Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (100)

Search Parameters:
Keywords = circulating stromal cells

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 762 KiB  
Review
The Genetic and Biological Basis of Pseudoarthrosis in Fractures: Current Understanding and Future Directions
by Amalia Kotsifaki, Georgia Kalouda, Sousanna Maroulaki, Athanasios Foukas and Athanasios Armakolas
Diseases 2025, 13(3), 75; https://doi.org/10.3390/diseases13030075 - 3 Mar 2025
Viewed by 1977
Abstract
Pseudoarthrosis—the failure of normal fracture healing—remains a significant orthopedic challenge affecting approximately 10–15% of long bone fractures, and is associated with significant pain, prolonged disability, and repeated surgical interventions. Despite extensive research into the pathophysiological mechanisms of bone healing, diagnostic approaches remain reliant [...] Read more.
Pseudoarthrosis—the failure of normal fracture healing—remains a significant orthopedic challenge affecting approximately 10–15% of long bone fractures, and is associated with significant pain, prolonged disability, and repeated surgical interventions. Despite extensive research into the pathophysiological mechanisms of bone healing, diagnostic approaches remain reliant on clinical findings and radiographic evaluations, with little innovation in tools to predict or diagnose non-union. The present review evaluates the current understanding of the genetic and biological basis of pseudoarthrosis and highlights future research directions. Recent studies have highlighted the potential of specific molecules and genetic markers to serve as predictors of unsuccessful fracture healing. Alterations in mesenchymal stromal cell (MSC) function, including diminished osteogenic potential and increased cellular senescence, are central to pseudoarthrosis pathogenesis. Molecular analyses reveal suppressed bone morphogenetic protein (BMP) signaling and elevated levels of its inhibitors, such as Noggin and Gremlin, which impair bone regeneration. Genetic studies have uncovered polymorphisms in BMP, matrix metalloproteinase (MMP), and Wnt signaling pathways, suggesting a genetic predisposition to non-union. Additionally, the biological differences between atrophic and hypertrophic pseudoarthrosis, including variations in vascularity and inflammatory responses, emphasize the need for targeted approaches to management. Emerging biomarkers, such as circulating microRNAs (miRNAs), cytokine profiles, blood-derived MSCs, and other markers (B7-1 and PlGF-1), have the potential to contribute to early detection of at-risk patients and personalized therapeutic approaches. Advancing our understanding of the genetic and biological underpinnings of pseudoarthrosis is essential for the development of innovative diagnostic tools and therapeutic strategies. Full article
Show Figures

Figure 1

15 pages, 2276 KiB  
Article
Integrated Local and Systemic Communication Factors Regulate Nascent Hematopoietic Progenitor Escape During Developmental Hematopoiesis
by Carson Shalaby, James Garifallou and Christopher S. Thom
Int. J. Mol. Sci. 2025, 26(1), 301; https://doi.org/10.3390/ijms26010301 - 31 Dec 2024
Cited by 1 | Viewed by 1040
Abstract
Mammalian blood cells originate from specialized ‘hemogenic’ endothelial (HE) cells in major arteries. During the endothelial-to-hematopoietic transition (EHT), nascent hematopoietic stem cells (HSCs) bud from the arterial endothelial wall and enter circulation, destined to colonize the fetal liver before ultimately migrating to the [...] Read more.
Mammalian blood cells originate from specialized ‘hemogenic’ endothelial (HE) cells in major arteries. During the endothelial-to-hematopoietic transition (EHT), nascent hematopoietic stem cells (HSCs) bud from the arterial endothelial wall and enter circulation, destined to colonize the fetal liver before ultimately migrating to the bone marrow. Mechanisms and processes that facilitate EHT and the release of nascent HSCs are incompletely understood, but may involve signaling from neighboring vascular endothelial cells, stromal support cells, circulating pre-formed hematopoietic cells, and/or systemic factors secreted by distal organs. We used single cell RNA sequencing analysis from human embryonic cells to identify relevant signaling pathways that support nascent HSC release. In addition to intercellular and secreted signaling modalities that have been previously functionally validated to support EHT and/or developmental hematopoiesis in model systems, we identify several novel modalities with plausible mechanisms to support EHT and HSC release. Our findings paint a portrait of the complex inter-regulated signals from the local niche, circulating hematopoietic/inflammatory cells, and distal fetal liver that support hematopoiesis. Full article
Show Figures

