Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = class 4-like integrase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 670 KB  
Review
Pharmacokinetic Adaptations in Pregnancy: Implications for Optimizing Antiretroviral Therapy in HIV-Positive Women
by Natalia Briceño-Patiño, María Camila Prieto, Paula Manrique, Carlos-Alberto Calderon-Ospina and Leonardo Gómez
Pharmaceutics 2025, 17(7), 913; https://doi.org/10.3390/pharmaceutics17070913 - 15 Jul 2025
Viewed by 942
Abstract
Pregnancy introduces significant physiological changes that alter the pharmacokinetics (PK) of antiretroviral therapy (ART), impacting its safety and efficacy in HIV-positive women. Optimizing ART during pregnancy is critical to maintaining maternal virological suppression and preventing mother-to-child transmission (MTCT) of HIV. This review evaluates [...] Read more.
Pregnancy introduces significant physiological changes that alter the pharmacokinetics (PK) of antiretroviral therapy (ART), impacting its safety and efficacy in HIV-positive women. Optimizing ART during pregnancy is critical to maintaining maternal virological suppression and preventing mother-to-child transmission (MTCT) of HIV. This review evaluates the impact of pregnancy-induced PK changes on ART and proposes strategies for tailored regimens to improve outcomes. A comprehensive review of published literature was conducted, focusing on PK adaptations during pregnancy and their implications for different ART classes, including protease inhibitors (PIs), integrase strand transfer inhibitors (INSTIs), and nucleoside reverse transcriptase inhibitors (NRTIs). Key studies were analyzed to assess drug exposure, efficacy, and safety. Pregnancy significantly alters the PK of antiretrovirals, with increased hepatic metabolism, renal clearance, and changes in plasma protein binding leading to reduced drug exposure. For example, drugs like lopinavir and atazanavir require dose adjustments, while dolutegravir maintains efficacy despite reduced plasma levels. Integrase inhibitors demonstrate favorable virological suppression, although cobicistat-boosted regimens show subtherapeutic levels. Tailored approaches, such as therapeutic drug monitoring (TDM), optimize ART efficacy while minimizing toxicity. Pregnancy-specific PK changes necessitate evidence-based ART adjustments to ensure virological suppression and reduce MTCT risk. Incorporating TDM, leveraging pharmacogenomic insights, and prioritizing maternal and neonatal safety are critical for personalized ART management. Further research into long-acting formulations and global guideline harmonization is needed to address disparities in care and improve outcomes for HIV-positive pregnant women. Full article
(This article belongs to the Special Issue Pharmacokinetics of Drugs in Pregnancy and Lactation)
Show Figures

