Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (910)

Search Parameters:
Keywords = city morphologies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4332 KiB  
Article
Soils of the Settlements of the Yamal Region (Russia): Morphology, Diversity, and Their Environmental Role
by Evgeny Abakumov, Alexandr Pechkin, Sergey Kouzov and Anna Kravchuk
Appl. Sci. 2025, 15(15), 8569; https://doi.org/10.3390/app15158569 (registering DOI) - 1 Aug 2025
Viewed by 113
Abstract
The landscapes of the Arctic seem endless. But they are also subject to anthropogenic impact, especially in urbanized and industrial ecosystems. The population of the Arctic zone of Russia is extremely urbanized, and up to 84% of the population lives in cities and [...] Read more.
The landscapes of the Arctic seem endless. But they are also subject to anthropogenic impact, especially in urbanized and industrial ecosystems. The population of the Arctic zone of Russia is extremely urbanized, and up to 84% of the population lives in cities and industrial settlements. In this regard, we studied the background soils of forests and tundras and the soils of settlements. The main signs of the urbanogenic morphogenesis of soils associated with the transportation of material for urban construction are revealed. The peculiarities of soils of recreational, residential, and industrial zones of urbanized ecosystems are described. The questions of diversity and the classification of soils are discussed. The specificity of bulk soils used in the construction of industrial structures in the context of the initial stage of soil formation is considered. For the first time, soils and soil cover of settlements in the central and southern parts of the Yamal region are described in the context of traditional pedology. It is shown that the construction of new soils and grounds can lead to both decreases and increases in biodiversity, including the appearance of protected species. Surprisingly, the forms of urban soil formation in the Arctic are very diversified in terms of morphology, as well as in the ecological functions performed by soils. The urbanization of past decades has drastically changed the local soil cover. Full article
(This article belongs to the Section Environmental Sciences)
Show Figures

Figure 1

17 pages, 2601 KiB  
Article
Tree Selection of Vernicia montana in a Representative Orchard Cluster Within Southern Hunan Province, China: A Comprehensive Evaluation Approach
by Juntao Liu, Zhexiu Yu, Xihui Li, Ling Zhou, Ruihui Wang and Weihua Zhang
Plants 2025, 14(15), 2351; https://doi.org/10.3390/plants14152351 - 30 Jul 2025
Viewed by 318
Abstract
With the objective of identifying superior Vernicia montana trees grounded in phenotypic and agronomic traits, this study sought to develop and implement a comprehensive evaluation method which would provide a practical foundation for future clonal breeding initiatives. Using the Vernicia montana propagated from [...] Read more.
With the objective of identifying superior Vernicia montana trees grounded in phenotypic and agronomic traits, this study sought to develop and implement a comprehensive evaluation method which would provide a practical foundation for future clonal breeding initiatives. Using the Vernicia montana propagated from seedling forests grown in the Suxian District of Chenzhou City in southern Hunan Province, we conducted pre-selection, primary selection, and re-selection of Vernicia montana forest stands and took the nine trait indices of single-plant fruiting quantity, single-plant fruit yield, disease and pest resistance, fruit ripening consistency, fruit aggregation, fresh fruit single-fruit weight, fresh fruit seed rate, dry seed kernel rate, and seed kernel oil content rate as the optimal evaluation indexes and carried out cluster analysis and a comprehensive evaluation in order to establish a comprehensive evaluation system for superior Vernicia montana trees. The results demonstrated that a three-stage selection process—consisting of pre-selection, primary selection, and re-selection—was conducted using a comprehensive analytical approach. The pre-selection phase relied primarily on sensory evaluation criteria, including fruit count per plant, tree size, tree morphology, and fruit clustering characteristics. Through this rigorous screening process, 60 elite plants were selected. The primary selection was based on phenotypic traits, including single-plant fruit yield, pest and disease resistance, and uniformity of fruit ripening. From this stage, 36 plants were selected. Twenty plants were then selected for re-selection based on key performance indicators, such as fresh fruit weight, fresh fruit seed yield, dry seed kernel yield, and oil content of the seed kernel. Then the re-selected optimal trees were clustered and analyzed into three classes, with 10 plants in class I, 7 plants in class II, and 3 plants in class III. In class I, the top three superior plants exhibited outstanding performance across key traits: their fresh fruit weight per fruit, fresh fruit seed yield, dry seed yield, and seed kernel oil content reached 41.61 g, 42.80%, 62.42%, and 57.72%, respectively. Compared with other groups, these figures showed significant advantages: 1.17, 1.09, 1.12, and 1.02 times the average values of the 20 reselected superior trees; 1.22, 1.19, 1.20, and 1.08 times those of the 36 primary-selected superior trees; and 1.24, 1.25, 1.26, and 1.19 times those of the 60 pre-selected trees. Fruits counts per plant and the number of fruits produced per plant of the best three plants in class I were 885 and 23.38 kg, respectively, which were 1.13 and 1.18 times higher than the average of 20 re-selected superior trees, 1.25 and 1.30 times higher than the average of 36 first-selected superior trees, and 1.51 and 1.58 times higher than the average of 60 pre-selected superior trees. Class I superior trees, especially the top three genotypes, are suitable for use as mother trees for scion collection in grafting. The findings of this study provide a crucial foundation for developing superior clonal varieties of Vernicia montana through selective breeding. Full article
Show Figures

