Read more.
The current commitment towards aviation climate neutrality and decarbonisation is boosting research programmes on disruptive aircraft configurations featuring sustainable powertrains and fuel-efficient airframes. This trend is pushing the design towards high-aspect-ratio wings made of lightweight structures housing distributed propulsion systems. Airframe preliminary sizing and mass estimation of non-conventional configurations, if performed using legacy methodologies based on experience, gathered with traditional configurations may result in non-optimised and non-viable designs. Therefore, a physics-based optimisation approach may allow more accurate sizing and airframe mass estimation. The methodology suggested in this paper is based on the automatic generation of a global finite element model to estimate the weight and determine a feasible material distribution for the wing box structure of a strut-braced wing configuration by means of size optimisation. Composite materials with defined stacking sequences were assigned to the wing components and structural weight minimised with the aim of offsetting the weight penalties associated with this non-conventional aircraft configuration. Preliminary results suggest that the composite strut-braced wing could achieve a weight reduction of up to 44% compared to a composite cantilever wing with equal aspect ratio of 20. The actual weight reduction is thought to be lower due to potential overestimation of the cantilever configuration. Full article
Show Figures

Figure 1

15 pages, 319 KiB  
Article
“You Two Are the Bad Guys!” Intergenerational Equity, Ecophobia, and Ecocentric Card Games in Disney’s Strange World (2022)
by Roberta Grandi
Humanities 2025, 14(4), 76; https://doi.org/10.3390/h14040076 - 27 Mar 2025
Viewed by 1301
Abstract
Disney’s Strange World (2022) explores the themes of “energy unconscious”, “intergenerational equity”, and “ecophobia”, focusing on the legacy parents leave to their children. The film centers on three generations of men, each representing different attitudes towards nature. Jaeger Clade, the grandfather, embodies colonialist [...] Read more.
Disney’s Strange World (2022) explores the themes of “energy unconscious”, “intergenerational equity”, and “ecophobia”, focusing on the legacy parents leave to their children. The film centers on three generations of men, each representing different attitudes towards nature. Jaeger Clade, the grandfather, embodies colonialist values, viewing nature as a hostile force to be conquered. His son, Searcher, an intensive farmer, sees nature as a battleground between useful beings and pests, focusing on improving society through domestication. In contrast, Ethan, Searcher’s teenage son, adopts an ecocentric perspective. His worldview is expressed through the card game Primal Outpost, where he and his friends embrace symbiosis, interconnectedness, and the rejection of the man-nature divide. Ethan is the first to recognize that their ecosystem is a living organism reminiscent of the Gaia Hypothesis, advocating for a paradigm shift that the older generations fail to grasp. The article analyzes Strange World as a cli-fi allegory, urging humanity to choose between being parasitic destroyers or symbiotic contributors to ecological recovery. The film, while offering a simplified solution to climate change, presents a comic apocalyptic vision where youth-driven hope for change challenges older, ecophobic attitudes and offers a transformative, ecotopian message. Full article
16 pages, 719 KiB  
Review
Local Public Works Management for Sustainable Cities: The United States Experience
by Neil S. Grigg
Urban Sci. 2025, 9(4), 96; https://doi.org/10.3390/urbansci9040096 - 25 Mar 2025
Cited by 1 | Viewed by 635
Abstract
Most people in the world now live in urban areas and their shared quest for better cities is embodied in several Sustainable Development Goals of the United Nations. These indicate that successful cities need jobs, adequate housing stock, effective governance, and other support [...] Read more.
Most people in the world now live in urban areas and their shared quest for better cities is embodied in several Sustainable Development Goals of the United Nations. These indicate that successful cities need jobs, adequate housing stock, effective governance, and other support systems. At the most basic level, they need a basket of core public works services like clean water and efficient transit, among others. These must be provided to improve public trust in government by addressing equity and affordability while also improving operational and cost efficiency. These targets are moving as transitions are occurring from stove-piped to integrated services, even while social contracts between government and the private sector are also shifting. Essential tools to improve cities include urban planning and infrastructure development, but applying them effectively faces challenges like climate change, inequality, social disorder, and even armed conflicts. This paper focuses on seven core public works services for drinking water, wastewater, stormwater, trash collection, mass transit, streets and traffic control, and disaster management. It reviews how these have evolved in the US, how they are organized under the federalism system, and how the goal of integrated management is being pursued. Challenges to integrated approaches include increasing responsibilities but lack of funding, political stress, and rule-driven and internally oriented management. Methods for performance assessment are explained under legacy systems based on methods like indicators and benchmarking applied to public works systems. Current methods focus on regulatory targets and the details; information has been shallow and not always timely. This paper projects how the performance assessment of core public works systems can be broadened to address goals like those of the SDGs and assesses why it is difficult to rate major systems. Examples of the activities of NGOs are given and an example of how progress toward SDG6 is included to show why performance management of integrated management applied to linked systems is needed. Performance dashboards with open government are currently the most common pathways, but emerging methods based on data analytics and visualization offer new possibilities. Reviewing the status of public works management shows that it is an important branch of the field of public administration, and it can be presented as a professional field with its own identity. The findings will support educators and researchers as well as provide policy insights into public works and stakeholder engagement. Full article
Show Figures

Figure 1

21 pages, 1829 KiB  
Review
Hidden Contaminants: The Presence of Per- and Polyfluoroalkyl Substances in Remote Regions
by Kuok Ho Daniel Tang
Environments 2025, 12(3), 88; https://doi.org/10.3390/environments12030088 - 13 Mar 2025
Cited by 1 | Viewed by 1285
Abstract
Per- and polyfluoroalkyl substances (PFAS) are increasingly detected in remote environments. This review aims to provide a comprehensive overview of the types and concentrations of PFAS found in the air, water, soil, sediments, ice, and precipitation across different remote environments globally. Most of [...] Read more.
Per- and polyfluoroalkyl substances (PFAS) are increasingly detected in remote environments. This review aims to provide a comprehensive overview of the types and concentrations of PFAS found in the air, water, soil, sediments, ice, and precipitation across different remote environments globally. Most of the recent studies on PFAS remote occurrence have been conducted for the Arctic, the Antarctica, and the remote regions of China. Elevated perfluorooctane sulfonate (PFOS) in Meretta and Resolute Lakes reflects the impact of local sources like airports, while PFAS in lakes located in remote regions such as East Antarctica and the Canadian High Arctic suggest atmospheric deposition as a primary PFAS input. Long-chain PFAS (≥C7) accumulate in sediments, while short-chain PFAS remain in water, as shown in Hulun Lake. Oceanic PFAS are concentrated in surface waters, driven by atmospheric deposition, with PFOA and PFOS dominating across oceans due to current emissions and legacy contamination. Coastal areas display higher PFAS levels from local sources. Arctic sediment analysis highlights atmospheric deposition and ocean transport as significant PFAS contributors. PFAS in Antarctic coastal areas suggest local biological input, notably from penguins. The Tibetan Plateau and Arctic atmospheric data confirm long-range transport, with linear PFAS favoring gaseous states, while branched PFAS are more likely to associate with particulates. Climatic factors like the Indian monsoon and temperature fluctuations affect PFAS deposition. Short-chain PFAS are prevalent in snowpacks, serving as temporary reservoirs. Mountainous regions, such as the Tibetan Plateau, act as cold traps, accumulating PFAS from atmospheric precursors. Future studies should focus on identifying and quantifying primary sources of PFAS. Full article
Show Figures

Figure 1

Back to TopTop