Figure 1

15 pages, 3656 KB  
Article
Cardiometabolic Differences in People Living with HIV Receiving Integrase Strand Transfer Inhibitors Compared to Non-nucleoside Reverse Transcriptase Inhibitors: Implications for Current ART Strategies
by Wilhelm A. J. W. Vos, Nadira Vadaq, Vasiliki Matzaraki, Twan Otten, Albert L. Groenendijk, Marc J. T. Blaauw, Louise E. van Eekeren, Kees Brinkman, Quirijn de Mast, Niels P. Riksen, Anton F. H. Stalenhoef, Jan van Lunzen, Andre J. A. M. van der Ven, Willem L. Blok and Janneke E. Stalenhoef
Viruses 2024, 16(4), 582; https://doi.org/10.3390/v16040582 - 10 Apr 2024
Cited by 6 | Viewed by 2192
Abstract
In people living with HIV (PLHIV), integrase strand transfer inhibitors (INSTIs) are part of the first-line combination antiretroviral therapy (cART), while non-nucleoside reverse transcriptase inhibitor (NNRTI)-based regimens are alternatives. Distinct cART regimens may variably influence the risk for non-AIDS comorbidities. We aimed to [...] Read more.
In people living with HIV (PLHIV), integrase strand transfer inhibitors (INSTIs) are part of the first-line combination antiretroviral therapy (cART), while non-nucleoside reverse transcriptase inhibitor (NNRTI)-based regimens are alternatives. Distinct cART regimens may variably influence the risk for non-AIDS comorbidities. We aimed to compare the metabolome and lipidome of INSTI and NNRTI-based regimens. The 2000HIV study includes asymptomatic PLHIV (n = 1646) on long-term cART, separated into a discovery cohort with 730 INSTI and 617 NNRTI users, and a validation cohort encompassing 209 INSTI and 90 NNRTI users. Baseline plasma samples from INSTI and NNRTI users were compared using mass spectrometry-based untargeted metabolomic (n = 500) analysis. Perturbed metabolic pathways were identified using MetaboAnalyst software. Subsequently, nuclear magnetic resonance spectroscopy was used for targeted lipoprotein and lipid (n = 141) analysis. Metabolome homogeneity was observed between the different types of INSTI and NNRTI. In contrast, higher and lower levels of 59 and 45 metabolites, respectively, were found in the INSTI group compared to NNRTI users, of which 77.9% (81/104) had consistent directionality in the validation cohort. Annotated metabolites belonged mainly to ‘lipid and lipid-like molecules’, ‘organic acids and derivatives’ and ‘organoheterocyclic compounds’. In pathway analysis, perturbed ‘vitamin B1 (thiamin) metabolism’, ‘de novo fatty acid biosynthesis’, ‘bile acid biosynthesis’ and ‘pentose phosphate pathway’ were detected, among others. Lipoprotein and lipid levels in NNRTIs were heterogeneous and could not be compared as a group. INSTIs compared to individual NNRTI types showed that HDL cholesterol was lower in INSTIs compared to nevirapine but higher in INSTIs compared to doravirine. In addition, LDL size was lower in INSTIs and nevirapine compared to doravirine. NNRTIs show more heterogeneous cardiometabolic effects than INSTIs, which hampers the comparison between these two classes of drugs. Targeted lipoproteomic and lipid NMR spectroscopy showed that INSTI use was associated with a more unfavorable lipid profile compared to nevirapine, which was shifted to a more favorable profile for INSTI when substituting nevirapine for doravirine, with evidently higher fold changes. The cardiovascular disease risk profile seems more favorable in INSTIs compared to NNRTIs in untargeted metabolomic analysis using mass-spectrometry. Full article
Show Figures

Figure 1

35 pages, 12340 KB  
Article
Molecular Characterization and Genome Mechanical Features of Two Newly Isolated Polyvalent Bacteriophages Infecting Pseudomonas syringae pv. garcae
by Erica C. Silva, Carlos A. Quinde, Basilio Cieza, Aakash Basu, Marta M. D. C. Vila and Victor M. Balcão
Genes 2024, 15(1), 113; https://doi.org/10.3390/genes15010113 - 18 Jan 2024
Cited by 2 | Viewed by 2811
Abstract
Coffee plants have been targeted by a devastating bacterial disease, a condition known as bacterial blight, caused by the phytopathogen Pseudomonas syringae pv. garcae (Psg). Conventional treatments of coffee plantations affected by the disease involve frequent spraying with copper- and kasugamycin-derived compounds, but [...] Read more.
Coffee plants have been targeted by a devastating bacterial disease, a condition known as bacterial blight, caused by the phytopathogen Pseudomonas syringae pv. garcae (Psg). Conventional treatments of coffee plantations affected by the disease involve frequent spraying with copper- and kasugamycin-derived compounds, but they are both highly toxic to the environment and stimulate the appearance of bacterial resistance. Herein, we report the molecular characterization and mechanical features of the genome of two newly isolated (putative polyvalent) lytic phages for Psg. The isolated phages belong to class Caudoviricetes and present a myovirus-like morphotype belonging to the genuses Tequatrovirus (PsgM02F) and Phapecoctavirus (PsgM04F) of the subfamilies Straboviridae (PsgM02F) and Stephanstirmvirinae (PsgM04F), according to recent bacterial viruses’ taxonomy, based on their complete genome sequences. The 165,282 bp (PsgM02F) and 151,205 bp (PsgM04F) genomes do not feature any lysogenic-related (integrase) genes and, hence, can safely be assumed to follow a lytic lifestyle. While phage PsgM02F produced a morphogenesis yield of 124 virions per host cell, phage PsgM04F produced only 12 virions per host cell, indicating that they replicate well in Psg with a 50 min latency period. Genome mechanical analyses established a relationship between genome bendability and virion morphogenesis yield within infected host cells. Full article
(This article belongs to the Special Issue Genetics and Genomics in Bacteriophage-Host Interactions)
Show Figures

