Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (34)

Search Parameters:
Keywords = cigarette smoke condensate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1895 KiB  
Article
MicroRNA Signatures in Dental Pulp Stem Cells Following Nicotine Exposure
by David Vang, Leyla Tahrani Hardin, Nabil Abid, Der Thor and Nan Xiao
Dent. J. 2025, 13(8), 338; https://doi.org/10.3390/dj13080338 - 23 Jul 2025
Viewed by 314
Abstract
Background and Objectives: Nicotine is the most well-studied toxic substance in cigarette smoke and e-cigarette vape. However, smoke and vape are composed of other components that have a negative impact on health. The objective of this study is to investigate whether nicotine has [...] Read more.
Background and Objectives: Nicotine is the most well-studied toxic substance in cigarette smoke and e-cigarette vape. However, smoke and vape are composed of other components that have a negative impact on health. The objective of this study is to investigate whether nicotine has a distinctive impact on molecular mechanisms in stem cells. Methods: The cellular impact of nicotine on the regenerative capacity of human dental pulp stem cells (DPSCs) and the microRNA (miRNA) profile was examined. Bioinformatic analysis was performed to identify miRNA-regulated cellular pathways associated with nicotine exposure. These pathways were then compared to those induced by cigarette smoke condensate (CSC). Results: Prolonged exposure to nicotine significantly impaired the regeneration of DPSCs and changed the expression of miRNAs. Nicotine upregulated the expression of hsa-miR-7977, hsa-miR-3178, and hsa-miR-10400-5p compared to vehicle control. Interestingly, nicotine did not change the expression of hsa-miR-29b-3p, hsa-miR-199b-5p, hsa-miR-26b-5p, or hsa-miR-26a-5p compared to the control. However, the expressions of these miRNAs were significantly altered when compared to CSC treatment. Further analysis revealed that nicotine was distinctively associated with certain miRNA-targeted pathways including apoptosis, ErbB, MAPK signaling, PI3K-Akt, TGF-b signaling, and Wnt signaling. Conclusions: Our work provides evidence on the distinctive miRNA signature induced by nicotine. The information will be important for identifying the unique molecular pathways downstream of nicotine from smoking and vaping in different individuals, providing a new direction for personalized disease prevention, prognosis, and treatment. Full article
(This article belongs to the Special Issue Recreational Drugs, Smoking, and Their Impact on Oral Health)
Show Figures

Figure 1

15 pages, 1221 KiB  
Article
Effects of Anti-Pseudomonal Agents, Individually and in Combination, With or Without Clarithromycin, on Growth and Biofilm Formation by Antibiotic-Susceptible and -Resistant Strains of Pseudomonas aeruginosa, and the Impact of Exposure to Cigarette Smoke Condensate
by Moloko C. Cholo, Charles Feldman, Ronald Anderson, Lebogang Sekalo, Naledi Moloko and Guy A. Richards
Antibiotics 2025, 14(3), 325; https://doi.org/10.3390/antibiotics14030325 - 19 Mar 2025
Viewed by 777
Abstract
Background/Objectives: Pseudomonas aeruginosa (Psa) can circumvent antimicrobial chemotherapy, an ability enhanced by cigarette smoking (CS). This study probed potential benefits of combinations of anti-pseudomonal agents, and potential augmentation by a macrolide, in the absence or presence of cigarette smoke condensate [...] Read more.
Background/Objectives: Pseudomonas aeruginosa (Psa) can circumvent antimicrobial chemotherapy, an ability enhanced by cigarette smoking (CS). This study probed potential benefits of combinations of anti-pseudomonal agents, and potential augmentation by a macrolide, in the absence or presence of cigarette smoke condensate (CSC). Methods: Two susceptible (WT: wild-type and DS: drug-sensitive) and one multidrug-resistant (MDR) strains of Psa were treated with amikacin, cefepime, and ciprofloxacin, individually and in combination, and with and without clarithromycin, followed by the measurement of planktonic growth and biofilm formation by spectrophotometry. Antibiotic interactions were determined using the fractional inhibitory concentration index (FICI) method. Effects on preformed biofilm density were measured following the addition of antibiotics: all procedures were performed in the absence and presence of CSC. Results: The minimal inhibitory concentrations (MICs) of the three agents ranged from 0.125 mg/L to 1 mg/L (WT and DS strains) and 16 mg/L to 64 mg/L (MDR strain), with all resistant to clarithromycin (125 mg/L). MIC values closely correlated with the antibiotic concentrations required to inhibit biofilm formation. FICI revealed synergism between most combinations, with augmentation by clarithromycin. Amikacin had the greatest effect on biofilm density, which was potentiated by combination with the other antibiotics, particularly clarithromycin. Exposure to CSC had variable, albeit modest, effects on bacterial growth and biofilm formation, but low concentrations increased biofilm mass and attenuated synergistic antimicrobial interactions and effects on biofilm density. Conclusions: Amikacin, cefepime, and ciprofloxacin, especially with clarithromycin, exhibit synergistic anti-pseudomonal activity and decrease preformed biofilm density. CSC attenuated these effects, illustrating the pro-infective potential of CS. Full article
(This article belongs to the Special Issue Antibiotics and Infectious Respiratory Diseases, 2nd Edition)
Show Figures

