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Abstract: In people living with HIV (PLHIV), integrase strand transfer inhibitors (INSTIs) are part of
the first-line combination antiretroviral therapy (cART), while non-nucleoside reverse transcriptase
inhibitor (NNRTI)-based regimens are alternatives. Distinct cART regimens may variably influence
the risk for non-AIDS comorbidities. We aimed to compare the metabolome and lipidome of INSTI
and NNRTI-based regimens. The 2000HIV study includes asymptomatic PLHIV (n = 1646) on
long-term cART, separated into a discovery cohort with 730 INSTI and 617 NNRTI users, and a
validation cohort encompassing 209 INSTI and 90 NNRTI users. Baseline plasma samples from
INSTI and NNRTI users were compared using mass spectrometry-based untargeted metabolomic
(n = 500) analysis. Perturbed metabolic pathways were identified using MetaboAnalyst software.
Subsequently, nuclear magnetic resonance spectroscopy was used for targeted lipoprotein and
lipid (n = 141) analysis. Metabolome homogeneity was observed between the different types of
INSTI and NNRTI. In contrast, higher and lower levels of 59 and 45 metabolites, respectively, were
found in the INSTI group compared to NNRTI users, of which 77.9% (81/104) had consistent
directionality in the validation cohort. Annotated metabolites belonged mainly to ‘lipid and lipid-like
molecules’, ‘organic acids and derivatives’ and ‘organoheterocyclic compounds’. In pathway analysis,
perturbed ‘vitamin B1 (thiamin) metabolism’, ‘de novo fatty acid biosynthesis’, ‘bile acid biosynthesis’
and ‘pentose phosphate pathway’ were detected, among others. Lipoprotein and lipid levels in
NNRTIs were heterogeneous and could not be compared as a group. INSTIs compared to individual
NNRTI types showed that HDL cholesterol was lower in INSTIs compared to nevirapine but higher
in INSTIs compared to doravirine. In addition, LDL size was lower in INSTIs and nevirapine
compared to doravirine. NNRTIs show more heterogeneous cardiometabolic effects than INSTIs,
which hampers the comparison between these two classes of drugs. Targeted lipoproteomic and
lipid NMR spectroscopy showed that INSTI use was associated with a more unfavorable lipid profile
compared to nevirapine, which was shifted to a more favorable profile for INSTI when substituting
nevirapine for doravirine, with evidently higher fold changes. The cardiovascular disease risk profile
seems more favorable in INSTIs compared to NNRTIs in untargeted metabolomic analysis using
mass-spectrometry.

Keywords: metabolome; lipoproteome; integrase strand transfer inhibitor; non-nucleoside reverse
transcriptase inhibitor; combination antiretroviral therapy; lipids
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1. Introduction

The risk for non-AIDS comorbidities in people living with HIV (PLHIV) using com-
bination antiretroviral therapy (cART) remains elevated despite viral suppression [1].
Continuous exposure to cART might play a role in this.

First line cART regimens typically include one or two nucleoside/nucleotide reverse
transcriptase inhibitors (NRTIs) combined with an integrase strand transfer inhibitor (IN-
STI) [2]. Alternatively, non-nucleoside reverse transcriptase inhibitors (NNRTIs) are com-
monly used as a so-called anchor drug. In comparison with NNRTIs, INSTIs have a faster
time to viral suppression, better tolerability, and a lower risk to develop HIV resistance over
time [3]. This has resulted in INSTIs being the anchor drug in all four CDC-recommended
first-line regimens for PLHIV [2]. However, an increasing body of evidence points toward
a link between INSTI use and weight gain and metabolic syndrome [3–5]. Moreover, some
evidence associates initiating an INSTI with increased cardiovascular events, yet only in the
first two years [6]. The exact mechanisms behind these associations are not fully understood
and thus are the subject of current evaluations [7,8].

Metabolites are small molecules that are important in cellular metabolism and make up
a complex network that is collectively known as the metabolome [9]. Classes of metabolites
include amino acids, (small) proteins, organic acids, vitamins, fatty acids, lipids, and food
or drug breakdown products. Many factors such as genetics, lifestyle, food intake, but
also gut microbiome, disease state and medication influence the metabolome. A specific
metabolomic profile might therefore even predict disease [10]. HIV and cART are both
known to influence the metabolome [11–13]. However, despite long-term cART use, the
metabolome does not return to a pre-HIV state [14].