Figure 1

13 pages, 4284 KB  
Article
A Class 4-like Chromosomal Integron Found in Aeromonas sp. Genomospecies paramedia Isolated from Human Feces
by Jesús Baltazar-Cruz, Rogelio Rojas-Rios, Violeta Larios-Serrato, Itza Mendoza-Sanchez, Everardo Curiel-Quesada and Abigail Pérez-Valdespino
Microorganisms 2023, 11(10), 2548; https://doi.org/10.3390/microorganisms11102548 - 13 Oct 2023
Cited by 1 | Viewed by 1902
Abstract
Integrons are genetic elements that store, express and exchange gene cassettes. These elements are characterized by containing a gene that codes for an integrase (intI), a cassette integration site (attI) and a variable region holding the cassettes. Using bioinformatics [...] Read more.
Integrons are genetic elements that store, express and exchange gene cassettes. These elements are characterized by containing a gene that codes for an integrase (intI), a cassette integration site (attI) and a variable region holding the cassettes. Using bioinformatics and molecular biology methods, a functional integron found in Aeromonas sp. 3925, a strain isolated from diarrheal stools, is described. To confirm the integron class, a phylogenetic analysis with amino acid sequences was conducted. The integrase was associated to class 4 integrases; however, it is clearly different from them. Thus, we classified the associated element as a class 4-like integron. We found that the integrase activity is not under the control of the SOS or catabolic repression, since the expression was not increased in the presence of mitomycin or arabinose. The class-4-like integron is located on the chromosome and contains two well-defined gene cassettes: aadA1 that confers resistance to streptomycin and lpt coding for a lipoprotein. It also includes eight Open Reading frames (ORFs) with unknown functions. The strain was characterized through a Multilocus Phylogenetic Analyses (MLPA) of the gyrB, gyrA, rpoD, recA, dnaJ and dnaX genes. The phylogenetic results grouped it into a different clade from the species already reported, making it impossible to assign a species. We resorted to undertaking complete genome sequencing and a phylogenomic analysis. Aeromonas sp. 3925 is related to A. media and A. rivipollensis clusters, but it is clearly different from these species. In silico DNA-DNA hybridization (isDDH) and Average Nucleotide Identity (ANI) analyses suggested that this isolate belongs to the genomospecies paramedia. This paper describes the first class 4-like integron in Aeromonas and contributes to the establishment of genomospecies paramedia. Full article
(This article belongs to the Special Issue Aeromonas and Plesiomonas)
Show Figures