Figure 1

18 pages, 11346 KiB  
Article
Comparative CFD Analysis Using RANS and LES Models for NOx Dispersion in Urban Streets with Active Public Interventions in Medellín, Colombia
by Juan Felipe Rodríguez Berrio, Fabian Andres Castaño Usuga, Mauricio Andres Correa, Francisco Rodríguez Cortes and Julio Cesar Saldarriaga
Sustainability 2025, 17(15), 6872; https://doi.org/10.3390/su17156872 - 29 Jul 2025
Viewed by 204
Abstract
The Latin American and Caribbean (LAC) region faces persistent challenges of inequality, climate change vulnerability, and deteriorating air quality. The Aburrá Valley, where Medellín is located, is a narrow tropical valley with complex topography, strong thermal inversions, and unstable atmospheric conditions, all of [...] Read more.
The Latin American and Caribbean (LAC) region faces persistent challenges of inequality, climate change vulnerability, and deteriorating air quality. The Aburrá Valley, where Medellín is located, is a narrow tropical valley with complex topography, strong thermal inversions, and unstable atmospheric conditions, all of which exacerbate the accumulation of pollutants. In Medellín, NO2 concentrations have remained nearly unchanged over the past eight years, consistently approaching critical thresholds, despite the implementation of air quality control strategies. These persistent high concentrations are closely linked to the variability of the atmospheric boundary layer (ABL) and are often intensified by prolonged dry periods. This study focuses on a representative street canyon in Medellín that has undergone recent urban interventions, including the construction of new public spaces and pedestrian areas, without explicitly considering their impact on NOx dispersion. Using Computational Fluid Dynamics (CFD) simulations, this work evaluates the influence of urban morphology on NOx accumulation. The results reveal that areas with high Aspect Ratios (AR > 0.65) and dense vegetation exhibit reduced wind speeds at the pedestrian level—up to 40% lower compared to open zones—and higher NO2 concentrations, with maximum simulated values exceeding 50 μg/m3. This study demonstrates that the design of pedestrian corridors in complex urban environments like Medellín can unintentionally create pollutant accumulation zones, underscoring the importance of integrating air quality considerations into urban planning. The findings provide actionable insights for policymakers, emphasizing the need for comprehensive modeling and field validation to ensure healthier urban spaces in cities affected by persistent air quality issues. Full article
(This article belongs to the Section Air, Climate Change and Sustainability)
Show Figures

