Designing Novel MEMS Cantilevers for Marine Sensing Robots Using COMSOL Modeling and Different Piezoelectric Materials †
Abstract
1. Introduction
2. Principles of Bionics and Vibration Sensing
3. Device Design and Modeling
4. Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, Z.-G.; Liu, Z.-W. Biomimetic Cilia Based on MEMS Technology. J. Bionic Eng. 2008, 5, 358–365. [Google Scholar] [CrossRef]
- Han, Z.; Liu, L.; Wang, K.; Song, H.; Chen, D.; Wang, Z.; Niu, S.; Zhang, J.; Ren, L. Artificial Hair-Like Sensors Inspired from Nature: A Review. J. Bionic Eng. 2018, 15, 409–434. [Google Scholar] [CrossRef]
- Sheryl, C.; Peter, G.; Heinrich, M. The Mechanosensory Lateral Line; Springer: New York, NY, USA, 1989. [Google Scholar] [CrossRef]
- Mogdans, J.; Engelmann, J.; Hanke, W.; Kröther, S. The Fish Lateral Line: How to Detect Hydrodynamic Stimuli. In Sensors and Sensing in Biology and Engineering; Springer: Vienna, Austria, 2003; pp. 173–185. [Google Scholar] [CrossRef]
- Sane, S.P.; McHenry, M.J. The biomechanics of sensory organs. Integr. Comp. Biol. 2009, 49, i8–i23. [Google Scholar] [CrossRef]
- Guan, L.; Xue, C.; Zhang, G.; Zhang, W.; Wang, P. Advancements in technology and design of NEMS vector hydrophone. Microsyst. Technol. 2011, 17, 459–467. [Google Scholar] [CrossRef]
- Liu, C. Foundations of MEMS, 1st ed.; Pearson: London, UK, 2005; Chapter 4; pp. 134–144. ISBN 0131472860. [Google Scholar]
- Ramadan, K.S.; Sameoto, D.; Evoy, S. A Review of Piezoelectric Polymers as Functional Materials for Electromechanical Transducers. Iopscience.Iop.Org [Online]. Available online: https://iopscience.iop.org/article/10.1088/0964-1726/23/3/033001/meta (accessed on 24 October 2024).
- Li, C.-Y.; Chen, Y.-H.; Wei, Z.-Y.; Ho, Y.-C.; Chu, S.-Y.; Tsai, C.-C.; Hong, C.-S. Design of a Square MEMS Piezoelectric Accelerometer With a Wide Range of Applicability, a Low Transverse Sensitivity Ratio, and High Accuracy. IEEE Sens. J. 2022, 22, 9306–9312. [Google Scholar] [CrossRef]
- Abdul, B.; Mastronardi, V.; Qualtieri, A.; Guido, F.; Algieri, L.; Rizzi, F.; De Vittorio, M. Design, fabrication and characterization of piezoelectric cantilever MEMS for underwater application. Micro Nano Eng. 2020, 7, 100050. [Google Scholar] [CrossRef]
- Abdul, B.; Shibly, M.A.; Asary, A.R. Development of a Cochlear Biomodel using Micro-Electromechanical Systems (MEMS). In Proceedings of the 10th International Electronic Conference on Sensors and Applications, Basel, Switzerland, 15–30 November 2023. [Google Scholar]
- Abdul, B.; Shibly, M.A.H.; Asary, A.R. Development of a Novel Design and Modeling of MEMS Piezoelectric Cantilever-Based Chemical Sensors. Eng. Proc. 2023, 56, 105. [Google Scholar] [CrossRef]
- Abdul, B. Development of a Novel Silicon Membrane MEMS Capacitive Pressure Sensor for Biological Applications. Eng. Proc. 2023, 48, 54. [Google Scholar] [CrossRef]
- Abdul, B.; Shibly, M.A.H.; Asary, A.R.; Ruma, N.J. Design and Modelling of MEMS Resonators for an Artificial Basilar Membrane. Eng. Proc. 2023, 48, 15. [Google Scholar] [CrossRef]
- Abdul, B.; Shibly, M.A.H.; Asary, A.R. Combining COMSOL Modeling with Different Piezoelectric Materials to Design MEMS Cantilevers for Marine Sensing Robotics. Eng. Proc. 2023, 37, 64. [Google Scholar] [CrossRef]