Figure 1

18 pages, 1797 KB  
Article
Allosteric Integrase Inhibitor Influences on HIV-1 Integration and Roles of LEDGF/p75 and HDGFL2 Host Factors
by Parmit Kumar Singh, Wen Li, Gregory J. Bedwell, Hind J. Fadel, Eric M. Poeschla and Alan N. Engelman
Viruses 2022, 14(9), 1883; https://doi.org/10.3390/v14091883 - 26 Aug 2022
Cited by 8 | Viewed by 3419
Abstract
Allosteric integrase (IN) inhibitors (ALLINIs), which are promising preclinical compounds that engage the lens epithelium-derived growth factor (LEDGF)/p75 binding site on IN, can inhibit different aspects of human immunodeficiency virus 1 (HIV-1) replication. During the late phase of replication, ALLINIs induce aberrant IN [...] Read more.
Allosteric integrase (IN) inhibitors (ALLINIs), which are promising preclinical compounds that engage the lens epithelium-derived growth factor (LEDGF)/p75 binding site on IN, can inhibit different aspects of human immunodeficiency virus 1 (HIV-1) replication. During the late phase of replication, ALLINIs induce aberrant IN hyper-multimerization, the consequences of which disrupt IN binding to genomic RNA and virus particle morphogenesis. During the early phase of infection, ALLINIs can suppress HIV-1 integration into host genes, which is also observed in LEDGF/p75-depelted cells. Despite this similarity, the roles of LEDGF/p75 and its paralog hepatoma-derived growth factor like 2 (HDGFL2) in ALLINI-mediated integration retargeting are untested. Herein, we mapped integration sites in cells knocked out for LEDGF/p75, HDGFL2, or both factors, which revealed that these two proteins in large part account for ALLINI-mediated integration retargeting during the early phase of infection. We also determined that ALLINI-treated viruses are defective during the subsequent round of infection for integration into genes associated with speckle-associated domains, which are naturally highly targeted for HIV-1 integration. Class II IN mutant viruses with alterations distal from the LEDGF/p75 binding site moreover shared this integration retargeting phenotype. Altogether, our findings help to inform the molecular bases and consequences of ALLINI action. Full article
(This article belongs to the Special Issue Integrase Inhibitors 2023)
Show Figures

Figure 1

17 pages, 2411 KB  
Article
Novel Mobile Integrons and Strain-Specific Integrase Genes within Shewanella spp. Unveil Multiple Lateral Genetic Transfer Events within The Genus
by Teolincacihuatl Ayala Nuñez, Gabriela N. Cerbino, María Florencia Rapisardi, Cecilia Quiroga and Daniela Centrón
Microorganisms 2022, 10(6), 1102; https://doi.org/10.3390/microorganisms10061102 - 26 May 2022
Cited by 6 | Viewed by 2700
Abstract
Shewanella spp. are Gram-negative bacteria that thrive in aquatic niches and also can cause infectious diseases as opportunistic pathogens. Chromosomal (CI) and mobile integrons (MI) were previously described in some Shewanella isolates. Here, we evaluated the occurrence of integrase genes, the integron systems [...] Read more.
Shewanella spp. are Gram-negative bacteria that thrive in aquatic niches and also can cause infectious diseases as opportunistic pathogens. Chromosomal (CI) and mobile integrons (MI) were previously described in some Shewanella isolates. Here, we evaluated the occurrence of integrase genes, the integron systems and their genetic surroundings in the genus. We identified 22 integrase gene types, 17 of which were newly described, showing traits of multiple events of lateral genetic transfer (LGT). Phylogenetic analysis showed that most of them were strain-specific, except for Shewanella algae, where SonIntIA-like may have co-evolved within the host as typical CIs. It is noteworthy that co-existence of up to five different integrase genes within a strain, as well as their wide dissemination to Alteromonadales, Vibrionales, Chromatiales, Oceanospirillales and Enterobacterales was observed. In addition, identification of two novel MIs suggests that continuous LGT events may have occurred resembling the behavior of class 1 integrons. The constant emergence of determinants associated to antimicrobial resistance worldwide, concomitantly with novel MIs in strains capable to harbor several types of integrons, may be an alarming threat for the recruitment of novel antimicrobial resistance gene cassettes in the genus Shewanella, with its consequent contribution towards multidrug resistance in clinical isolates. Full article
(This article belongs to the Special Issue Adaptive and Evolutionary Aspects of Integrons)
Show Figures