We hypothesize that INSTIs affect the metabolome differently than NNRTIs and that
these differences might reveal processes related to INSTI-associated diseases. Therefore,
we compared the untargeted metabolome of PLHIV using INSTI versus NNRTI-based
regimens in a hypothesis free manner to explore where metabolic differences are present.
In addition, we evaluated the expression levels of lipoproteins and lipids (n = 141) in
INSTI compared to two commonly used NNRTIs to specifically elucidate clinically relevant
differences in the lipid spectrum.

2. Materials and Methods
2.1. Study Population and Data Collection

The 2000HIV study is a prospective longitudinal cohort study that enrolled 1895
asymptomatic PLHIV between October 2019 and October 2021 in the Netherlands. Inclusion
criteria were age ≥ 18 years, ≥6 months on cART, most recent HIV viral load < 200 copies/mL
and no signs of concurrent infections or pregnancy [15]. The full 2000HIV study consists of a
separate discovery and validation cohorts, which were collected at a simultaneous time but
at different sites in the Netherlands. The discovery cohort consists of 1559 participants, the
validation cohort of 336. The main idea of using two cohorts is to immediately validate any
findings in the primary discovery cohort in a secondary validation cohort. If findings are
consistently observed over two cohorts, this reduces the chances of incidental findings. The
2000HIV cohort has been extensively described previously [15]. Nevertheless, the sampling
process between the two cohorts was the same. Baseline venous 10 mL EDTA blood samples
were collected after ≥4 h of fasting, shipped overnight and processed the next morning.
Plasma samples were frozen and stored before metabolite and lipid identification. Baseline
and HIV specific characteristics were collected from hospital medical files and data available
from the Dutch national ATHENA cohort, a long-term cohort collecting anonymous data
of HIV patients in the Netherlands [16]. Extensive details of 2000HIV study have been
previously published [15]. Participants using immunomodulatory medication (such as oral
prednisolone, methotrexate; n = 20) were excluded.
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2.2. Ethics

The 2000HIV study protocol was approved by the accredited medical research ethics
committee Nijmegen (NL68056.091.81). All participants provided written informed con-
sent. Experimental protocols were conducted following the principles of the Declaration
of Helsinki.

2.3. Untargeted Metabolomics

Untargeted metabolomics was performed on baseline plasma by flow injection
electrospray–time-of-flight mass spectrometry to identify metabolites based on the mass-
to-charge ratio (ion m/z). Measurements were performed in collaboration with General
Metabolics, LLC, and executed at General Metabolics’ labs according to the methodology
described previously [17]. Normalization of the samples was performed using a moving
median method. Outliers were detected using principal component (PC) analysis and
removed if their mean was more than four standard deviations away from PC1 and/or
PC2 (n = 2, Supplementary Figure S1). We used the metabolite annotation from General
Metabolics and Human Metabolome Database (HMDB) (https://hmdb.ca/). For down-
stream data analysis, we selected metabolites that belong to the serum metabolites database
(database version 2021-10-24) from the HMDB (n = 500).

2.4. Targeted Lipoproteomics

Using baseline plasma, lipoproteins and lipids were measured in a targeted approach
using the Nightingale’s (Mannerheimintie 164a, 00300 Helsinki, Finland) Biomarker Analy-
sis Platform. In short, a total of 141 lipoprotein and lipids were measured using nuclear
magnetic resonance spectroscopy. Most measured lipoprotein and lipids showed high
correlation with other lipoproteins and lipids in this panel. Therefore, we constructed
twelve clusters of highly intercorrelated lipoproteins and lipid metabolites (r > 0.75) that
encompassed 131 lipoproteins and lipids (see Supplementary Table S1 for full list) [18]. We
used unsupervised hierarchical Ward-linkage clustering based on Spearman correlation
coefficients. For each cluster, one lipoprotein or lipid was selected as a cluster representative
based on expert opinion. This improved result interpretation and lowered the burden of
correction for multiple testing. In addition, nine lipoproteins and lipids that showed no
intercorrelation with other lipoproteins or lipids were separately analyzed simultaneously.
In total, 21 independent measurements were used for the differential expression analysis.