Figure 1

15 pages, 3611 KiB  
Article
Chemokine CXCL12 Activates CXC Receptor 4 Metastasis Signaling Through the Upregulation of a CXCL12/CXCR4/MDMX (MDM4) Axis
by Rusia Lee, Viola Ellison, Dominique Forbes, Chong Gao, Diana Katanov, Alexandra Kern, Fayola Levine, Pam Leybengrub, Olorunseun Ogunwobi, Gu Xiao, Zhaohui Feng and Jill Bargonetti
Cancers 2024, 16(24), 4194; https://doi.org/10.3390/cancers16244194 - 16 Dec 2024
Viewed by 1662
Abstract
Background: The metastasis-promoting G-protein-coupled receptor CXC Receptor 4 (CXCR4) is activated by the chemokine CXCL12, also known as stromal cell-derived factor 1 (SDF-1). The CXCL12/CXCR4 pathway in cancer promotes metastasis but the molecular details of how this pathway cross-talks with oncogenes are understudied. [...] Read more.
Background: The metastasis-promoting G-protein-coupled receptor CXC Receptor 4 (CXCR4) is activated by the chemokine CXCL12, also known as stromal cell-derived factor 1 (SDF-1). The CXCL12/CXCR4 pathway in cancer promotes metastasis but the molecular details of how this pathway cross-talks with oncogenes are understudied. An oncogene pathway known to promote breast cancer metastasis in MDA-MB-231 xenografts is that of Mouse Double Minute 2 and 4 (MDM2 and MDM4, also known as MDMX). MDM2 and MDMX promote circulating tumor cell (CTC) formation and metastasis, and positively correlate with a high expression of CXCR4. Interestingly, this MDMX-associated upregulation of CXCR4 is only observed in cells grown in the tumor microenvironment (TME), but not in MDA-MB-231 cells grown in a tissue culture dish. This suggested a cross-talk signaling factor from the TME which was predicted to be CXCL12 and, as such, we asked if the exogenous addition of the cell non-autonomous CXCL12 ligand would recapitulate the MDMX-dependent upregulation of CXCR4. Methods: We used MDA-MB-231 cells and isolated CTCs, with and without MDMX knockdown, plus the exogenous addition of CXCL12 to determine if MDMX-dependent upregulation of CXCR4 could be recapitulated outside of the TME context. We added exogenous CXCL12 to the culture medium used for growth of MDA-MB-231 cells and isogenic cell lines engineered for MDM2 or MDMX depletion. We carried out immunoblotting, and quantitative RT-PCR to compare the expression of CXCR4, MDM2, MDMX, and AKT activation. We carried out Boyden chamber and wound healing assays to assess the influence of MDMX and CXCL12 on the cells’ migration capacity. Results: The addition of the CXCL12 chemokine to the medium increased the CXCR4 cellular protein level and activated the PI3K/AKT signaling pathway. Surprisingly, we observed that the addition of CXCL12 mediated the upregulation of MDM2 and MDMX at the protein, but not at the mRNA, level. A reduction in MDMX, but not MDM2, diminished both the CXCL12-mediated CXCR4 and MDM2 upregulation. Moreover, a reduction in both MDM2 and MDMX hindered the ability of the added CXCL12 to promote Boyden chamber-assessed cell migration. The upregulation of MDMX by CXCL12 was mediated, at least in part, by a step upstream of the proteasome pathway because CXCL12 did not increase protein stability after cycloheximide treatment, or when the proteasome pathway was blocked. Conclusions: These data demonstrate a positive feed-forward activation loop between the CXCL12/CXCR4 pathway and the MDM2/MDMX pathway. As such, MDMX expression in tumor cells may be upregulated in the primary tumor microenvironment by CXCL12 expression. Furthermore, CXCL12/CXCR4 metastatic signaling may be upregulated by the MDM2/MDMX axis. Our findings highlight a novel positive regulatory loop between CXCL12/CXCR4 signaling and MDMX to promote metastasis. Full article
Show Figures

