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Abstract: This work presents a novel, highly sensitive, and directional piezoelectric cantilever-based
micro-electro-mechanical system (MEMS) device conceived using a biomimetic approach of a fish’s
lateral line system for marine sensing robotics. The device will consist of twelve cantilevers with
different lengths in a cross-shaped configuration made with a piezoelectric thin film (PZT, ZnO,
BaTiO3) embedded between the top and bottom metals, Platinum (Pt) and Aluminum (Al), used
as electrodes. This unique design of cantilevers in circular shapes has the advantage of directional
response. A comparative study of these piezoelectric materials was performed analytically through
the finite element method to design, model, and simulate our device in COMSOL software. Cantilever
microstructures were simulated with lengths ranging from 100 to 1000 mm. The results show that
PZT has the best performance with these materials. The maximum potential voltage was shown as
1.9 mV using the PZT material cantilever with 29 µm displacement.
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1. Introduction

Nature has always been an inspiration for human scientific advancements. Some of
the vital abilities of living organisms can serve as a rich source of inspiration for humans
to create their counterparts, allowing for various applications in different sectors [1,2].
Animals use mechanoreceptors with various structures to acquire information from their
surroundings and convert them into important biological signals for their survival [3,4]. A
fish’s lateral line system, for example, helps it to recognize external stimuli and respond
accordingly. Mimicking these natural cilia offers different techniques to design advanced
and innovative artificial hair-like sensors as hydrophones in water. Biomimetic cilia-based
devices have attracted significant attention from researchers due to the micro-electro-
mechanical system (MEMS) technology. The piezoelectric hydrophone is an acoustics
device used to detect underwater noise and signals; therefore, it has great importance in
marine resource exploration, sonar systems, submarine, and marine sensing robotics [5–8].

An advancement in underwater acoustic sensors was made using MEMS cantilevers
for marine sensing robotics [6]. A directional hydrophone was formed with these MEMS
cantilevers that detect the direction from which the incoming signal is coming [9,10]. Due to
their micrometer size and light weight, these hydrophones can be mounted in autonomous
underwater vehicles such as AUVs and ROVs. We can locate enemy submarines, under-
water drones, and warships through this microsensor, thus improving our defense [10,11].
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Furthermore, this Vector Hydrophone will aid in developing submarine communication
systems, sonobuoys, SONARs, fish tracking, oceanographic surveys, and marine life sur-
veys [11].

During the past two decades, micro-electro-mechanical systems (MEMS) have inter-
ested many researchers, especially with microsensors and actuators. Among them, pressure
sensors are essential [12]. Different types of pressure sensors exist based on various physical
properties, such as piezoresistive, piezoelectric, capacitive, magnetic, and electrostatic. Due
to their electromechanical coupling and their ability to be micromachined, piezoelectric
thin films assist in developing nanoscale and microscale devices [13,14]. The thin films of
piezoelectric materials, Barium titanate (BaTiO3), Zinc Oxide (ZnO), and Lead zirconate
titanate (PZT), are used in MEMS/NEMS systems as actuators, sensors, surface acoustic
wave (SAW) filters, and bulk acoustic wave (BAW) resonators [15,16]. PZT is a promising
active material among piezoelectric polycrystalline films due to its interesting properties. It
can be easily engineered in shape and geometry, exploiting conventional microfabrication
techniques [16].

The piezoelectric hydrophone is an acoustics device used to detect underwater noise
and signals; therefore, it has great importance in marine sensing robotics [17,18]. Different
mechanoreceptor designs were exploited for biomimetic MEMS flow sensors [19–21]. A
piezoelectric directional hydrophone inspired by a fish’s lateral line system and based on
the AlN functional layer was reported to find the acoustic source direction in the ultrasonic
frequency range [10], and a novel directivity pattern was introduced [10].

In this work, we used COMSOL to study the displacement and voltage response
of MEMS cantilevers with different piezoelectric materials: Barium titanate (BaTiO3),
Zinc Oxide (ZnO), and Lead zirconate titanate (PZT). The proposed work has significant
importance in miniaturization, sensitivity, and bandwidth.

