Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = circular MEMS device

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 9384 KiB  
Article
MEMS and IoT in HAR: Effective Monitoring for the Health of Older People
by Luigi Bibbò, Giovanni Angiulli, Filippo Laganà, Danilo Pratticò, Francesco Cotroneo, Fabio La Foresta and Mario Versaci
Appl. Sci. 2025, 15(8), 4306; https://doi.org/10.3390/app15084306 - 14 Apr 2025
Cited by 2 | Viewed by 2655
Abstract
The aging population has created a significant challenge affecting the world; social and healthcare systems need to ensure elderly individuals receive the necessary care services to improve their quality of life and maintain their independence. In response to this need, developing integrated digital [...] Read more.
The aging population has created a significant challenge affecting the world; social and healthcare systems need to ensure elderly individuals receive the necessary care services to improve their quality of life and maintain their independence. In response to this need, developing integrated digital solutions, such as IoT based wearable devices combined with artificial intelligence applications, offers a technological platform for creating Ambient Intelligence (AI) and Assisted Living (AAL) environments. These advancements can help reduce hospital admissions and lower healthcare costs. In this context, this article presents an IoT application based on MEMS (micro electro-mechanical systems) sensors integrated into a state-of-the-art microcontroller (STM55WB) for recognizing the movements of older individuals during daily activities. human activity recognition (HAR) is a field within computational engineering that focuses on automatically classifying human actions through data captured by sensors. This study has multiple objectives: to recognize movements such as grasping, leg flexion, circular arm movements, and walking in order to assess the motor skills of older individuals. The implemented system allows these movements to be detected in real time, and transmitted to a monitoring system server, where healthcare staff can analyze the data. The analysis methods employed include machine learning algorithms to identify movement patterns, statistical analysis to assess the frequency and quality of movements, and data visualization to track changes over time. These approaches enable the accurate assessment of older people’s motor skills, and facilitate the prompt identification of abnormal situations or emergencies. Additionally, a user-friendly technological solution is designed to be acceptable to the elderly, minimizing discomfort and stress associated with using technology. Finally, the goal is to ensure that the system is energy-efficient and cost-effective, promoting sustainable adoption. The results obtained are promising; the model achieved a high level of accuracy in recognizing specific movements, thus contributing to a precise assessment of the motor skills of the elderly. Notably, movement recognition was accomplished using an artificial intelligence model called Random Forest. Full article
(This article belongs to the Special Issue Human Activity Recognition (HAR) in Healthcare, 2nd Edition)
Show Figures

Figure 1

1247 KiB  
Proceeding Paper
Designing Novel MEMS Cantilevers for Marine Sensing Robots Using COMSOL Modeling and Different Piezoelectric Materials
by Basit Abdul, Abdul Qadeer and Abdul Rab Asary
Eng. Proc. 2024, 82(1), 116; https://doi.org/10.3390/ecsa-11-20496 - 26 Nov 2024
Viewed by 152
Abstract
The present work presents an innovative marine sensing robotics device based on piezoelectric cantilever-integrated micro-electro-mechanical systems (MEMSs) modeled on fish lateral lines. The device comprises 12 cantilevers of different shapes and sizes in a cross-shaped configuration, embedded between molybdenum (Mo) electrodes in a [...] Read more.
The present work presents an innovative marine sensing robotics device based on piezoelectric cantilever-integrated micro-electro-mechanical systems (MEMSs) modeled on fish lateral lines. The device comprises 12 cantilevers of different shapes and sizes in a cross-shaped configuration, embedded between molybdenum (Mo) electrodes in a piezoelectric thin film (PbTiO3, GaPO4). It has the advantage of a directional response due to the unique design of the circular cantilevers. In COMSOL software 5.5, we designed, modeled, and simulated a piezoelectric device based on a comparative study of these piezoelectric materials. Simulations were performed on cantilever microstructures ranging in length from 100 µm to 500 µm. These materials perform best when lead titanate (PbTiO3) is used. A maximum voltage of 4.9 mV was obtained with the PbTiO3-material cantilever with a displacement of 37 µm. A laser Doppler vibrometer was used to measure the resonance frequency mode and displacement. Our simulations and experiments were in good agreement. Its performance and compactness allow us to envision its employment in underwater acoustics for monitoring marine cetaceans and ultrasound communications. In conclusion, MEMS piezoelectric transducers can be used as hydrophones to sense underwater acoustic pulses. Full article
Show Figures