- Caruso, F.; Alonge, G.; Bellia, G.; De Domenico, E.; Grammauta, R.; Larosa, G.; Mazzola, S.; Riccobene, G.; Pavan, G.; Papale, E.; et al. Long-Term Monitoring of Dolphin Biosonar Activity in Deep Pelagic Waters of the Mediterranean Sea. Sci. Rep. 2017, 7, 4321. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Cui, T.; Dong, W.; Cuil, Y.; Wang, J.; Du, L.; Wang, L. Piezoelectric microcantilevers with two with two PZT thin-film elements for microsensors and microactuators. In Proceedings of the 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Zhuhai, China, 18–21 January 2006. [Google Scholar]
- Kordrostami, Z.; Roohizadegan, S. Particle Swarm Approach to the Optimisation of Trenched Cantilever- Based MEMS Piezoelectric Energy Harvesters. IET Sci. Meas. Technol. 2019, 13, 536–543. [Google Scholar] [CrossRef]
- Kashiwao, T.; Izadgoshasb, I.; Lim, Y.Y.; Deguchi, M. Optimization of Rectifier Circuits for a Vibration Energy Harvesting System Using a Macro-Fiber Composite Piezoelectric Element. Microelectron. J. 2016, 54, 109–115. [Google Scholar] [CrossRef]
- Wang, Z.L. Zinc oxide nanostructures: Growth, properties and applications. J. Phys. Condens. Matter 2004, 16, R829. [Google Scholar] [CrossRef]
- Mortet, V.; Nesladek, M.; Haenen, K.; Morel, A.; D’Olieslaeger, M.; Vanecek, M. Physical properties of polycrystalline aluminium nitride films deposited by magnetron sputtering. Diam. Relat. Mater. 2004, 13, 1120–1124. [Google Scholar] [CrossRef]
- Wang, Y.; Yan, J.; Cheng, H.; Chen, N.; Yan, P.; Ouyang, J. Low Thermal Budget Lead Zirconate Titanate Thick Films Integrated on Si for Piezo-MEMS Applications. Microelectron. Eng. 2020, 219, 111145. [Google Scholar] [CrossRef]
- Rockstad, H.K.; Kenny, T.W.; Kelly, P.J.; Gabrielson, T.B. A Microfabricated Electron-Tunneling Accelerometer as a Directional Underwater Acoustic Sensor. Am. Inst. Phys. 2008, 57, 57–68. [Google Scholar] [CrossRef]
- Guojun, Z.; Panpan, W.; Linggang, G.; Jijun, X.; Wendong, Z. Improvement of the MEMS Bionic Vector Hydrophone. Microelectron. J. 2011, 42, 815–819. [Google Scholar] [CrossRef]
- Xue, C.; Chen, S.; Zhang, W.; Zhang, B.; Zhang, G.; Qiao, H. Design, Fabrication, and Preliminary Characterization of a Novel MEMS Bionic Vector Hydrophone. Microelectron. J. 2007, 38, 1021–1026. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdul, B.; Qadeer, A.; Asary, A.R. Designing Novel MEMS Cantilevers for Marine Sensing Robots Using COMSOL Modeling and Different Piezoelectric Materials. Eng. Proc. 2024, 82, 116. https://doi.org/10.3390/ecsa-11-20496
Abdul B, Qadeer A, Asary AR. Designing Novel MEMS Cantilevers for Marine Sensing Robots Using COMSOL Modeling and Different Piezoelectric Materials. Engineering Proceedings. 2024; 82(1):116. https://doi.org/10.3390/ecsa-11-20496
Chicago/Turabian StyleAbdul, Basit, Abdul Qadeer, and Abdul Rab Asary. 2024. "Designing Novel MEMS Cantilevers for Marine Sensing Robots Using COMSOL Modeling and Different Piezoelectric Materials" Engineering Proceedings 82, no. 1: 116. https://doi.org/10.3390/ecsa-11-20496
APA StyleAbdul, B., Qadeer, A., & Asary, A. R. (2024). Designing Novel MEMS Cantilevers for Marine Sensing Robots Using COMSOL Modeling and Different Piezoelectric Materials. Engineering Proceedings, 82(1), 116. https://doi.org/10.3390/ecsa-11-20496