Figure 1

30 pages, 78202 KiB  
Article
Climate-Adaptive Architecture: Analysis of the Wei Family Compound’s Thermal–Ventilation Environment in Ganzhou, China
by Xiaolong Tao, Xin Liang and Wenjia Liu
Buildings 2025, 15(15), 2673; https://doi.org/10.3390/buildings15152673 - 29 Jul 2025
Viewed by 462
Abstract
Sustainable building design is significantly impacted by the local climate response knowledge ingrained in traditional architecture. However, its integration and dissemination with contemporary green technologies are limited by the absence of a comprehensive quantitative analysis of the regulation of its humid and temperature [...] Read more.
Sustainable building design is significantly impacted by the local climate response knowledge ingrained in traditional architecture. However, its integration and dissemination with contemporary green technologies are limited by the absence of a comprehensive quantitative analysis of the regulation of its humid and temperature environment. The Ganzhou Wei family compound from China’s wind–heat environmental regulation systems are examined in this study. We statistically evaluate the synergy between spatial morphology, material qualities, and microclimate using field data with Thsware and Ecotect software in a multiscale simulation framework. The findings indicate that the compound’s special design greatly controls the thermal and wind conditions. Cold alleyways and courtyards work together to maximize thermal environment regulation and encourage natural ventilation. According to quantitative studies, courtyards with particular depths (1–4 m) and height-to-width ratios (e.g., 1:1) reduce wind speed loss. A cool alley (5:1 height–width ratio) creates a dynamic wind–speed–temperature–humidity balance by lowering summer daytime temperatures by 2.5 °C. It also serves as a “cold source area” that moderates temperatures in the surrounding area by up to 2.1 °C. This study suggests a quantitative correlation model based on “spatial morphology–material performance–microclimate response,” which offers a technical route for historic building conservation renovation and green renewal, as well as a scientific foundation for traditional buildings to maintain thermal comfort under low energy consumption. Although based on a specific geographical case, the innovative analytical methods and strategies of this study are of great theoretical and practical significance for promoting the modernization and transformation of traditional architecture, low-carbon city construction, and sustainable building design. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

19 pages, 2278 KiB  
Article
Interplay Between Vegetation and Urban Climate in Morocco—Impact on Human Thermal Comfort
by Noura Ed-dahmany, Lahouari Bounoua, Mohamed Amine Lachkham, Mohammed Yacoubi Khebiza, Hicham Bahi and Mohammed Messouli
Urban Sci. 2025, 9(8), 289; https://doi.org/10.3390/urbansci9080289 - 25 Jul 2025
Viewed by 528
Abstract
This study examines diurnal surface temperature dynamics across major Moroccan cities during the growing season and explores the interaction between urban and vegetated surfaces. We also introduce the Urban Thermal Impact Ratio (UTIR), a novel metric designed to quantify urban thermal comfort as [...] Read more.
This study examines diurnal surface temperature dynamics across major Moroccan cities during the growing season and explores the interaction between urban and vegetated surfaces. We also introduce the Urban Thermal Impact Ratio (UTIR), a novel metric designed to quantify urban thermal comfort as a function of the surface urban heat island (SUHI) intensity. The analysis is based on outputs from a land surface model (LSM) for the year 2010, integrating high-resolution Landsat and MODIS data to characterize land cover and biophysical parameters across twelve land cover types. Our findings reveal moderate urban–vegetation temperature differences in coastal cities like Tangier (1.8 °C) and Rabat (1.0 °C), where winter vegetation remains active. In inland areas, urban morphology plays a more dominant role: Fes, with a 20% impervious surface area (ISA), exhibits a smaller SUHI than Meknes (5% ISA), due to higher urban heating in the latter. The Atlantic desert city of Dakhla shows a distinct pattern, with a nighttime SUHI of 2.1 °C and a daytime urban cooling of −0.7 °C, driven by irrigated parks and lawns enhancing evapotranspiration and shading. At the regional scale, summer UTIR values remain below one in Tangier-Tetouan-Al Hoceima, Rabat-Sale-Kenitra, and Casablanca-Settat, suggesting that urban conditions generally stay within thermal comfort thresholds. In contrast, higher UTIR values in Marrakech-Safi, Beni Mellal-Khénifra, and Guelmim-Oued Noun indicate elevated heat discomfort. At the city scale, the UTIR in Tangier, Rabat, and Casablanca demonstrates a clear diurnal pattern: it emerges around 11:00 a.m., peaks at 1:00 p.m., and fades by 3:00 p.m. This study highlights the critical role of vegetation in regulating urban surface temperatures and modulating urban–rural thermal contrasts. The UTIR provides a practical, scalable indicator of urban heat stress, particularly valuable in data-scarce settings. These findings carry significant implications for climate-resilient urban planning, optimized energy use, and the design of public health early warning systems in the context of climate change. Full article
Show Figures