2.5. Statistics

Comparisons in continuous data of baseline characteristics were made using the Stu-
dent’s T-test or Mann–Whitney U test depending on the data distribution. Non-continuous
baseline characteristics were compared using Pearson’s Chi-square test. For baseline char-
acteristics, comparisons with a p-value < 0.05 were considered significant. Metabolomic
and lipoproteomic measurements were transformed to follow normal distribution using
log2 and inverse rank transformation, respectively. In both metabolomics and lipopro-
teomics data, we performed differential expression (DE) analysis using a linear regression
model with sex at birth (sex) and age as covariates. Metabolomics analysis was tested
for confounders using principal component analysis (Supplementary Figures S2 and S3).
Multiple testing correction was performed using the false discovery rate (FDR) method.
FDR p-value < 0.05 in the discovery cohort and nominal p-value < 0.05 in the validation
cohort were considered significant. Metabolic pathway analysis was performed using
the web-based platform MetaboAnalyst (https://www.metaboanalyst.ca/) based on the
gene set enrichment analysis (GSEA) algorithm [19]. The rationale is that the collective
behavior of multiple metabolites in a pathway is less sensitive to random errors introduced
through individual peak assignments [19]. We used the default human library (MFN),
which consists of a combination of the Kyoto Encyclopedia of Genes and Genomes (KEGG),
Biochemical, Genetic and Genomic (BiGG), and Edinburgh Model libraries. Data were
analyzed using R studio version 4.2.2 (31 October 2022).

https://hmdb.ca/
https://www.metaboanalyst.ca/
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3. Results
3.1. Participant Selection and Baseline Characteristics

Participants were analyzed using current cART regimes consisting of an NRTI back-
bone, in combination with either only an INSTI (“INSTI users”) or only an NNRTI (“NNRTI
users”) anchor drug (Supplementary Figure S2). In total, 1646 participants were eligible
for analysis. The discovery cohort encompassed 730 INSTI users and 617 NNRTI users,
and the validation cohort included 209 INSTI and 90 NNRTI users. Division per INSTI or
NNRTI anchor drug can be found in Table 1 and Supplementary Figure S5. In the discovery
cohort, the most common INSTI in use was dolutegravir, and the most common NNRTI in
use was nevirapine.

Table 1. Baseline characteristics of INSTI and NNRTI users in the discovery (INSTI users n = 730,
NNRTI users n = 617) and validation cohort (INSTI users n = 209 and NNRTI users n = 90).

Discovery Cohort Validation Cohort
INSTI NNRTI p-val INSTI NNRTI p-valn = 730 n = 617 n = 209 n = 90

Age in years (IQR) 51.0 (41.0–58.0) 53.0 (46.0–60.0) 0.0001 52.0 (45.0–61.0) 54.0 (48.0–60.0) 0.27
Sex at birth (male) 619 (84.8%) 533 (86.4%) 0.44 178 (85.2%) 74 (82.2%) 0.60
BMI in kg/m2 Median (IQR) 25.0 (22.7–27.7) 24.7 (22.2–27.4) 0.061 25.8 (23.0–28.4) 25.1 (22.6–27.4) 0.25
Ethnicity (white) 543 (74.4%) 454 (73.6%) 0.71 180 (86.1%) 78 (86.7%) 1.0

Non-white 185 (25.3%) 163 (26.4%) 29 (13.9%) 12 (13.3%)
Missing 2 (0.3%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

HIV duration in years
Median (IQR) 10.8 (5.7–16.5) 14.6 (9.9–20.4) <0.0001 7.0 (3.5–12.7) 14.1 (10.3–19.4) <0.0001

cART Duration in years
Median (IQR) 8.3 (4.7–13.4) 11.5 (8.3–17.9) <0.0001 6.0 (3.3–10.6) 11.2 (7.8–17.9) <0.0001

Latest CD4 count (×106 cells/L)
Median (IQR)

740.0
(550.5–940.0)

698.5
(550.2–917.5) 0.096 660.0

(480.0–810.0)
685.0

(512.5–867.5) 0.16

CD4 Nadir (×106 cells/L)
Median (IQR)

280.0
(160.0–422.5)

240.0
(150.0–350.0) <0.0001 290.0

(170.0–452.5)
280.0

(145.0–365.0) 0.072

Viral Load Zenith (copies/mL)
Median (IQR)

97,000.0
(36,650.5–248,154.0)

100,000.0
(40,000.0–
262,000.0)

0.36
156,748.0
(39,240.8–
346,862.5)

200,000.0
(70,264.0–
387,309.0)