Figure 1

16 pages, 13046 KiB  
Article
Tobacco Smoke Condensate Induces Morphologic Changes in Human Papillomavirus-Positive Cervical Epithelial Cells Consistent with Epithelial to Mesenchymal Transition (EMT) with Activation of Receptor Tyrosine Kinases and Regulation of TGFB
by Zaniya A. Mark, Linda Yu, Lysandra Castro, Xiaohua Gao, Noelle R. Rodriguez, Deloris Sutton, Erica Scappini, Charles J. Tucker, Rob Wine, Yitang Yan, Evangeline Motley and Darlene Dixon
Int. J. Mol. Sci. 2024, 25(9), 4902; https://doi.org/10.3390/ijms25094902 - 30 Apr 2024
Cited by 2 | Viewed by 2001
Abstract
High-risk human papillomavirus (HR-HPV; HPV-16) and cigarette smoking are associated with cervical cancer (CC); however, the underlying mechanism(s) remain unclear. Additionally, the carcinogenic components of tobacco have been found in the cervical mucus of women smokers. Here, we determined the effects of cigarette [...] Read more.
High-risk human papillomavirus (HR-HPV; HPV-16) and cigarette smoking are associated with cervical cancer (CC); however, the underlying mechanism(s) remain unclear. Additionally, the carcinogenic components of tobacco have been found in the cervical mucus of women smokers. Here, we determined the effects of cigarette smoke condensate (CSC; 3R4F) on human ectocervical cells (HPV-16 Ect/E6E7) exposed to CSC at various concentrations (10−6–100 μg/mL). We found CSC (10−3 or 10 μg/mL)-induced proliferation, enhanced migration, and histologic and electron microscopic changes consistent with EMT in ectocervical cells with a significant reduction in E-cadherin and an increase in the vimentin expression compared to controls at 72 h. There was increased phosphorylation of receptor tyrosine kinases (RTKs), including Eph receptors, FGFR, PDGFRA/B, and DDR2, with downstream Ras/MAPK/ERK1/2 activation and upregulation of common EMT-related genes, TGFB SNAI2, PDGFRB, and SMAD2. Our study demonstrated that CSC induces EMT in ectocervical cells with the upregulation of EMT-related genes, expression of protein biomarkers, and activation of RTKs that regulate TGFB expression, and other EMT-related genes. Understanding the molecular pathways and environmental factors that initiate EMT in ectocervical cells will help delineate molecular targets for intervention and define the role of EMT in the initiation and progression of cervical intraepithelial neoplasia and CC. Full article
Show Figures