Figure 1

22 pages, 31625 KiB  
Article
The Construction and Analysis of a Spatial Gene Map of Marginal Villages in Southern Sichuan
by Jiahao Wan, Xiaoyang Guo, Zehua Wen and Xujun Zhang
Buildings 2025, 15(15), 2628; https://doi.org/10.3390/buildings15152628 - 24 Jul 2025
Viewed by 362
Abstract
With the acceleration of modernization, villages in Southwest China are experiencing spatial fragmentation and homogenization, leading to the loss of traditional identity. Addressing how to balance scientific planning with cultural and spatial continuity has become a key challenge in rural governance. This study [...] Read more.
With the acceleration of modernization, villages in Southwest China are experiencing spatial fragmentation and homogenization, leading to the loss of traditional identity. Addressing how to balance scientific planning with cultural and spatial continuity has become a key challenge in rural governance. This study takes Xuyong County in Luzhou City as a case and develops a three-tier analytical framework—“genome–spatial factors–specific indicators”—based on the space gene theory to identify, classify, and map spatial patterns in marginal villages of southern Sichuan. Through cluster analysis, common and distinctive spatial genes are extracted. Common genes—such as medium surface roughness (GeneN-2-b), medium building dispersion (GeneA-3-b), and low intelligibility (GeneT-2-b)—are prevalent across multiple village types, reflecting shared adaptive strategies to complex terrains, ecological constraints, and historical development. In contrast, distinctive genes—such as high building dispersion (GeneA-3-a) and linear boundaries (GeneB-1-c)—highlight unique spatial responses that are shaped by local cultural and environmental conditions. The results contribute to a deeper understanding of spatial morphology and adaptive mechanisms in rural settlements. This research offers a theoretical and methodological basis for village classification, conservation zoning, and spatial optimization, providing practical guidance for rural revitalization efforts focusing on both development and heritage protection. Full article
Show Figures

Figure 1

29 pages, 3547 KiB  
Article
Morphological and Metric Analysis of Medieval Dog Remains from Wolin, Poland
by Piotr Baranowski
Animals 2025, 15(15), 2171; https://doi.org/10.3390/ani15152171 - 23 Jul 2025
Viewed by 220
Abstract
This study analyzes 209 dog skeletons from two sites in Wolin (9th–mid-13th century AD) using 100 standard metric variables covering cranial, mandibular, and postcranial elements. Estimated withers height, body mass, age at death, and sex were derived using established methods. The results indicate [...] Read more.
This study analyzes 209 dog skeletons from two sites in Wolin (9th–mid-13th century AD) using 100 standard metric variables covering cranial, mandibular, and postcranial elements. Estimated withers height, body mass, age at death, and sex were derived using established methods. The results indicate the presence of at least two to three morphotypes: small spitz-like dogs (40–50 cm, 4–6 kg), medium brachycephalic forms (50–60 cm, 10–15 kg), and larger mesocephalic individuals (up to 65 cm, 20–40 kg). Dogs lived 3–10 years, with both sexes represented. Signs of cranial trauma and dental wear suggest utilitarian roles such as guarding. The size range and morphological diversity point to intentional breeding and trade-based importation. Small dogs likely served as companions or city guards, while medium and large types were used for herding, hunting, or transport. These findings highlight Wolin’s role as a dynamic cultural and trade center, where human–dog relationships were shaped by anthropogenic selection and regional exchange. Full article
(This article belongs to the Section Companion Animals)
Show Figures