0.20

Currently smoking 238 (32.6%) 167 (27.1%) 0.013 59 (28.2%) 31 (34.4%) 0.40
Missing 56 (7.7%) 35 (5.7%) 23 (11.0%) 7 (7.8%)

Packyears Median (IQR) 6.0 (0.0–22.0) 4.5 (0.0–21.5) 0.73 6.0 (0.0–28.5) 10.3 (0.0–34.0) 0.33

Had Non-AIDS malignancy 28 (3.8%) 30 (4.9%) 0.42 12 (5.7%) 3 (3.3%) 0.57
Had previous cardiovascular
disease 214 (29.3%) 209 (33.9%) 0.077 66 (31.6%) 29 (32.2%) 1.0

On lipid lowering medication 141 (19.3%) 112 (18.2%) 0.62 40 (19.1%) 22 (24.4%) 0.35

INSTI in use:
Dolutegravir 435 (60%) 77 (37%)
Bictegravir 164 (22%) 39 (19%)
Elvitegravir 112 (15% 90 (43%)
Raltegravir 19 (3%) 3 (1%)

NNRTI in use:
Nevirapine 236 (38%) 38 (42%)
Doravirine 164 (27%) 5 (6%)
Rilpivirine 133 (22%) 28 (31%)
Efavirenz 84 (14%) 19 (21%)

Abbreviations: BMI: body mass index; cART: combination antiretroviral therapy; IQR: inter quartile range;
INSTI: integrase strand transfer inhibitor; NNRTI: non-nucleoside reverse transcriptase inhibitor. Cardiovas-
cular disease was considered an official diagnosis of myocardial infarction, stroke, peripheral arterial disease
and/or hypertension.

Baseline characteristics are described in Table 1. In the discovery cohort, INSTI users
were slightly younger than NNRTI users (51 vs. 53 years, p = 0.0001), had known their
HIV diagnosis for less time (10.8 vs. 14.6 years, p < 0.0001), had been on cART for less time
(8.3 vs. 11.5 years, p < 0.0001) and had a higher CD4 nadir (280 vs. 240, p < 0.0001). Notably,
cholesterol-lowering drug use was similar between the two groups.
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3.2. Untargeted Metabolomic Profiling in INSTI and NNRTI Users

We compared metabolite expression and pathway perturbation between INSTI and
NNRTI users. Untargeted metabolomics using mass spectrometry measured 1720 unique
metabolites from 1629 participants in both cohorts. To focus on metabolites that play a role
in the human metabolic pathways, only metabolites known to be present in serum based on
the HMDB database (n = 500) were selected. There were four different types of INSTI and
four different types of NNRTI in use in our study (Supplementary Figure S5). To ensure
homogeneity between the different types of INSTI and NNRTI, we performed PC analysis
within the INSTI and NNRTI groups itself. Supplementary Figure S6 shows that there was
considerable overlap within the first two PCs for both INSTI and NNRTI with respect to
metabolite levels. This indicates that the metabolite levels of INSTI and NNRTI users were
homogeneous. We therefore analyzed metabolite differences comparing the group of INSTI
and NNRTI users. We investigated confounders for metabolites using principal component
analysis (Supplementary Figures S2 and S3). Only age had a significant influence on
metabolite levels and was subsequently corrected for. In addition, from a biological
perspective, sex is an important known factor to drive metabolite levels and was therefore
also corrected for.

Next, we performed differential expression analysis of metabolites comparing IN-
STI to NNRTI users, using sex and age as covariates. The INSTI users from the discov-
ery cohort showed 59 metabolites with significantly higher levels compared to NNRTI
users (FDR < 0.05), and 45 metabolites were significantly lower (Figure 1). In the vali-
dation cohort, we observed 32 higher metabolite levels in INSTI compared to NNRTI
users (p-value < 0.05) and 39 lower metabolite levels (Supplementary Figure S7). Compar-
ison of the discovery and validation cohorts showed 14/59 (23.7%) reproducibly higher
metabolites and 24/45 (53.3%) reproducibly lower metabolites (Supplementary Table S2).
The moderate replication of significant differentially expressed metabolites in the valida-
tion cohort is possibly due to power issues since the direction of effect size (increase or
decrease) was consistent for 41/59 (69.5%) higher and 40/45 (88.9%) lower metabolites
(Supplementary Figure S8).