2. Bionic and Vibration Picking Principle

A fish’s lateral line is a particular sensory organ consisting of cilia-based mechanore-
ceptors called neuromasts. A jelly-like cupula covers these cilia that are situated in the
canals along the body or on the fish’s skin. Figure 1a–c illustrate the bionic representa-
tion of a fish’s lateral line system, while Figure 1d shows a schematic path of the sensing
mechanism.
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3. Device Design and Modeling

The simulation was performed using COMSOL Multiphysics FEM software, imple-
menting the piezoelectric constitutive equations. Piezoelectricity is a coupling mechanism
relating a material’s mechanical and electrical properties. An electrical charge is produced
when the piezoelectric material is mechanically deformed and vice versa. The piezoelectric
constitutive equations, also known as “coupled equations”, are given below [9,10] in the
stress-charge form:

T = sE S − eT E (1)

D = e S + ε E (2)

where S is the strain tensor, sE is the elasticity matrix, T is the stress tensor, e is the
piezoelectric coupling matrix, D is the tensor of electric displacement, ε is the electrical
permittivity, and E is the electric field.

Piezoelectric materials deform when strained by an external force, producing an electri-
cal charge on opposing surfaces [6]. This is because these materials have permanent dipoles.
In the presence of differential surface stress on the tip of a cantilever, the displacement z
can be expressed as follows [22]

Z =
3(1 − v)L2

T2E
σs (3)

where L is the length of the cantilever, T is the overall cantilever thickness, ν is the Poisson
ratio, S is the differential surface stress, and E is Young’s modulus.

Assuming a thin piezoelectric layer is on a thick elastic substrate without external
force or movement [23], the relationship between the cantilever tip displacement and the
corresponding voltage is written as

V =
T2Ee

3d31L2Ep
Z (4)

Rearrange Equation (4) using Equation (3) and write as

V =
Ee(1 − v)
d31EpE

σs (5)

where V is the potential voltage generated with microcantilevers, Ep is Young’s modulus of
elasticity for the piezoelectric, Ee is Young’s modulus and d31 is the piezoelectric constant
of the piezoelectric material.

Different piezoelectric materials like BaTiO3, ZnO, and PZT were simulated and
compared to find the best suitable functional material for MEMS cantilevers. In this design,
simulations of cantilever microstructures between 100 and 1000 m were performed to
study the effect of length on displacement (Figure 2a) and voltage response. In order
to study the behavior of microcantilevers, solid mechanics, electrostatics, and pressure
acoustics were used. Furthermore, the following conditions were applied: the cantilever
was constrained at one end and free at the other. Each layer of the cantilever was in
static equilibrium. All layers were in the form of a solid rectangular shape with equal
Length, L, and width, W (Figure 2b). The width of each cantilever was fixed at 50 µm.
Microcantilevers have a piezoelectric thin film of 1 µm and metal electrodes of 200 nm
thickness. The acoustic–structure interaction and piezoelectric effect of each cantilever
were simulated to find the displacement and voltage response of the MEMS cantilevers
(Figure 2c). The mesh was composed of 202,168 to 253,278 elements, using free quad and
free tetrahedral finite elements.
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Figure 2. (a) Simulated microcantilever with the deformed position. (b) Side view of microcantile-
vers. (c) Facet−to−face configuration of the microcantilever. 
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Figure 2. (a) Simulated microcantilever with the deformed position. (b) Side view of microcantilevers.
(c) Facet–to–face configuration of the microcantilever.

4. Results

COMSOL Multiphysics was used to analyze the designed 3-D model of microcan-
tilevers with different lengths (100 m to 1000 m) to determine the displacement response
and potential voltage response, as shown in Figure 3. The simulated results showed that mi-
crocantilevers with PZT had maximum displacement among these piezoelectric materials,
while BaTiO3 showed the lowest displacement. Similarly, the potential voltage response of
these microcantilevers reached its maximum using PZT material.
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5. Conclusions

This work designs and models MEMS cantilevers on COMSOL Multiphysics. The
COMSOL built-in material properties, thickness, and governing equations were provided
for analyzing the MEMS piezoelectric cantilevers. The simulation setups and parameters
were defined. Based on the simulation results, PZT performs best in these piezoelectric
materials. Simulations can provide guidelines for designing and optimizing piezoelectric
microcantilever pressure sensors based on comparative analysis. Therefore, MEMS piezo-
electric cantilevers can be used as hydrophones for measuring underwater acoustics for
pulse amplitudes and directions. It is possible to identify the direction of acoustic waves
via cross-configurations with different cantilever lengths.
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