Figure 1

22 pages, 4620 KiB  
Article
Spatial Strategies for the Renewable Energy Transition: Integrating Solar Photovoltaics into Barcelona’s Urban Morphology
by Maryam Roodneshin, Adrian Muros Alcojor and Torsten Masseck
Solar 2025, 5(3), 34; https://doi.org/10.3390/solar5030034 - 23 Jul 2025
Viewed by 491
Abstract
This study investigates strategies for urban-scale renewable energy integration through a photovoltaic-centric approach, with a case study of a district in Barcelona. The methodology integrates spatial and morphological data using a geographic information system (GIS)-based and clustering framework to address challenges of CO [...] Read more.
This study investigates strategies for urban-scale renewable energy integration through a photovoltaic-centric approach, with a case study of a district in Barcelona. The methodology integrates spatial and morphological data using a geographic information system (GIS)-based and clustering framework to address challenges of CO2 emissions, air pollution, and energy inefficiency. Rooftop availability and photovoltaic (PV) design constraints are analysed under current urban regulations. The spatial analysis incorporates building geometry and solar exposure, while an evolutionary optimisation algorithm in Grasshopper refines shading analysis, energy yield, and financial performance. Clustering methods (K-means and 3D proximity) group PV panels by solar irradiance uniformity and spatial coherence to enhance system efficiency. Eight PV deployment scenarios are evaluated, incorporating submodule integrated converter technology under a solar power purchase agreement model. Results show distinct trade-offs among PV scenarios. The standard fixed tilted (31.5° tilt, south-facing) scenario offers a top environmental and performance ratio (PR) = 66.81% but limited financial returns. In contrast, large- and huge-sized modules offer peak financial returns, aligning with private-sector priorities but with moderate energy efficiency. Medium- and large-size scenarios provide balanced outcomes, while a small module and its optimised rotated version scenarios maximise energy output yet suffer from high capital costs. A hybrid strategy combining standard fixed tilted with medium and large modules balances environmental and economic goals. The district’s morphology supports “solar neighbourhoods” and demonstrates how multi-scenario evaluation can guide resilient PV planning in Mediterranean cities. Full article
Show Figures

Figure 1

18 pages, 5079 KiB  
Article
Graph Representation Learning on Street Networks
by Mateo Neira and Roberto Murcio
ISPRS Int. J. Geo-Inf. 2025, 14(8), 284; https://doi.org/10.3390/ijgi14080284 - 22 Jul 2025
Viewed by 427
Abstract
Street networks provide an invaluable source of information about the different temporal and spatial patterns emerging in our cities. These streets are often represented as graphs where intersections are modeled as nodes and streets as edges between them. Previous work has shown that [...] Read more.
Street networks provide an invaluable source of information about the different temporal and spatial patterns emerging in our cities. These streets are often represented as graphs where intersections are modeled as nodes and streets as edges between them. Previous work has shown that raster representations of the original data can be created through a learning algorithm on low-dimensional representations of the street networks. In contrast, models that capture high-level urban network metrics can be trained through convolutional neural networks. However, the detailed topological data is lost through the rasterization of the street network, and the models cannot recover this information from the image alone, failing to capture complex street network features. This paper proposes a model capable of inferring good representations directly from the street network. Specifically, we use a variational autoencoder with graph convolutional layers and a decoder that generates a probabilistic, fully connected graph to learn latent representations that encode both local network structure and the spatial distribution of nodes. We train the model on thousands of street network segments and use the learned representations to generate synthetic street configurations. Finally, we proposed a possible application to classify the urban morphology of different network segments, investigating their common characteristics in the learned space. Full article
Show Figures