Next, we annotated the differentially expressed metabolites from the discovery cohort
to metabolite annotations according to General Metabolics annotation and sorted them
into metabolic categories based on the HMDB database (Figure 2). As metabolite ion m/z
ratios might have several metabolite annotations, one metabolite could match to several
metabolite annotations (due to overlapping mass to flight time). The 104 differentially ex-
pressed metabolites from the discovery cohort were matched to 205 metabolite annotations.
The major categories of differentially expressed annotated metabolites in the discovery
cohort were ‘lipid and lipid-like molecules’ (53/205, 25.9%), ‘organic acids and derivatives’
(42/205, 20.5%) and ‘organoheterocyclic compounds’ (32/205, 15.6%). Analysis of the vali-
dation cohort validated (p-value < 0.05) 24.5% of ‘lipid and lipid-like molecules’ metabolites,
40.5% of ‘organic acids and derivatives’ metabolites and of 75.0% of ‘organoheterocyclic
compounds’ metabolites.

Subsequently, we performed pathway analysis using MetaboAnalyst software. In the
discovery cohort, significant (p-value < 0.05) upregulation of two pathways and downregu-
lation of seven pathways in INSTI users compared to NNRTI users was found (Figure 3). In
the validation cohort, we validated ‘caffeine metabolism’, ‘vitamin B1 (thiamin) metabolism’
and ‘keratan sulfate biosynthesis’ (Supplementary Figure S9). In addition, three significant
pathways from the discovery cohort were found in the validation cohort with equal direc-
tionality: ‘pentose phosphate pathway’, ‘de novo fatty acid biosynthesis’, and ‘starch and
sucrose metabolism’.
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Finally, because there were baseline differences between INSTI and NNRTI users, we
did a matching of INSTI to NNRTI for important baseline characteristics. Participants were
matched on age, sex, BMI, current smoking status, time since HIV diagnosis, time on cART,
CD4 nadir, most recent CD4 count, current use of cholesterol lowering medication and
medical history of cardiovascular disease. Of the 104 significantly differentially expressed
(FDR < 0.05) metabolites in the discovery cohort from the original comparison, 99 (95.2%)
were also significantly differentially expressed (p-value < 0.05) in the matched discovery
cohort. Of the remaining five metabolites, four had a p-value < 0.01. This shows that our
findings are independent of the matched factors described above.
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Figure 1. Differentially expressed metabolites in INSTI users compared to NNRTI users in the
discovery cohort (INSTI n = 721; NNRTI n = 612). Differential expression analysis using a linear
model with sex at birth and age as covariates on 500 metabolites known to be present in serum.
Y-axis shows the FDR-corrected p-value through −log10(FDR), x-axis shows the log fold change.
Horizontal dotted line represents border of significance (FDR corrected p-value < 0.05), vertical
dotted line represents border between higher levels (right) and lower levels (left) of metabolites in
the INSTI group. Significantly differentially expressed metabolites are shown in red. Non-significant
metabolites are shown in green. Numbers specify the significant differentially expressed ion m/z
ratio, using untargeted metabolomics. In the discovery cohort, 59 metabolites were significantly
higher, and 45 metabolites were significantly lower in INSTI users compared to NNRTI users.
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Figure 2. Differentially expressed annotated metabolites in INSTI users compared to NNRTI users
in the discovery cohort (INSTI n = 721; NNRTI n = 612) after differential expression analysis on
metabolites. Annotated metabolite names are shown on the outside. Three-layer heatmap displays,
in order from outside to inside, category of the metabolite, the fold change in the discovery cohort
and consistency in directionality in the validation cohort.
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Figure 3. Up- and downregulation of metabolic pathways in INSTI users compared to NNRTI users in
the discovery cohort (INSTI n = 721; NNRTI n = 612) using MetaboAnalyst software. Y-axis shows p-
value through −10log(p-value), with the horizontal dotted line the threshold for significance (p < 0.05).
X-axis indicates a normalized enrichment score (NES). Positive NES indicates an upregulation, and
a negative NES indicates downregulation. Red dots indicate significantly differentially expressed
pathways. In the discovery cohort, seven pathways were significantly downregulated, two pathways
were upregulated in INSTI users compared to NNRTI users.