Figure 1

15 pages, 6588 KiB  
Article
Expression of Epithelial Alarmin Receptor on Innate Lymphoid Cells Type 2 in Eosinophilic Chronic Obstructive Pulmonary Disease
by Katarzyna Królak-Nowak, Marta Wierzbińska, Aleksandra Żal, Adam Antczak and Damian Tworek
Adv. Respir. Med. 2024, 92(5), 429-443; https://doi.org/10.3390/arm92050039 - 18 Oct 2024
Cited by 2 | Viewed by 1719
Abstract
Studies have shown that eosinophilic COPD (eCOPD) is a distinct phenotype of the disease. It is well established that innate lymphoid cells are involved in the development of eosinophilic inflammation. Interleukin(IL)-25, thymic stromal lymphopoietin (TSLP) and IL-33 are a group of cytokines produced [...] Read more.
Studies have shown that eosinophilic COPD (eCOPD) is a distinct phenotype of the disease. It is well established that innate lymphoid cells are involved in the development of eosinophilic inflammation. Interleukin(IL)-25, thymic stromal lymphopoietin (TSLP) and IL-33 are a group of cytokines produced by epithelium in response to danger signals, e.g., cigarette smoke, and potent activators of ILC2s. In the present study, we examined circulating and sputum ILC2 numbers and expression of intracellular IL-5 as well as receptors for TSLP, IL-33 and IL-25 by ILC2s in non-atopic COPD patients with and without (neCOPD) airway eosinophilic inflammation and healthy smokers. In addition, we examined the association between ILC2s and clinical indicators of COPD burden (i.e., symptom intensity and risk of exacerbations). ILC2s were enumerated in peripheral blood and induced sputum by means of flow cytometry. We noted significantly greater numbers of airway IL-5+ILC2s and TSLPR+ILC2s in eCOPD compared with neCOPD (p < 0.05 and p < 0.01, respectively) and HSs (p < 0.001 for both). In addition, we showed that IL-5+ILC2s, IL-17RB+ILC2s and ST2+ILC2s are significantly increased in the sputum of eCOPD patients compared with HSs. In all COPD patients, sputum ILC2s positively correlated with sputum eosinophil percentage (r = 0.48, p = 0.002). We did not find any significant correlations between sputum ILC2s and dyspnea intensity as measured by the modified Medical Research Council scale (mMRC) and symptom intensity measured by the COPD Assessment Test (CAT). These results suggest the involvement of epithelial alarmin-activated ILC2s in the pathobiology of eosinophilic COPD. Full article
Show Figures

Figure 1

14 pages, 2713 KiB  
Article
Pulmonary and Systemic Immune Profiles Following Lung Volume Reduction Surgery and Allogeneic Mesenchymal Stromal Cell Treatment in Emphysema
by Li Jia, Na Li, Vincent van Unen, Jaap-Jan Zwaginga, Jerry Braun, Pieter S. Hiemstra, Frits Koning, P. Padmini S. J. Khedoe and Jan Stolk
Cells 2024, 13(19), 1636; https://doi.org/10.3390/cells13191636 - 30 Sep 2024
Viewed by 1366
Abstract
Emphysema in patients with chronic obstructive pulmonary disease (COPD) is characterized by progressive inflammation. Preclinical studies suggest that lung volume reduction surgery (LVRS) and mesenchymal stromal cell (MSC) treatment dampen inflammation. We investigated the effects of bone marrow-derived MSC (BM-MSC) and LVRS on [...] Read more.
Emphysema in patients with chronic obstructive pulmonary disease (COPD) is characterized by progressive inflammation. Preclinical studies suggest that lung volume reduction surgery (LVRS) and mesenchymal stromal cell (MSC) treatment dampen inflammation. We investigated the effects of bone marrow-derived MSC (BM-MSC) and LVRS on circulating and pulmonary immune cell profiles in emphysema patients using mass cytometry. Blood and resected lung tissue were collected at the first LVRS (L1). Following 6–10 weeks of recovery, patients received a placebo or intravenous administration of 2 × 106 cells/kg bodyweight BM-MSC (n = 5 and n = 9, resp.) in week 3 and 4 before the second LVRS (L2), where blood and lung tissue were collected. Irrespective of BM-MSC or placebo treatment, proportions of circulating lymphocytes including central memory CD4 regulatory, effector memory CD8 and γδ T cells were higher, whereas myeloid cell percentages were lower in L2 compared to L1. In resected lung tissue, proportions of Treg (p = 0.0067) and anti-inflammatory CD163 macrophages (p = 0.0001) were increased in L2 compared to L1, while proportions of pro-inflammatory CD163+ macrophages were decreased (p = 0.0004). There were no effects of BM-MSC treatment on immune profiles in emphysema patients. However, we observed alterations in the circulating and pulmonary immune cells upon LVRS, suggesting the induction of anti-inflammatory responses potentially needed for repair processes. Full article
(This article belongs to the Section Cellular Immunology)
Show Figures