Figure 1

19 pages, 3772 KiB  
Article
Phenotypic Diversity Analysis and Integrative Evaluation of Camellia oleifera Germplasm Resources in Ya’an, Sichuan Province
by Shiheng Zheng, Qingbo Kong, Hanrui Yan, Junjie Liu, Renke Tang, Lijun Zhou, Hongyu Yang, Xiaoyu Jiang, Shiling Feng, Chunbang Ding and Tao Chen
Plants 2025, 14(14), 2249; https://doi.org/10.3390/plants14142249 - 21 Jul 2025
Viewed by 378
Abstract
As a unique woody oil crop in China, Camellia oleifera Abel. germplasm resources show significant genetic diversity in Ya’an City. This study measured 60 phenotypic traits (32 quantitative, 28 qualitative) of 302 accessions to analyze phenotypic variation, establish a classification system, and screen [...] Read more.
As a unique woody oil crop in China, Camellia oleifera Abel. germplasm resources show significant genetic diversity in Ya’an City. This study measured 60 phenotypic traits (32 quantitative, 28 qualitative) of 302 accessions to analyze phenotypic variation, establish a classification system, and screen high-yield, high-oil germplasms. The phenotypic diversity index for fruit (H’ = 1.36–1.44) was significantly higher than for leaf (H’ = 1.31) and flower (H’ < 1), indicating genetic diversity concentrated in reproductive traits, suggesting potential genetic variability in these traits. Fruit quantitative traits (e.g., single fruit weight CV = 35.37%, fresh seed weight CV = 38.93%) showed high genetic dispersion. Principal component analysis confirmed the fruit factor and economic factor as main phenotypic differentiation drivers. Quantitative traits were classified morphologically, and correlation analysis integrated them into 13 key indicators classified using LSD and range methods. Finally, TOPSIS evaluation selected 10 excellent germplasms like TQ122 and TQ49, with fruit weight, fresh seed yield, and kernel oil content significantly exceeding the population average. This study provides data for C. oleifera DUS test guidelines and proposes a multi-trait breeding strategy, supporting high-yield variety selection and germplasm resource protection. Full article
(This article belongs to the Special Issue Genetic Diversity and Germplasm Innovation in Woody Oil Crops)
Show Figures

Figure 1

19 pages, 3993 KiB  
Article
Optical Monitoring of Particulate Matter: Calibration Approach, Seasonal and Diurnal Dependency, and Impact of Meteorological Vectors
by Salma Zaim, Bouchra Laarabi, Hajar Chamali, Abdelouahed Dahrouch, Asmae Arbaoui, Khalid Rahmani, Abdelfettah Barhdadi and Mouhaydine Tlemçani
Environments 2025, 12(7), 244; https://doi.org/10.3390/environments12070244 - 16 Jul 2025
Viewed by 483
Abstract
The worldwide air pollution situation reveals significant environmental challenges. In addition to being a major contributor to the deterioration of air quality, particulate matter (PM) is also an important factor affecting the performance of solar energy systems given its ability to decrease light [...] Read more.
The worldwide air pollution situation reveals significant environmental challenges. In addition to being a major contributor to the deterioration of air quality, particulate matter (PM) is also an important factor affecting the performance of solar energy systems given its ability to decrease light transmission to solar panels. As part of our research, the present investigation involves monitoring concentrations of PM using a high-performance optical instrument, the in situ calibration protocol of which is described in detail. For the city of Rabat, observations revealed significant variations in concentrations between day and night, with peaks observed around 8 p.m. correlating with high relative humidity and low wind speeds, and the highest levels recorded in February with a monthly average value reaching 75 µm/m3. In addition, an experimental protocol was set up for an analysis of the elemental composition of particles in the same city using SEM/EDS, providing a better understanding of their morphology. To assess the impact of meteorological variables on PM concentrations in two distinct climatic environments, a database from the city of Marrakech for the year 2024 was utilized. Overall, the distribution of PM values during this period did not fluctuate significantly, with a monthly average value not exceeding 45 µm/m3. The random forest method identified the most influential variables on these concentrations, highlighting the strong influence of the type of environment. The findings provide crucial information for the modeling of solar installations’ soiling and for improving understanding of local air quality. Full article
Show Figures