3.3. Targeted Lipoproteomic Profiling in INSTI and NNRTI Users

We observed that ‘lipid and lipid-like molecules’ were one of the main differentially
expressed metabolites between INSTI and NNRTI. However, the direct clinical signifi-
cance of many of these metabolites are unknown. Therefore, we aimed to investigate
differences in lipoproteins and lipids between INSTI and NNRTI, focusing thereby on
well-known cardiovascular markers. Lipoproteomic measurements were available for
1622 participants using twelve cluster representatives and nine individual and lipoprotein
and lipids (Supplementary Table S1). Lipoproteins and lipids were analyzed per cluster if
they showed high intercorrelation (r > 0.75).

First, we assessed whether there was homogeneity between the different types of INSTI
and NNRTI using PC analysis (Supplementary Figure S11). INSTI showed considerable
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overlap in PC1 and PC2, whereas the overlap in NNRTI was limited, especially in PC1. This
indicates that lipoprotein and lipid levels depend on the type of NNRTI in use. Therefore,
we could not compare lipoproteomic levels of INSTI users to the NNRTI user group as a
whole. The two most commonly used NNRTIs in the discovery cohort were nevirapine
and doravirine (Supplementary Figure S5), which also showed the least overlap in PC
analysis (Supplementary Figure S11B). We therefore compared the findings of INSTI to
those of nevirapine and to doravirine separately and, in addition, compared the findings of
nevirapine to those of doravirine. Baseline characteristics between these three groups can
be found in Supplementary Table S3. Differential analysis between groups was performed
using a linear model with sex and age as covariates.

First, we compared all INSTI users to nevirapine users in the discovery and validation
cohorts (Figure 4A). We found that INSTI users compared to nevirapine users showed
a downregulation of two HDL cholesterol clusters and the unsaturated cluster, which is
an indicator of the degree of unsaturation in free fatty acids. All these three clusters are
negatively associated with cardiovascular disease (CVD) risk. Lower levels of omega-3
should be attributed to differences in food intake. Downregulation of the IDL cholesterol
cluster, which is positively and causally associated with CVD, is seen in both cohorts,
however, without reaching the threshold of significance in the validation cohort.

Next, we compared all INSTI users to doravirine users in the discovery and validation
cohorts (Figure 4B). Here, in contrast, we observed that INSTI users compared to doravirine
users showed upregulation of different HDL cholesterol clusters as well as a downregula-
tion of the LDL-size. Smaller LDL-sizes indicate a higher CVD risk. Upregulation of IDL
cholesterol cluster and omega-3 is seen in both cohorts; however, significance was only
reached in the discovery cohort.

Lastly, we compared nevirapine users to doravirine users in the discovery and vali-
dation cohorts (Figure 4C). We found significant upregulation in both cohorts of different
HDL clusters, as well as the medium LDL cholesterol cluster in nevirapine users. Smaller
LDL-sizes were also observed; although, they were only significantly in the discovery
cohort. The fold changes in lipoprotein and lipid levels were much higher when doravirine
was part of the analysis, while mostly modest fold changes were noticed when comparing
the results in the INSTI and nevirapine group.
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Figure 4. Differential expression of targeted lipoprotein and lipid analysis in INSTI users, NNRTI
nevirapine users and NNRTI doravirine users. Differential expression analysis using a linear model
with sex at birth and age as covariates on twelve lipoproteins and lipid cluster representatives and
nine individual uncorrelated lipoproteins and lipids. Lipoproteins and lipids included per cluster
can be found in Supplementary Table S1. Y-axis demonstrates the log fold change in the discovery
cohort, the X-axis shows the log fold change in the validation cohort. Dot color indicates whether
lipoproteins and lipids were significant differentially expressed in both the discovery and validation
cohorts (red), only the discovery cohort (orange) or not significant in the discovery cohort (black).
(A): Comparison of lipoprotein and lipid levels in INSTI users compared to NNRTI nevirapine users.
(B): Comparison of lipoprotein and lipid levels in INSTI users compared to NNRTI doravirine users.
(C): Comparison of lipoprotein and lipid levels in NNRTI nevirapine users compared to NNRTI
doravirine users.