Figure 1

23 pages, 7648 KiB  
Article
Multistage Nanocarrier Based on an Oil Core–Graphene Oxide Shell
by Immacolata Tufano, Raffaele Vecchione, Valeria Panzetta, Edmondo Battista, Costantino Casale, Giorgia Imparato and Paolo Antonio Netti
Pharmaceutics 2024, 16(6), 827; https://doi.org/10.3390/pharmaceutics16060827 - 18 Jun 2024
Viewed by 1716
Abstract
Potent synthetic drugs, as well as biomolecules extracted from plants, have been investigated for their selectivity toward cancer cells. The main limitation in cancer treatment is the ability to bring such molecules within each single cancer cell, which requires accumulation in the peritumoral [...] Read more.
Potent synthetic drugs, as well as biomolecules extracted from plants, have been investigated for their selectivity toward cancer cells. The main limitation in cancer treatment is the ability to bring such molecules within each single cancer cell, which requires accumulation in the peritumoral region followed by homogeneous spreading within the entire tissue. In the last decades, nanotechnology has emerged as a powerful tool due to its ability to protect the drug during blood circulation and allow enhanced accumulation around the leaky regions of the tumor vasculature. However, the ideal size for accumulation of around 100 nm is too large for effective penetration into the dense collagen matrix. Therefore, we propose a multistage system based on graphene oxide nanosheet-based quantum dots (GOQDs) with dimensions that are 12 nm, functionalized with hyaluronic acid (GOQDs-HA), and deposited using the layer-by-layer technique onto an oil-in-water nanoemulsion (O/W NE) template that is around 100 nm in size, previously stabilized by a biodegradable polymer, chitosan. The choice of a biodegradable core for the nanocarrier is to degrade once inside the tumor, thus promoting the release of smaller compounds, GOQDs-HA, carrying the adsorbed anticancer compound, which in this work is represented by curcumin as a model bioactive anticancer molecule. Additionally, modification with HA aims to promote active targeting of stromal and cancer cells. Cell uptake experiments and preliminary penetration experiments in three-dimensional microtissues were performed to assess the proposed multistage nanocarrier. Full article
(This article belongs to the Special Issue Smart Nanocarriers for Drug Delivery in Cancer Therapy)
Show Figures

Graphical abstract

19 pages, 3615 KiB  
Article
Transcriptomic Signature and Pro-Osteoclastic Secreted Factors of Abnormal Bone-Marrow Stromal Cells in Fibrous Dysplasia
by Zachary Michel, Layne N. Raborn, Tiahna Spencer, Kristen S. Pan, Daniel Martin, Kelly L. Roszko, Yan Wang, Pamela G. Robey, Michael T. Collins, Alison M. Boyce and Luis Fernandez de Castro
Cells 2024, 13(9), 774; https://doi.org/10.3390/cells13090774 - 30 Apr 2024
Cited by 4 | Viewed by 2329
Abstract
Fibrous dysplasia (FD) is a mosaic skeletal disorder caused by somatic activating variants of GNAS encoding for Gαs and leading to excessive cyclic adenosine monophosphate signaling in bone-marrow stromal cells (BMSCs). The effect of Gαs activation in the BMSC transcriptome and [...] Read more.
Fibrous dysplasia (FD) is a mosaic skeletal disorder caused by somatic activating variants of GNAS encoding for Gαs and leading to excessive cyclic adenosine monophosphate signaling in bone-marrow stromal cells (BMSCs). The effect of Gαs activation in the BMSC transcriptome and how it influences FD lesion microenvironment are unclear. We analyzed changes induced by Gαs activation in the BMSC transcriptome and secretome. RNAseq analysis of differential gene expression of cultured BMSCs from patients with FD and healthy volunteers, and from an inducible mouse model of FD, was performed, and the transcriptomic profiles of both models were combined to build a robust FD BMSC genetic signature. Pathways related to Gαs activation, cytokine signaling, and extracellular matrix deposition were identified. To assess the modulation of several key secreted factors in FD pathogenesis, cytokines and other factors were measured in culture media. Cytokines were also screened in a collection of plasma samples from patients with FD, and positive correlations of several cytokines to their disease burden score, as well as to one another and bone turnover markers, were found. These data support the pro-inflammatory, pro-osteoclastic behavior of FD BMSCs and point to several cytokines and other secreted factors as possible therapeutic targets and/or circulating biomarkers for FD. Full article
Show Figures