Figure 1

9 pages, 2056 KiB  
Article
Design and Fabrication of High-Performance Piezoelectric Micromachined Ultrasonic Transducers Based on Aluminum Nitride Thin Films
by Le Zhang, Kunxian Yan, Lei Ye, Xiangyu Luo, Jian He and Xiujian Chou
Micromachines 2024, 15(8), 1001; https://doi.org/10.3390/mi15081001 - 1 Aug 2024
Viewed by 1841
Abstract
Ultrasound is widely applied in diverse domains, such as medical imaging, non-destructive evaluation, and acoustic communication. Piezoelectric micromachined ultrasonic transducers (PMUTs) capable of generating and receiving ultrasonic signals at the micrometer level have become a prominent technology in the field of ultrasound. It [...] Read more.
Ultrasound is widely applied in diverse domains, such as medical imaging, non-destructive evaluation, and acoustic communication. Piezoelectric micromachined ultrasonic transducers (PMUTs) capable of generating and receiving ultrasonic signals at the micrometer level have become a prominent technology in the field of ultrasound. It is important to enrich the models of the PMUTs to meet the varied applications. In this study, a series of PMUT devices featured with various top electrode configurations, square, circular, and doughnut, were designed to assess the influence of shape on the emission efficacy. It was demonstrated that the PMUTs with a circular top electrode were outperformed, which was calculated from the external acoustic pressure produced by the PMUTs operating in the fundamental resonant mode at a specified distance. Furthermore, the superior performance of PMUT arrays were exhibited through computational simulations for the circular top electrode geometries. Conventional microelectromechanical systems (MEMS) techniques were used to fabricate an array of PMUTs based on aluminum nitride (AlN) films. These findings make great contributions for enhancing the signal transmission sensitivity and bandwidth of PMUTs, which have significant potential in non-destructive testing and medical imaging applications. Full article
Show Figures

Figure 1

3 pages, 1156 KiB  
Abstract
Electrostatic Microelectromechanical System Speaker Array with Out-of-Plane Piston Displacement and Simplified Microfabrication
by Diogo E. Aguiam, Inês S. Garcia, Edoardo Sotgiu and Filipe S. Alves
Proceedings 2024, 97(1), 101; https://doi.org/10.3390/proceedings2024097101 - 27 Mar 2024
Viewed by 1075
Abstract
This study presents a new design for a MEMS electrostatic speaker array with out-of-plane piston-like diaphragm displacement using a simplified silicon-on-insulator microfabrication process. The device comprises an array of parallel actuating membranes with small circular mechanically open but acoustically sealed apertures that enable [...] Read more.
This study presents a new design for a MEMS electrostatic speaker array with out-of-plane piston-like diaphragm displacement using a simplified silicon-on-insulator microfabrication process. The device comprises an array of parallel actuating membranes with small circular mechanically open but acoustically sealed apertures that enable controlled etching of the buried oxide to be released directly from the front side, but retain a high acoustic impedance acting as a flat membrane. This approach simplifies the microfabrication process, requiring only two lithography masks and increasing process tolerances. Preliminary experimental measurements validate the concept and demonstrate the electromechanical and acoustic performance compared with theoretical models. Full article
(This article belongs to the Proceedings of XXXV EUROSENSORS Conference)
Show Figures