4. Discussion

In this study, blood metabolic profiles were analyzed in PLHIV using INSTI or NNRTI-
based cART regimens to investigate whether systemic metabolomic changes may underly
the risk for non-AIDS comorbidities, such as cardiovascular diseases. Using an untargeted
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metabolome analysis, mainly differences in ‘lipid and lipid-like molecules’, ‘organic acids
and derivatives’ and ‘organoheterocyclic compounds’ were found. Pathway analysis
showed downregulation of ‘thiamin (vitamin B1) metabolism’, ‘caffeine metabolism’ and
‘keratan sulfate biosynthesis’, and upregulation of ‘bile acid biosynthesis’ both in the
discovery and validation cohorts (both p-value < 0.05). Additionally, several enriched
pathways from the discovery cohort (p-value < 0.05) had similar directionality in the
validation cohort, including ‘pentose phosphate’ and ‘de novo fatty acid biosynthesis’
pathways. Subsequently, a targeted metabolome analysis was performed, focused on
lipoproteins and lipids. Surprisingly and in contrast to INSTI use, lipoprotein and lipid
profiles differed between nevirapine and doravirine, the most common NNRTI. We found
that nevirapine users showed a more favorable lipoprotein and lipid profile compared to
INSTI, while INSTI profile was more favorable compared to doravirine. The fold changes
were approximately three times higher in the INSTI vs. doravirine comparison, as opposed
to the INSTI vs. nevirapine comparison.

The ‘pentose phosphate pathway’ was downregulated in INSTI users. This pathway is
upregulated in untreated HIV and does not return to normal on cART [14,20]. This pathway
is important in alternative energy synthesis and production of biomolecules important in
HIV infection [14]. HIV infection exploits pathways in T-cells that are normally required for
T-cell activation to induce the high energy yield required for HIV proliferation. Normally,
oxidative phosphorylation is upregulated in activated T-cells to produce ATP, which also
lead to increases in harmful reactive oxygen species. Alternatively, the pentose phosphate
pathway is able to use glucose to produce the antioxidant-enhancing NADPH to prevent
this damage to cells [21]. HIV-infected cells increase their energy usage to form virions and
the upregulated pentose phosphate pathway is thought to induce increased protection on
these infected cells. In addition, the pentose phosphate pathway produces deoxynucleotide
triphosphates (dNTPs) that play a role in reverse transcriptase activation [21]. Lower levels
of dNTPs are associated with impaired HIV transcription [22]. Finding further downreg-
ulation in INSTI users might indicate further normalization of the ‘pentose phosphate
pathway’ immunometabolism in PLHIV.

The interpretation of the downregulation of thiamin metabolism and keratin sulfate
biosynthesis is unclear. An association of INSTI use and thiamin levels has not been
described previously. Potentially, this is a consequence of the downregulation of the
‘pentose phosphate pathway’ as thiamin provides a cofactor for transketolase which induces
glycolytic intermediates in the ‘pentose phosphate pathway’ [23,24]. Alternatively, HIV
has been associated with impaired levels of thiamin producing bacteria in the microbiome,
which are only partially recovered during cART [25]. INSTI and NNRTI may differentially
influence the restoration of thiamin producing microbiome. Lastly, INSTI could inhibit
thiamin metabolism directly through mechanisms yet unknown. Also, keratan sulfate
is an glycosaminoglycan that has not been linked to cART, HIV, weight gain, metabolic
syndrome or cardiovascular disease [26].

The observation of decreased caffein metabolism in INSTI users is somewhat contra-
dictory. Caffein is mainly metabolized through CYP1A2 [27]. CYP1A2 inhibiting properties
have not been reported for INSTIs. In contrast, very moderate CYP1A2 inhibition has been
described for NNRTIs efavirenz and nevirapine [28]. In addition, smoking is a well-known
CYP1A2 inducer [29]. However, the number of smokers was higher in INSTI than in
NNRTI users in the discovery cohort. Therefore, these moderate inhibition and inducing
properties are not in line with our observations of reduced caffein metabolism in INSTI
users. Possibly, factors outside our considerations influence CYP1A2 metabolism in INSTI
compared to NNRTI.

Also, we observed decreased ‘de novo fatty acid biosynthesis’ and increased ‘bile acid
biosynthesis’ in INSTI users compared to NNRTI users. ‘De novo fatty acid biosynthesis’
is an endogenous pathway that produces fatty acids primarily from carbohydrates after
a high carbohydrate meal, which can be further converted into triglycerides. The clinical
consequences of increased ‘de novo fatty acid biosynthesis’ is controversial; although,
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connections to increased risk for cardiovascular disease and/or diabetes type 2 have been
described [30,31]. Decreased ‘de novo fatty acid biosynthesis’ activity could be protective
rather than increasing CVD risk. In addition, increased ‘bile acid biosynthesis’ is associated
with increased uptake of LDL cholesterol by the liver and conversion into bile acid. Reduced
LDL cholesterol in blood lowers the risk for cardiovascular disease.