Graphical abstract

30 pages, 14631 KiB  
Article
Unsupervised Plot Morphology Classification via Graph Attention Networks: Evidence from Nanjing’s Walled City
by Ziyu Liu and Yacheng Song
Land 2025, 14(7), 1469; https://doi.org/10.3390/land14071469 - 15 Jul 2025
Viewed by 330
Abstract
Urban plots are pivotal links between individual buildings and the city fabric, yet conventional plot classification methods often overlook how buildings interact within each plot. This oversight is particularly problematic in the irregular fabrics typical of many Global South cities. This study aims [...] Read more.
Urban plots are pivotal links between individual buildings and the city fabric, yet conventional plot classification methods often overlook how buildings interact within each plot. This oversight is particularly problematic in the irregular fabrics typical of many Global South cities. This study aims to create a plot classification method that jointly captures metric and configurational characteristics. Our approach converts each cadastral plot into a graph whose nodes are building centroids and whose edges reflect Delaunay-based proximity. The model then learns unsupervised graph embeddings with a two-layer Graph Attention Network guided by a triple loss that couples building morphology with spatial topology. We then cluster the embeddings together with normalized plot metrics. Applying the model to 8973 plots in Nanjing’s historic walled city yields seven distinct plot morphological types. The framework separates plots that share identical FAR–GSI values but differ in internal organization. The baseline and ablation experiments confirm the indispensability of both configurational and metric information. Each type aligns with specific renewal strategies, from incremental upgrades of courtyard slabs to skyline management of high-rise complexes. By integrating quantitative graph learning with classical typo-morphology theory, this study not only advances urban form research but also offers planners a tool for context-sensitive urban regeneration and land-use management. Full article
Show Figures

Figure 1

26 pages, 6526 KiB  
Article
Typo-Morphology as a Conceptual Tool for Rural Settlements: Decoding Harran’s Vernacular Heritage with Reflections from Alberobello
by Ozge Ogut
Land 2025, 14(7), 1463; https://doi.org/10.3390/land14071463 - 14 Jul 2025
Viewed by 471
Abstract
Typo-morphology, as interpreted by the Italian School of Planning, provides an approach to investigate the relationship between built form and socio-cultural patterns in vernacular settlements. This study examines Harran, a heritage site in southeastern Türkiye known for its distinctive conic domed dwellings, to [...] Read more.
Typo-morphology, as interpreted by the Italian School of Planning, provides an approach to investigate the relationship between built form and socio-cultural patterns in vernacular settlements. This study examines Harran, a heritage site in southeastern Türkiye known for its distinctive conic domed dwellings, to explore how typo-morphological analysis can inform culturally sensitive design and adaptive reuse approaches. Despite its historical significance and inclusion in the UNESCO tentative list, Harran faces insufficient documentation, fragmented governance, limited conservation, and increasing pressure from urbanization and natural disasters. Using multiple sources and fieldwork, the research reconstructs the morphological evolution of Harran through diachronic maps across compound, district, and town scales. Reflections from Alberobello, Italy, i.e., the sister city of Harran and a UNESCO-listed town with a similarly unique vernacular fabric, provide a comparative view to explore different heritage management approaches. Harran evolved through informal, culture-driven growth, whereas Alberobello followed a regulated path. While Alberobello benefits from planned development and institutional preservation, Harran faces partial abandonment and neglect. By positioning typo-morphology as a conceptual planning tool, this paper emphasizes the need for context-responsive, ethically grounded, and inclusive approaches to heritage planning and conservation. It argues for planning practices that are not only technically competent but also attuned to place-based knowledge, local identities, and the long-term sustainability of living heritage. Full article
(This article belongs to the Special Issue Urban Morphology: A Perspective from Space (Second Edition))
Show Figures