Figure 1

14 pages, 1611 KiB  
Article
Clinical Relevance of Tumour-Infiltrating Immune Cells in HER2-Negative Breast Cancer Treated with Neoadjuvant Therapy
by Cristina Arqueros, Alberto Gallardo, Silvia Vidal, Rubén Osuna-Gómez, Ariadna Tibau, Olga Lidia Bell, Teresa Ramón y Cajal, Enrique Lerma, Bárbara Lobato-Delgado, Juliana Salazar and Agustí Barnadas
Int. J. Mol. Sci. 2024, 25(5), 2627; https://doi.org/10.3390/ijms25052627 - 23 Feb 2024
Cited by 2 | Viewed by 1796
Abstract
Currently, therapy response cannot be accurately predicted in HER2-negative breast cancer (BC). Measuring stromal tumour-infiltrating lymphocytes (sTILs) and mediators of the tumour microenvironment and characterizing tumour-infiltrating immune cells (TIICs) may improve treatment response in the neoadjuvant setting. Tumour tissue and peripheral blood samples [...] Read more.
Currently, therapy response cannot be accurately predicted in HER2-negative breast cancer (BC). Measuring stromal tumour-infiltrating lymphocytes (sTILs) and mediators of the tumour microenvironment and characterizing tumour-infiltrating immune cells (TIICs) may improve treatment response in the neoadjuvant setting. Tumour tissue and peripheral blood samples were retrospectively collected from 118 patients, and sTILs were evaluated. Circulating exosomes and myeloid-derived suppressor cells were determined by flow cytometry. TIICs markers (CD4, CD8, CD20, CD1a, and CD68) were assessed immunohistochemically. High sTILs were significantly associated with pathological complete response (pCR; p = 0.048) and event-free survival (EFS; p = 0.027). High-CD68 cells were significantly associated with pCR in triple-negative (TN, p = 0.027) and high-CD1a cells with EFS in luminal-B (p = 0.012) BC. Cluster analyses of TIICs revealed two groups of tumours (C1 and C2) that had different immune patterns and clinical outcomes. An immunoscore based on clinicopathological variables was developed to identify high risk (C1) or low-risk (C2) patients. Additionally, cluster analyses revealed two groups of tumours for both luminal-B and TNBC. Our findings support the association of sTILs with pCR and show an immunological component in a subset of patients with HER2-negative BC. Our immunoscore may be useful for future escalation or de-escalation treatments. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

14 pages, 1965 KiB  
Review
Modulation of the Tumor Stroma and Associated Novel Nanoparticle Strategies to Enhance Tumor Targeting
by Hessel Haze, Cornelis F. M. Sier, Alexander L. Vahrmeijer and Floris A. Vuijk
Surgeries 2024, 5(1), 49-62; https://doi.org/10.3390/surgeries5010007 - 12 Feb 2024
Cited by 3 | Viewed by 2246
Abstract
Growth of malignant cells in solid tumors induces changes to the tumor microenvironment (TME). These changes result in promotion of tumor growth, invasion, and metastasis, but also in tumor resistance to drugs and radiotherapy. The enhanced permeability and retention (EPR) effect in neo-angiogenic [...] Read more.
Growth of malignant cells in solid tumors induces changes to the tumor microenvironment (TME). These changes result in promotion of tumor growth, invasion, and metastasis, but also in tumor resistance to drugs and radiotherapy. The enhanced permeability and retention (EPR) effect in neo-angiogenic tumor tissue enables the transport of therapeutic molecules from the circulation into the tumor, but studies show that further diffusion of these agents is often not sufficient for efficient tumor eradication. Despite the hyperpermeable vasculature facilitating the delivery of drugs and tracers, the high density of stromal cells and matrix proteins, in combination with the elevated interstitial fluid pressure in the microenvironment of solid tumors, presents a barrier which limits the delivery of compounds to the core of the tumor. Reversing the cancer-cell-induced changes to the microenvironment as well as novel nanoparticle strategies to circumvent tumor-induced stromal changes have therefore been suggested as potential methods to improve the delivery of therapeutic molecules and drug efficacy. Strategies to modulate the TME, i.e., normalization of tumor vasculature and depletion of excessive stromal proteins and cells, show promising results in enhancing delivery of therapeutic compounds. Modulation of the TME may therefore enhance the efficacy of current cancer treatments and facilitate the development of novel treatment methods as an alternative for invasive resection procedures. Full article
Show Figures