Figure 1

19 pages, 1762 KiB  
Article
A Practical Framework for Novel Electronic Nicotine Delivery System Evaluation: Chemical and Toxicological Characterization of JUUL2 Aerosol and Comparison with Reference Cigarettes
by David K. Cook, Guy Lalonde, Michael J. Oldham, Jiaming Wang, Austin Bates, Sifat Ullah, Christina Sulaiman, Karen Carter, Candice Jongsma, Gary Dull and I. Gene Gillman
Toxics 2024, 12(1), 41; https://doi.org/10.3390/toxics12010041 - 4 Jan 2024
Cited by 5 | Viewed by 4184
Abstract
Electronic nicotine delivery systems (ENDSs) are designed as a non-combustible alternative to cigarettes, aiming to deliver nicotine without the harmful byproducts of tobacco combustion. As the category evolves and new ENDS products emerge, it is important to continually assess the levels of toxicologically [...] Read more.
Electronic nicotine delivery systems (ENDSs) are designed as a non-combustible alternative to cigarettes, aiming to deliver nicotine without the harmful byproducts of tobacco combustion. As the category evolves and new ENDS products emerge, it is important to continually assess the levels of toxicologically relevant chemicals in the aerosols and characterize any related toxicology. Herein, we present a proposed framework for characterizing novel ENDS products (i.e., devices and formulations) and determining the reduced risk potential utilizing analytical chemistry and in vitro toxicological studies with a qualitative risk assessment. To demonstrate this proposed framework, long-term stability studies (12 months) analyzing relevant toxicant emissions from six formulations of a next-generation product, JUUL2, were conducted and compared to reference combustible cigarette (CC) smoke under both non-intense and intense puffing regimes. In addition, in vitro cytotoxicity, mutagenicity, and genotoxicity assays were conducted on aerosol and smoke condensates. In all samples, relevant toxicants under both non-intense and intense puffing regimes were substantially lower than those observed in reference CC smoke. Furthermore, neither cytotoxicity, mutagenicity, nor genotoxicity was observed in aerosol condensates generated under both intense and non-intense puffing regimes, in contrast to results observed for reference cigarettes. Following the proposed framework, the results demonstrate that the ENDS products studied in this work generate significantly lower levels of toxicants relative to reference cigarettes and were not cytotoxic, mutagenic, or genotoxic under these in vitro assay conditions. Full article
Show Figures

Figure 1

15 pages, 2223 KiB  
Article
CBD-Containing Liquids for e-Cigarettes: Formation of Psychotropic and Secondary Cannabinoids and Amount of CBD Surviving the Smoking Procedure
by Andrea Capucciati, Arianna Bini, Barbara Mannucci, Alessio Porta, Antonella Profumo and Daniele Merli
Forensic Sci. 2023, 3(2), 258-272; https://doi.org/10.3390/forensicsci3020019 - 10 Apr 2023
Cited by 5 | Viewed by 3975
Abstract
Recently, as the interest in cannabidiol (CBD) has grown due to its therapeutic potential, e-cigarette liquids containing CBD have proliferated on the market. Typically, e-liquids contain variable concentrations of CBD (from 2 mg∙mL−1 to 20 mg∙mL−1) in propylene glycol or [...] Read more.
Recently, as the interest in cannabidiol (CBD) has grown due to its therapeutic potential, e-cigarette liquids containing CBD have proliferated on the market. Typically, e-liquids contain variable concentrations of CBD (from 2 mg∙mL−1 to 20 mg∙mL−1) in propylene glycol or 70:30 propylene glycol:glycerol mixture and are eventually flavored with food-grade flavors. In this work, carried out by a GC-MS analysis of the condensed smoke produced by a real e-cig, we have demonstrated the actual amount of CBD that can survive the smoking process, and we found that negligible amounts of THCs are formed during the smoking process (i.e., the amount formed was <0.005 mg for each mg of vaped CBD); considering that the threshold dose for ∆9-THC is around 2.5 mg (smoked or ingested per os), it is reasonable to conclude that accidental THC intoxication is unlikely, which is a very important issue from a forensic point of view, as in some court cases the use of e-cig liquids containing CBD has been argued as being the source of THC intoxication. Furthermore, all the other cannabinoids considered in this study and potentially derived from CBD thermal degradation have concentrations below the instrumental LOD. Full article
Show Figures