Figure 1

21 pages, 22386 KiB  
Article
Low Power Compact 3D-Constructed AlScN Piezoelectric MEMS Mirrors for Various Scanning Strategies
by Jeong-Yeon Hwang, Lena Wysocki, Erdem Yarar, Gunnar Wille, Fin Röhr, Jörg Albers and Shanshan Gu-Stoppel
Micromachines 2023, 14(9), 1789; https://doi.org/10.3390/mi14091789 - 19 Sep 2023
Cited by 5 | Viewed by 2943
Abstract
In this paper, the newly developed 3D-constructed AlScN piezoelectric MEMS mirror is presented. This paper describes the structure and driving mechanism of the proposed mirror device, covering its driving characteristics in both quasi-static and resonant scan modes. Particularly, this paper deals with various [...] Read more.
In this paper, the newly developed 3D-constructed AlScN piezoelectric MEMS mirror is presented. This paper describes the structure and driving mechanism of the proposed mirror device, covering its driving characteristics in both quasi-static and resonant scan modes. Particularly, this paper deals with various achievable scan patterns including 1D line scan and 2D area scan capabilities and driving methods to realize each scanning strategy. Bidirectional quasi-static actuation along horizontal, vertical, and diagonal scanning directions was experimentally characterized and even under a low voltage level of ±20 V, a total optical scan angle of 10.4° was achieved. In addition, 1D line scanning methods using both resonant and non-resonant frequencies were included and a total optical scan angle of 14° was obtained with 100 mVpp under out-of-phase actuation condition. Furthermore, 2D scan patterns including Lissajous, circular and spiral, and raster scans were realized. Diverse scan patterns were realized with the presented AlScN-based MEMS mirror device even under a low level of applied voltage. Further experiments using high voltage up to ±120 V to achieve an enhanced quasi-static scan angle of more than 20° are ongoing to ensure repeatability. This multi-functional MEMS mirror possesses the potential to implement multiple scanning strategies suitable for various application purposes. Full article
Show Figures

Figure 1

14 pages, 5790 KiB  
Article
Spiral Chiral Metamaterial Structure Shape for Optical Activity Improvements
by Kohei Maruyama, Miyako Mizuna, Takuya Kosuge, Yuki Takeda, Eiji Iwase and Tetsuo Kan
Micromachines 2023, 14(6), 1156; https://doi.org/10.3390/mi14061156 - 30 May 2023
Cited by 5 | Viewed by 2353
Abstract
We report on a spiral structure suitable for obtaining a large optical response. We constructed a structural mechanics model of the shape of the planar spiral structure when deformed and verified the effectiveness of the model. As a verification structure, we fabricated a [...] Read more.
We report on a spiral structure suitable for obtaining a large optical response. We constructed a structural mechanics model of the shape of the planar spiral structure when deformed and verified the effectiveness of the model. As a verification structure, we fabricated a large-scale spiral structure that operates in the GHz band by laser processing. Based on the GHz radio wave experiments, a more uniform deformation structure exhibited a higher cross-polarization component. This result suggests that uniform deformation structures can improve circular dichroism. Since large-scale devices enable speedy prototype verification, the obtained knowledge can be exported to miniaturized-scale devices, such as MEMS terahertz metamaterials. Full article
Show Figures

Figure 1

6 pages, 1746 KiB  
Proceeding Paper
Combining COMSOL Modeling with Different Piezoelectric Materials to Design MEMS Cantilevers for Marine Sensing Robotics
by Basit Abdul, Mohammad Abul Hasan Shibly and Abdul Rab Asary
Eng. Proc. 2023, 37(1), 64; https://doi.org/10.3390/ECP2023-14641 - 17 May 2023
Cited by 1 | Viewed by 1986
Abstract
This work presents a novel, highly sensitive, and directional piezoelectric cantilever-based micro-electro-mechanical system (MEMS) device conceived using a biomimetic approach of a fish’s lateral line system for marine sensing robotics. The device will consist of twelve cantilevers with different lengths in a cross-shaped [...] Read more.
This work presents a novel, highly sensitive, and directional piezoelectric cantilever-based micro-electro-mechanical system (MEMS) device conceived using a biomimetic approach of a fish’s lateral line system for marine sensing robotics. The device will consist of twelve cantilevers with different lengths in a cross-shaped configuration made with a piezoelectric thin film (PZT, ZnO, BaTiO3) embedded between the top and bottom metals, Platinum (Pt) and Aluminum (Al), used as electrodes. This unique design of cantilevers in circular shapes has the advantage of directional response. A comparative study of these piezoelectric materials was performed analytically through the finite element method to design, model, and simulate our device in COMSOL software. Cantilever microstructures were simulated with lengths ranging from 100 to 1000 mm. The results show that PZT has the best performance with these materials. The maximum potential voltage was shown as 1.9 mV using the PZT material cantilever with 29 µm displacement. Full article
Show Figures