Graphical abstract

25 pages, 6935 KiB  
Article
Multi-Scale Analysis of the Mitigation Effect of Green Space Morphology on Urban Heat Islands
by Jie Liu, Xueying Wu, Liyu Pan and Chun-Ming Hsieh
Atmosphere 2025, 16(7), 857; https://doi.org/10.3390/atmos16070857 - 14 Jul 2025
Viewed by 342
Abstract
Urban green spaces (UGS) serve as critical mitigators of urban heat islands (UHIs), yet the scale-dependent mechanisms through which UGS morphology regulates thermal effects remain insufficiently understood. This study investigates the multi-scale relationships between UGS spatial patterns and cooling effects in Macao, employing [...] Read more.
Urban green spaces (UGS) serve as critical mitigators of urban heat islands (UHIs), yet the scale-dependent mechanisms through which UGS morphology regulates thermal effects remain insufficiently understood. This study investigates the multi-scale relationships between UGS spatial patterns and cooling effects in Macao, employing morphological spatial pattern analysis (MSPA) to characterize UGS configurations and geographically weighted regression (GWR) to examine city-scale thermal interactions, complemented by patch-scale buffer analyses of area, perimeter, and landscape shape index effects. Results demonstrate that high-UGS-integrity areas significantly enhance cooling capacity (area with proportion of core ≥35% showing optimal performance), while fragmented elements (branches, edges) exacerbate UHIs, with patch-scale analyses revealing nonlinear threshold effects in cooling efficiency. A tripartite classification of UGS by cooling capacity identifies strong mitigation types with optimal shape metrics and cooling extents. These findings establish a tripartite UGS classification system based on cooling performance and identify optimal morphological parameters, advancing understanding of thermal regulation mechanisms in urban environments. This research provides empirical evidence for UGS planning strategies prioritizing core area conservation, morphological optimization, and seasonal adaptation to improve urban climate resilience, offering practical insights for sustainable development in high-density coastal cities. Full article
(This article belongs to the Special Issue Urban Design Guidelines for Climate Change (2nd edition))
Show Figures

Figure 1

26 pages, 6762 KiB  
Article
Temporal-Spatial Thermal Comfort Across Urban Blocks with Distinct Morphologies in a Hot Summer and Cold Winter Climate: On-Site Investigations in Beijing
by Tengfei Zhao and Tong Ma
Atmosphere 2025, 16(7), 855; https://doi.org/10.3390/atmos16070855 - 14 Jul 2025
Viewed by 287
Abstract
Urban outdoor thermal comfort (OTC) has become an increasingly critical issue under the pressures of urbanization and climate change. Comparative analyses of urban blocks with distinct spatial morphologies are essential for identifying OTC issues and proposing targeted optimization strategies. However, existing studies predominantly [...] Read more.
Urban outdoor thermal comfort (OTC) has become an increasingly critical issue under the pressures of urbanization and climate change. Comparative analyses of urban blocks with distinct spatial morphologies are essential for identifying OTC issues and proposing targeted optimization strategies. However, existing studies predominantly rely on microclimate numerical simulations, while comparative assessments of OTC from the human thermal perception perspective remain limited. This study employs the thermal walk method, integrating microclimatic measurements with thermal perception questionnaires, to conduct on-site OTC investigations across three urban blocks with contrasting spatial morphologies—a business district (BD), a residential area (RA), and a historical neighborhood (HN)—in Beijing, a hot summer and cold winter climate city. The results reveal substantial OTC differences among the blocks. However, these differences demonstrated great seasonal and temporal variations. In summer, BD exhibited the best OTC (mTSV = 1.21), while HN performed the worst (mTSV = 1.72). In contrast, BD showed the poorest OTC in winter (mTSV = −1.57), significantly lower than HN (−1.11) and RA (−1.05). This discrepancy was caused by the unique morphology of different blocks. The sky view factor emerged as a more influential factor affecting OTC over building coverage ratio and building height, particularly in RA (r = 0.689, p < 0.01), but its impact varied by block, season, and sunlight conditions. North–South streets generally perform better OTC than East–West streets, being 0.26 units cooler in summer and 0.20 units warmer in winter on the TSV scale. The study highlights the importance of incorporating more applicable physical parameters to optimize OTC in complex urban contexts and offering theoretical support for designing climate adaptive urban spaces. Full article
(This article belongs to the Section Biometeorology and Bioclimatology)
Show Figures

Figure 1

Back to TopTop