Figure 1

12 pages, 2928 KB  
Article
(Q)SAR Models of HIV-1 Protein Inhibition by Drug-Like Compounds
by Leonid A. Stolbov, Dmitry S. Druzhilovskiy, Dmitry A. Filimonov, Marc C. Nicklaus and Vladimir V. Poroikov
Molecules 2020, 25(1), 87; https://doi.org/10.3390/molecules25010087 - 25 Dec 2019
Cited by 5 | Viewed by 3741
Abstract
Despite the achievements of antiretroviral therapy, discovery of new anti-HIV medicines remains an essential task because the existing drugs do not provide a complete cure for the infected patients, exhibit severe adverse effects, and lead to the appearance of resistant strains. To predict [...] Read more.
Despite the achievements of antiretroviral therapy, discovery of new anti-HIV medicines remains an essential task because the existing drugs do not provide a complete cure for the infected patients, exhibit severe adverse effects, and lead to the appearance of resistant strains. To predict the interaction of drug-like compounds with multiple targets for HIV treatment, ligand-based drug design approach is widely applied. In this study, we evaluated the possibilities and limitations of (Q)SAR analysis aimed at the discovery of novel antiretroviral agents inhibiting the vital HIV enzymes. Local (Q)SAR models are based on the analysis of structure–activity relationships for molecules from the same chemical class, which significantly restrict their applicability domain. In contrast, global (Q)SAR models exploit data from heterogeneous sets of drug-like compounds, which allows their application to databases containing diverse structures. We compared the information for HIV-1 integrase, protease and reverse transcriptase inhibitors available in the EBI ChEMBL, NIAID HIV/OI/TB Therapeutics, and Clarivate Analytics Integrity databases as the sources for (Q)SAR training sets. Using the PASS and GUSAR software, we developed and validated a variety of (Q)SAR models, which can be further used for virtual screening of new antiretrovirals in the SAVI library. The developed models are implemented in the freely available web resource AntiHIV-Pred. Full article
Show Figures

Graphical abstract

13 pages, 3148 KB  
Article
Analysis of Transposable Elements in Coccidioides Species
by Theo N. Kirkland, Anna Muszewska and Jason E. Stajich
J. Fungi 2018, 4(1), 13; https://doi.org/10.3390/jof4010013 - 19 Jan 2018
Cited by 18 | Viewed by 5850
Abstract
Coccidioides immitis and C. posadasii are primary pathogenic fungi that cause disease in immunologically-normal animals and people. The organism is found exclusively in arid regions of the Southwestern United States, Mexico, and South America, but not in other parts of the world. This [...] Read more.
Coccidioides immitis and C. posadasii are primary pathogenic fungi that cause disease in immunologically-normal animals and people. The organism is found exclusively in arid regions of the Southwestern United States, Mexico, and South America, but not in other parts of the world. This study is a detailed analysis of the transposable elements (TE) in Coccidioides spp. As is common in most fungi, Class I and Class II transposons were identified and the LTR Gypsy superfamily is the most common. The minority of Coccidioides Gypsy transposons contained regions highly homologous to polyprotein domains. Phylogenetic analysis of the integrase and reverse transcriptase sequences revealed that many, but not all, of the Gypsy reverse transcriptase and integrase domains clustered by species suggesting extensive transposition after speciation of the two Coccidiodies spp. The TEs were clustered and the distribution is enriched for the ends on contigs. Analysis of gene expression data from C. immitis found that protein-coding genes within 1 kB of hAT or Gypsy TEs were poorly expressed. The expression of C. posadasii genes within 1 kB of Gypsy TEs was also significantly lower compared to all genes but the difference in expression was smaller than C. immitis. C. posadasii orthologs of C. immitis Gyspsy-associated genes were also likely to be TE-associated. In both C. immitis and C. posadasii the TEs were preferentially associated with genes annotated with protein kinase gene ontology terms. These observations suggest that TE may play a role in influencing gene expression in Coccidioides spp. Our hope is that these bioinformatic studies of the potential TE influence on expression and evolution of Coccidioides will prompt the development of testable hypotheses to better understand the role of TEs in the biology and gene regulation of Coccidioides spp. Full article
(This article belongs to the Special Issue Genomic Data in Pathogenic Fungi)
Show Figures

Graphical abstract

Back to TopTop