Figure 1

15 pages, 3984 KiB  
Article
Sensitivity Enhancement of Tube-Integrated MEMS Flow Sensor Using Flexible Copper on Polyimide Substrate
by Tsuyoshi Tsukada, Ryusei Takigawa, Yoshihiro Hasegawa, Muhammad Salman Al Farisi and Mitsuhiro Shikida
Micromachines 2023, 14(1), 42; https://doi.org/10.3390/mi14010042 - 24 Dec 2022
Cited by 8 | Viewed by 2999
Abstract
A tube-integrated flow sensor is proposed in this study by integrating a micro-electro mechanical systems (MEMS) flow-sensing element and electrical wiring structure on the same copper on polyimide (COP) substrate. The substrate was rolled into a circular tube with the flow-sensing element installed [...] Read more.
A tube-integrated flow sensor is proposed in this study by integrating a micro-electro mechanical systems (MEMS) flow-sensing element and electrical wiring structure on the same copper on polyimide (COP) substrate. The substrate was rolled into a circular tube with the flow-sensing element installed at the center of the tube. The signal lines were simultaneously formed and connected to the Cu layer of the substrate during the fabrication of the sensing structure, thus simplifying the electrical connection process. Finally, by rolling the fabricated sensor substrate, the flow sensor device itself was transformed into a circular tube structure, which defined the airflow region. By implementing several slits on the substrate, the sensing element was successfully placed at the center of the tube where the flow velocity is maximum. Compared to the conventional sensor structure in which the sensor was placed on the inner wall surface of the tube, the sensitivity of the sensor was doubled. Full article
Show Figures

Figure 1

17 pages, 8462 KiB  
Article
Miniature Deformable MEMS Mirrors for Ultrafast Optical Focusing
by Afshin Kashani Ilkhechi, Matthew Martell and Roger Zemp
Micromachines 2023, 14(1), 40; https://doi.org/10.3390/mi14010040 - 24 Dec 2022
Cited by 1 | Viewed by 2689
Abstract
Here, we introduce ultrafast tunable MEMS mirrors consisting of a miniature circular mirrored membrane, which can be electrostatically actuated to change the mirror curvature at unprecedented speeds. The central deflection zone is a close approximation to a parabolic mirror. The device is fabricated [...] Read more.
Here, we introduce ultrafast tunable MEMS mirrors consisting of a miniature circular mirrored membrane, which can be electrostatically actuated to change the mirror curvature at unprecedented speeds. The central deflection zone is a close approximation to a parabolic mirror. The device is fabricated with a minimal membrane diameter, but at least double the size of a focused optical spot. The theory and simulations are used to predict maximum relative focal shifts as a function of membrane size and deflection, beam waist, and incident focal position. These devices are demonstrated to enable fast tuning of the focal wavefront of laser beams at ≈MHz tuning rates, two to three orders of magnitude faster than current optical focusing technologies. The fabricated devices have a silicon membrane with a 30–100 μm radius and a 350 nm gap spacing between the top and bottom electrodes. These devices can change the focal position of a tightly focused beam by ≈1 mm at rates up to 4.9 MHz and with response times smaller than 5 μs. Full article
(This article belongs to the Special Issue Optics and Photonics in Micromachines)
Show Figures

Figure 1

12 pages, 5207 KiB  
Article
Design of a Double-Layer Electrothermal MEMS Safety and Arming Device with a Bistable Mechanism
by Kexin Wang, Tengjiang Hu, Yulong Zhao, Wei Ren and Jiakai Liu
Micromachines 2022, 13(7), 1076; https://doi.org/10.3390/mi13071076 - 7 Jul 2022
Cited by 8 | Viewed by 2146
Abstract
Considering the safety of ammunition, safety and arming (S&A) devices are usually designed in pyrotechnics to control energy transfer through a movable barrier mechanism. To achieve both intelligence and miniaturization, electrothermal actuators are used in MEMS S&A devices, which can drive the barrier [...] Read more.
Considering the safety of ammunition, safety and arming (S&A) devices are usually designed in pyrotechnics to control energy transfer through a movable barrier mechanism. To achieve both intelligence and miniaturization, electrothermal actuators are used in MEMS S&A devices, which can drive the barrier to an arming position actively. However, only when the actuators’ energy input is continuous can the barrier be stably kept in the arming position to wait for ignition. Here, we propose the design and characterization of a double-layer electrothermal MEMS S&A Device with a bistable mechanism. The S&A device has a double-layer structure and four groups of bistable mechanisms. Each bistable mechanism consists of two V-shape electrothermal actuators to drive a semi-circular barrier and a pawl, respectively, and control their engagement according to a specific operation sequence. Then, the barrier can be kept in the safety or the arming position without energy input. To improve the device’s reliability, the four groups of bistable mechanisms are axisymmetrically placed in two layers to constitute a double-layer barrier structure. The test results show that the S&A device can use constant-voltage driving or the capacitor–discharge driving to drive the double-layer barrier to the safety or the arming position and keep it on the position passively by the bistable mechanism. Full article
(This article belongs to the Special Issue MEMS/NEMS Sensors and Actuators)
Show Figures