Figure 1

16 pages, 3584 KiB  
Article
Circulating Mesenchymal Stromal Cells in Patients with Infantile Hemangioma: Evaluation of Their Functional Capacity and Gene Expression Profile
by Carlotta Abbà, Stefania Croce, Chiara Valsecchi, Elisa Lenta, Rita Campanelli, Alessia C. Codazzi, Valeria Brazzelli, Adriana Carolei, Paolo Catarsi, Gloria Acquafredda, Antonia Apicella, Laura Caliogna, Micaela Berni, Savina Mannarino, Maria A. Avanzini, Vittorio Rosti and Margherita Massa
Cells 2024, 13(3), 254; https://doi.org/10.3390/cells13030254 - 29 Jan 2024
Cited by 1 | Viewed by 1949
Abstract
We previously published that in patients with infantile hemangioma (IH) at the onset (T0) colony forming unit-fibroblasts (CFU-Fs) are present in in vitro cultures from PB. Herein, we characterize these CFU-Fs and investigate their potential role in IH pathogenesis, before and after propranolol [...] Read more.
We previously published that in patients with infantile hemangioma (IH) at the onset (T0) colony forming unit-fibroblasts (CFU-Fs) are present in in vitro cultures from PB. Herein, we characterize these CFU-Fs and investigate their potential role in IH pathogenesis, before and after propranolol therapy. The CFU-F phenotype (by flow cytometry), their differentiation capacity and ability to support angiogenesis (by in vitro cultures) and their gene expression (by RT-PCR) were evaluated. We found that CFU-Fs are actual circulating MSCs (cMSCs). In patients at T0, cMSCs had reduced adipogenic potential, supported the formation of tube-like structures in vitro and showed either inflammatory (IL1β and ESM1) or angiogenic (F3) gene expression higher than that of cMSCs from CTRLs. In patients receiving one-year propranolol therapy, the cMSC differentiation in adipocytes improved, while their support in in vitro tube-like formation was lost; no difference was found between patient and CTRL cMSC gene expressions. In conclusion, in patients with IH at T0 the cMSC reduced adipogenic potential, their support in angiogenic activity and the inflammatory/angiogenic gene expression may fuel the tumor growth. One-year propranolol therapy modifies this picture, suggesting cMSCs as one of the drug targets. Full article
Show Figures

Figure 1

16 pages, 4327 KiB  
Article
Elevated Serum Gastrin Is Associated with Melanoma Progression: Putative Role in Increased Migration and Invasion of Melanoma Cells
by Akos Janos Varga, Istvan Balazs Nemeth, Lajos Kemeny, Janos Varga, Laszlo Tiszlavicz, Dinesh Kumar, Steven Dodd, Alec W. M. Simpson, Tunde Buknicz, Rob Beynon, Deborah Simpson, Tibor Krenacs, Graham J. Dockray and Andrea Varro
Int. J. Mol. Sci. 2023, 24(23), 16851; https://doi.org/10.3390/ijms242316851 - 28 Nov 2023
Viewed by 1920
Abstract
Micro-environmental factors, including stromal and immune cells, cytokines, and circulating hormones are well recognized to determine cancer progression. Melanoma cell growth was recently shown to be suppressed by cholecystokinin/gastrin (CCK) receptor antagonists, and our preliminary data suggested that melanoma patients with Helicobacter gastritis [...] Read more.
Micro-environmental factors, including stromal and immune cells, cytokines, and circulating hormones are well recognized to determine cancer progression. Melanoma cell growth was recently shown to be suppressed by cholecystokinin/gastrin (CCK) receptor antagonists, and our preliminary data suggested that melanoma patients with Helicobacter gastritis (which is associated with elevated serum gastrin) might have an increased risk of cancer progression. Therefore, in the present study, we examined how gastrin may act on melanoma cells. In 89 melanoma patients, we found a statistically significant association between circulating gastrin concentrations and melanoma thickness and metastasis, which are known risk factors of melanoma progression and prognosis. Immunocytochemistry using a validated antibody confirmed weak to moderate CCK2R expression in both primary malignant melanoma cells and the melanoma cell lines SK-MEL-2 and G361. Furthermore, among the 219 tumors in the Skin Cutaneous Melanoma TCGA Pan-Cancer dataset showing gastrin receptor (CCKBR) expression, significantly higher CCKBR mRNA levels were linked to stage III–IV than stage I–II melanomas. In both cell lines, gastrin increased intracellular calcium levels and stimulated cell migration and invasion through mechanisms inhibited by a CCK2 receptor antagonist. Proteomic studies identified increased MMP-2 and reduced TIMP-3 levels in response to gastrin that were likely to contribute to the increased migration of both cell lines. However, the effects of gastrin on tumor cell invasion were relatively weak in the presence of the extracellular matrix. Nevertheless, dermal fibroblasts/myofibroblasts, known also to express CCK2R, increased gastrin-induced cancer cell invasion. Our data suggest that in a subset of melanoma patients, an elevated serum gastrin concentration is a risk factor for melanoma tumor progression, and that gastrin may act on both melanoma and adjacent stromal cells through CCK2 receptors to promote mechanisms of tumor migration and invasion. Full article
(This article belongs to the Special Issue Biomarkers of Tumor Progression, Prognosis and Therapy)
Show Figures