As both these pathways are lipid related, and ‘lipids and lipid-like molecules’ were
one of the main differentially expressed metabolites, we further investigated targeted
lipoprotein and lipid changes between INSTI and NNRTI, with focus on known CVD
biomarkers. In contrast to the metabolome, we found that lipoprotein and lipid levels
differed significantly between the various types of NNRTI. Therefore, we analyzed the
difference between INSTI and the two most commonly used NNRTIs, nevirapine and
doravirine. These NNRTIs also displayed the most pronounced discrepancy in the PC
analysis. INSTI users compared to nevirapine showed a less favorable CVD profile as
INSTI users had lower HDL cholesterol clusters with a maximum 0.5 fold change, as well
as a higher degree of unsaturated free fatty acids. Indeed, an increase in HDL cholesterol
under nevirapine use has been previously described [32]. Whether this also translates into
decreased cardiovascular risk for nevirapine users is unclear as large trials are lacking and
circumstantial evidence is ambiguous [33,34]. In contrast, INSTI users showed an up to
1.5 fold increase in HDL cholesterol clusters compared to doravirine users, indicating a
more favorable CVD lipid risk profile in INSTI users. Furthermore, we observed that the
LDL size was smaller in the INSTI compared to the doravirine group which is unfavorable
as a smaller LDL size has been associated with an increased cardiovascular risk [35]. We
cannot exclude that this effect may come from doravirine, as LDL size was also smaller in
nevirapine compared to doravirine users; although, here significance was only observed in
the discovery cohort.

Despite our observation in the metabolome of increased ‘bile acid biosynthesis’ and
‘de novo fatty acid biosynthesis’, we did not observe validated changes in LDL or VLDL
lipoproteins in INSTI compared to either NNRTI group.

The current study has several strengths and limitations. As far as we know, this
is the first time an untargeted metabolome measurement head-to-head comparison has
been performed in PLHIV using these different cART regimens. With the analysis of
1646 participants over the two cohorts combined with the 500 metabolites and 141 lipopro-
teins and lipids, the current study database is extensive. The introduction of a validation
cohort allowed to validate findings in an independent cohort. Moreover, we were able to
combine the latest state of the art methods in metabolome, lipoprotein and lipid profiling in
a well-defined cohort of PLHIV based on an extensive clinical database (ATHENA cohort).

Our study also has limitations. First, we only analyzed 500 metabolites out of the
1720 metabolites measured. As not all plasma metabolites can be annotated adequately
with current techniques, we decided to focus on known metabolites. Second, there were
considerable differences in the baseline characteristics between the compared groups,
which could explain some of the observed differences. However, analysis into confounders
revealed no other confounders than we corrected for. Third, our participants were asked
to restrain from food intake four hours before sampling. This is somewhat short for
lipoproteome and lipid analysis. In addition, our data are only cross-sectional and do
not contain any longitudinal data. The stability of our findings over time are therefore
uncertain. Also, due to local guidelines the INSTI and NNRTI in use differed between
discovery and validation cohorts. As a result, only five participants used doravirine in
the validation cohort. Still, we were able to validate several findings. Furthermore, all
our findings are correlations and cannot be used to establish causal relations. Finally, we
were not able to validate all our findings in the validation cohort. However, a number of
reasons might explain this. First, the most significant metabolome and lipoprotein and lipid
differences in the discovery cohort were based on small to modest fold changes. However,
they did often show the same directionality in the validation cohort, which could indicate
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insufficient statistical power. Second, there are baseline characteristic differences between
the discovery and validation cohorts; this might impede reproducibility in some findings.

5. Conclusions

In conclusion, using untargeted metabolomic analysis in INSTI compared to NNRTI
users, cardiometabolic risk profile seemed more favorable in INSTI users. However, tar-
geted analysis showed that INSTI use was associated with a more unfavorable lipid profile
compared to nevirapine, that was converted into a more favorable profile and three times
higher fold change differences substituting nevirapine to doravirine. The more hetero-
geneous metabolic effects of NNRTI, compared to INSTI, hamper the direct comparison
between these two classes of drugs and the formulation of general conclusions.
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