Figure 1

11 pages, 2525 KiB  
Article
An Analytical Energy Harvester Model for Interdigitated Ring Electrode on Circular Elastic Membrane
by Hua-Ju Shih and Kuo-Ching Chen
Micromachines 2022, 13(1), 133; https://doi.org/10.3390/mi13010133 - 15 Jan 2022
Viewed by 2195
Abstract
Energy harvesters are devices that accumulate ambient vibrational energy from the environment, and for the time being, variable capacitance is the most widely used mechanism. Various designs were proposed to increase the power of such devices, and in particular, the interdigitated electrode (IDE) [...] Read more.
Energy harvesters are devices that accumulate ambient vibrational energy from the environment, and for the time being, variable capacitance is the most widely used mechanism. Various designs were proposed to increase the power of such devices, and in particular, the interdigitated electrode (IDE) pattern is the mainstream. Nevertheless, most IDE designs focus merely on the parallel-type vibrations of electrodes. In this study, the performance of a novel harvester, which combined circular membrane and interdigitated ring electrodes (IRE), was investigated. This design allows the device to collect energy from the rotational structure motions of electrodes through the vibrating membrane. Besides, the circular structure provides a dense capacitive arrangement that is higher than that of the arrangement obtained using regular rectangular chips. The IRE diagram is composed of many capacitive rings, each of which harvests vibrated energy simultaneously. Three gaps (1, 10, and 100 μm) of the ring are investigated for the first four vibrational modes of the membrane to understand the effect of energy output. It is found that the energy outputs are approximately the same for the three gaps; however, rings with a wider gap are easier to manufacture in MEMS. Full article
Show Figures

Figure 1

13 pages, 5229 KiB  
Article
Design and Fabrication of a Low-Cost Thermopile Infrared Detector
by Ting Liang, Yihao Guan, Cheng Lei, Xuezhan Wu, Yuehang Bai, Jijun Xiong and Lei Qi
Micromachines 2021, 12(9), 1134; https://doi.org/10.3390/mi12091134 - 21 Sep 2021
Cited by 9 | Viewed by 4131
Abstract
In this paper, we design and optimize a low-cost, closed-film structure of a microelectromechanical systems (MEMS) thermopile infrared detector. By optimizing the circular arrangement of thermocouple strips and the thermal isolation design of the cold end to pursue a higher temperature difference, in [...] Read more.
In this paper, we design and optimize a low-cost, closed-film structure of a microelectromechanical systems (MEMS) thermopile infrared detector. By optimizing the circular arrangement of thermocouple strips and the thermal isolation design of the cold end to pursue a higher temperature difference, in addition to eliminating the absorption region, silicon nitride is deposited on the whole device surface as a passivated absorption layer. This reduces the cost while maintaining the voltage response and is suitable for mass production. The optimized detector had a 22.6% improvement in the response rate to 34.2 V/W, a detection rate of 1.02 × 108 cm·Hz1/2/W, and a response time of 26.9 ms. The design optimization of this detector provides a reference for further development of IR detectors. Full article
Show Figures