Figure 1

15 pages, 2579 KiB  
Article
Circulating sRANKL, Periostin, and Osteopontin as Biomarkers for the Assessment of Activated Osteoclastogenesis in Myeloma Related Bone Disease
by Vladimir Gerov, Daniela Gerova, Ilina Micheva, Miglena Nikolova, Milena Pasheva, Neshe Nazifova and Bistra Galunska
Cancers 2023, 15(23), 5562; https://doi.org/10.3390/cancers15235562 - 24 Nov 2023
Cited by 1 | Viewed by 1487
Abstract
The hallmark of multiple myeloma is myeloma related bone disease. Interactions between myeloma plasma cells (MPCs), stromal cells, and the bone marrow (BM) microenvironment play a critical role in the pathogenesis of MBD. Bone remodeling is severely dysregulated with the prevalence of osteoclast [...] Read more.
The hallmark of multiple myeloma is myeloma related bone disease. Interactions between myeloma plasma cells (MPCs), stromal cells, and the bone marrow (BM) microenvironment play a critical role in the pathogenesis of MBD. Bone remodeling is severely dysregulated with the prevalence of osteoclast activity. We aimed to assess circulating levels of sRANKL, periostin, and osteopontin as osteoclast activators in NDMM patients at diagnosis and in the course of treatment, correlations with clinical and laboratory data, and to evaluate their potential as additional biomarkers for the assessment of MBD. The current study involved 74 subjects (41 NDMM patients, 33 controls). MBD was assessed by whole-body low-dose computed tomography. sRANKL, periostin, and osteopontin were assayed by commercial ELISA kits. At diagnosis, all tested parameters were significantly higher in NDMM patients compared to the controls (p < 0.0001), correlating with disease stage, MBD grade, and BM infiltration by MPCs. During therapy, the serum levels of all tested proteins decrease, most prominently after autologous stem cell transplantation (p < 0.0001). A significant reduction was established in patients achieving complete and very-good partial response compared to all others (p < 0.05). In conclusion, sRANKL, periostin, and osteopontin reflect MBD severity and could be promising markers for MBD monitoring and the effect of myeloma treatment. Full article
(This article belongs to the Section Cancer Biomarkers)
Show Figures

Figure 1

16 pages, 2755 KiB  
Article
Human Bone Marrow Mesenchymal Stem Cells Promote the M2 Phenotype in Macrophages Derived from STEMI Patients
by Víctor Adrián Cortés-Morales, Wendy Guadalupe Vázquez-González, Juan José Montesinos, Luis Moreno-Ruíz, Selene Salgado-Pastor, Pamela Michelle Salinas-Arreola, Karla Díaz-Duarte, Adriana Karina Chávez-Rueda and Luis Chávez-Sánchez
Int. J. Mol. Sci. 2023, 24(22), 16257; https://doi.org/10.3390/ijms242216257 - 13 Nov 2023
Cited by 3 | Viewed by 1834
Abstract
Acute ST-elevation myocardial infarction (STEMI) leads to myocardial injury or necrosis, and M1 macrophages play an important role in the inflammatory response. Bone marrow mesenchymal stem/stromal cells (BM-MSCs) are capable of modulating macrophage plasticity, principally due to their immunoregulatory capacity. In the present [...] Read more.
Acute ST-elevation myocardial infarction (STEMI) leads to myocardial injury or necrosis, and M1 macrophages play an important role in the inflammatory response. Bone marrow mesenchymal stem/stromal cells (BM-MSCs) are capable of modulating macrophage plasticity, principally due to their immunoregulatory capacity. In the present study, we analyzed the capacity of MSCs to modulate macrophages derived from monocytes from patients with STEMI. We analyzed the circulating levels of cytokines associated with M1 and M2 macrophages in patients with STEMI, and the levels of cytokines associated with M1 macrophages were significantly higher in patients with STEMI than in controls. BM-MSCs facilitate the generation of M1 and M2 macrophages. M1 macrophages cocultured with MSCs did not have decreased M1 marker expression, but these macrophages had an increased expression of markers of the M2 macrophage phenotype (CD14, CD163 and CD206) and IL-10 and IL-1Ra signaling-induced regulatory T cells (Tregs). M2 macrophages from patients with STEMI had an increased expression of M2 phenotypic markers in coculture with BM-MSCs, as well as an increased secretion of anti-inflammatory cytokines and an increased generation of Tregs. The findings in this study indicate that BM-MSCs have the ability to modulate the M1 macrophage response, which could improve cardiac tissue damage in patients with STEMI. Full article
Show Figures