Figure 1

27 pages, 619 KiB  
Article
A Semi-Linear Elliptic Model for a Circular Membrane MEMS Device Considering the Effect of the Fringing Field
by Mario Versaci, Alessandra Jannelli, Francesco Carlo Morabito and Giovanni Angiulli
Sensors 2021, 21(15), 5237; https://doi.org/10.3390/s21155237 - 2 Aug 2021
Cited by 19 | Viewed by 5285
Abstract
In this study, an accurate analytic semi-linear elliptic differential model for a circular membrane MEMS device, which considers the effect of the fringing field on the membrane curvature recovering, is presented. A novel algebraic condition, related to the membrane electromechanical properties, able to [...] Read more.
In this study, an accurate analytic semi-linear elliptic differential model for a circular membrane MEMS device, which considers the effect of the fringing field on the membrane curvature recovering, is presented. A novel algebraic condition, related to the membrane electromechanical properties, able to govern the uniqueness of the solution, is also demonstrated. Numerical results for the membrane profile, obtained by using the Shooting techniques, the Keller–Box scheme, and the III/IV Stage Lobatto IIIa formulas, have been carried out, and their performances have been compared. The convergence conditions, and the possible presence of ghost solutions, have been evaluated and discussed. Finally, a practical criterion for choosing the membrane material as a function of the MEMS specific application is presented. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

23 pages, 548 KiB  
Article
Electrostatic Circular Membrane MEMS: An Approach to the Optimal Control
by Mario Versaci and Francesco Carlo Morabito
Computation 2021, 9(4), 41; https://doi.org/10.3390/computation9040041 - 25 Mar 2021
Cited by 3 | Viewed by 3123
Abstract
The recovery of the membrane profile of an electrostatic micro-electro-mechanical system (MEMS) is an important issue, because, when an external electrical voltage is applied, the membrane deforms with the risk of touching the upper plate of the device producing an unwanted electrostatic effect. [...] Read more.
The recovery of the membrane profile of an electrostatic micro-electro-mechanical system (MEMS) is an important issue, because, when an external electrical voltage is applied, the membrane deforms with the risk of touching the upper plate of the device producing an unwanted electrostatic effect. Therefore, it is important to know whether the movement admits stable equilibrium configurations especially when the membrane is closed to the upper plate. In this framework, this work analyzes the behavior of a two-dimensional (2D) electrostatic circular membrane MEMS device subjected to an external voltage. Specifically, starting from a well-known 2D non-linear second-order differential model in which the electrostatic field in the device is proportional to the mean curvature of the membrane, the stability of the only possible equilibrium configuration is studied. Furthermore, when considering that the membrane is equipped with mechanical inertia and that it must not touch the upper plate of the device, a useful range of possible values has been obtained for the applied voltage. Finally, the paper concludes with some computations regarding the variation of potential energy, identifying some optimal control conditions. Full article
(This article belongs to the Section Computational Engineering)
Show Figures

Figure 1

26 pages, 501 KiB  
Article
A 2D Membrane MEMS Device Model with Fringing Field: Curvature-Dependent Electrostatic Field and Optimal Control
by Paolo Di Barba, Luisa Fattorusso and Mario Versaci
Mathematics 2021, 9(5), 465; https://doi.org/10.3390/math9050465 - 25 Feb 2021
Cited by 4 | Viewed by 2285
Abstract
An important problem in membrane micro-electric-mechanical-system (MEMS) modeling is the fringing-field phenomenon, of which the main effect consists of force-line deformation of electrostatic field E near the edges of the plates, producing the anomalous deformation of the membrane when external voltage V is [...] Read more.
An important problem in membrane micro-electric-mechanical-system (MEMS) modeling is the fringing-field phenomenon, of which the main effect consists of force-line deformation of electrostatic field E near the edges of the plates, producing the anomalous deformation of the membrane when external voltage V is applied. In the framework of a 2D circular membrane MEMS, representing the fringing-field effect depending on |u|2 with the u profile of the membrane, and since strong E produces strong deformation of the membrane, we consider |E| proportional to the mean curvature of the membrane, obtaining a new nonlinear second-order differential model without explicit singularities. In this paper, the main purpose was the analytical study of this model, obtaining an algebraic condition ensuring the existence of at least one solution for it that depends on both the electromechanical properties of the material constituting the membrane and the positive parameter δ that weighs the terms |u|2. However, even if the the study of the model did not ensure the uniqueness of the solution, it made it possible to achieve the goal of finding a stable equilibrium position. Moreover, a range of admissible values of V were obtained in order, on the one hand, to win the mechanical inertia of the membrane and, on the other hand, to ensure that the membrane did not touch the upper disk of the device. Lastly, some optimal control conditions based on the variation of potential energy are presented and discussed. Full article
(This article belongs to the Special Issue Mathematical Problems in Mechanical Engineering)
Show Figures

Figure 1

Back to TopTop