Figure 1

19 pages, 9196 KiB  
Review
The Significance of Microenvironmental and Circulating Lactate in Breast Cancer
by Vincenza Frisardi, Simone Canovi, Salvatore Vaccaro and Raffaele Frazzi
Int. J. Mol. Sci. 2023, 24(20), 15369; https://doi.org/10.3390/ijms242015369 - 19 Oct 2023
Cited by 14 | Viewed by 3354
Abstract
Lactate represents the main product of pyruvate reduction catalyzed by the lactic dehydrogenase family of enzymes. Cancer cells utilize great quantities of glucose, shifting toward a glycolytic metabolism. With the contribution of tumor stromal cells and under hypoxic conditions, this leads toward the [...] Read more.
Lactate represents the main product of pyruvate reduction catalyzed by the lactic dehydrogenase family of enzymes. Cancer cells utilize great quantities of glucose, shifting toward a glycolytic metabolism. With the contribution of tumor stromal cells and under hypoxic conditions, this leads toward the acidification of the extracellular matrix. The ability to shift between different metabolic pathways is a characteristic of breast cancer cells and is associated with an aggressive phenotype. Furthermore, the preliminary scientific evidence concerning the levels of circulating lactate in breast cancer points toward a correlation between hyperlactacidemia and poor prognosis, even though no clear linkage has been demonstrated. Overall, lactate may represent a promising metabolic target that needs to be investigated in breast cancer. Full article
(This article belongs to the Special Issue Novel Molecular Pathways in Oncology 2.0)
Show Figures

Figure 1

47 pages, 2234 KiB  
Review
Revisiting Circulating Extracellular Matrix Fragments as Disease Markers in Myelofibrosis and Related Neoplasms
by Hans Carl Hasselbalch, Peter Junker, Vibe Skov, Lasse Kjær, Trine A. Knudsen, Morten Kranker Larsen, Morten Orebo Holmström, Mads Hald Andersen, Christina Jensen, Morten A. Karsdal and Nicholas Willumsen
Cancers 2023, 15(17), 4323; https://doi.org/10.3390/cancers15174323 - 29 Aug 2023
Cited by 5 | Viewed by 4300
Abstract
Philadelphia chromosome-negative chronic myeloproliferative neoplasms (MPNs) arise due to acquired somatic driver mutations in stem cells and develop over 10–30 years from the earliest cancer stages (essential thrombocythemia, polycythemia vera) towards the advanced myelofibrosis stage with bone marrow failure. The JAK2V617F mutation is [...] Read more.
Philadelphia chromosome-negative chronic myeloproliferative neoplasms (MPNs) arise due to acquired somatic driver mutations in stem cells and develop over 10–30 years from the earliest cancer stages (essential thrombocythemia, polycythemia vera) towards the advanced myelofibrosis stage with bone marrow failure. The JAK2V617F mutation is the most prevalent driver mutation. Chronic inflammation is considered to be a major pathogenetic player, both as a trigger of MPN development and as a driver of disease progression. Chronic inflammation in MPNs is characterized by persistent connective tissue remodeling, which leads to organ dysfunction and ultimately, organ failure, due to excessive accumulation of extracellular matrix (ECM). Considering that MPNs are acquired clonal stem cell diseases developing in an inflammatory microenvironment in which the hematopoietic cell populations are progressively replaced by stromal proliferation—“a wound that never heals”—we herein aim to provide a comprehensive review of previous promising research in the field of circulating ECM fragments in the diagnosis, treatment and monitoring of MPNs. We address the rationales and highlight new perspectives for the use of circulating ECM protein fragments as biologically plausible, noninvasive disease markers in the management of MPNs. Full article
(This article belongs to the Topic Biomarker Development and Application)
Show Figures

Figure 1

Back to TopTop