Figure 1

17 pages, 2578 KiB  
Article
Interaction between Cigarette Smoke and Human Papillomavirus 16 E6/E7 Oncoproteins to Induce SOD2 Expression and DNA Damage in Head and Neck Cancer
by Diego Carrillo-Beltrán, Julio C. Osorio, Rancés Blanco, Carolina Oliva, Enrique Boccardo and Francisco Aguayo
Int. J. Mol. Sci. 2023, 24(8), 6907; https://doi.org/10.3390/ijms24086907 - 7 Apr 2023
Cited by 10 | Viewed by 4678
Abstract
Even though epidemiological studies suggest that tobacco smoking and high-risk human papillomavirus (HR-HPV) infection are mutually exclusive risk factors for developing head and neck cancer (HNC), a portion of subjects who develop this heterogeneous group of cancers are both HPV-positive and smokers. Both [...] Read more.
Even though epidemiological studies suggest that tobacco smoking and high-risk human papillomavirus (HR-HPV) infection are mutually exclusive risk factors for developing head and neck cancer (HNC), a portion of subjects who develop this heterogeneous group of cancers are both HPV-positive and smokers. Both carcinogenic factors are associated with increased oxidative stress (OS) and DNA damage. It has been suggested that superoxide dismutase 2 (SOD2) can be independently regulated by cigarette smoke and HPV, increasing adaptation to OS and tumor progression. In this study, we analyzed SOD2 levels and DNA damage in oral cells ectopically expressing HPV16 E6/E7 oncoproteins and exposed to cigarette smoke condensate (CSC). Additionally, we analyzed SOD2 transcripts in The Cancer Genome Atlas (TCGA) Head and Neck Cancer Database. We found that oral cells expressing HPV16 E6/E7 oncoproteins exposed to CSC synergistically increased SOD2 levels and DNA damage. Additionally, the SOD2 regulation by E6, occurs in an Akt1 and ATM-independent manner. This study suggests that HPV and cigarette smoke interaction in HNC promotes SOD2 alterations, leading to increased DNA damage and, in turn, contributing to development of a different clinical entity. Full article
(This article belongs to the Special Issue Pathogenesis and Therapy of Oral Carcinogenesis)
Show Figures

Figure 1

23 pages, 3739 KiB  
Article
Smooth Muscle Cell Phenotypic Switch Induced by Traditional Cigarette Smoke Condensate: A Holistic Overview
by Laura Bianchi, Isabella Damiani, Silvia Castiglioni, Alfonso Carleo, Rossana De Salvo, Clara Rossi, Alberto Corsini and Stefano Bellosta
Int. J. Mol. Sci. 2023, 24(7), 6431; https://doi.org/10.3390/ijms24076431 - 29 Mar 2023
Cited by 8 | Viewed by 4068
Abstract
Cigarette smoke (CS) is a risk factor for inflammatory diseases, such as atherosclerosis. CS condensate (CSC) contains lipophilic components that may represent a systemic cardiac risk factor. To better understand CSC effects, we incubated mouse and human aortic smooth muscle cells (SMCs) with [...] Read more.
Cigarette smoke (CS) is a risk factor for inflammatory diseases, such as atherosclerosis. CS condensate (CSC) contains lipophilic components that may represent a systemic cardiac risk factor. To better understand CSC effects, we incubated mouse and human aortic smooth muscle cells (SMCs) with CSC. We evaluated specific markers for contractile [i.e., actin, aortic smooth muscle (ACTA2), calponin-1 (CNN1), the Kruppel-like factor 4 (KLF4), and myocardin (MYOCD) genes] and inflammatory [i.e., IL-1β, and IL-6, IL-8, and galectin-3 (LGALS-3) genes] phenotypes. CSC increased the expression of inflammatory markers and reduced the contractile ones in both cell types, with KLF4 modulating the SMC phenotypic switch. Next, we performed a mass spectrometry-based differential proteomic approach on human SMCs and could show 11 proteins were significantly affected by exposition to CSC (FC ≥ 2.7, p ≤ 0.05). These proteins are active in signaling pathways related to expression of pro-inflammatory cytokines and IFN, inflammasome assembly and activation, cytoskeleton regulation and SMC contraction, mitochondrial integrity and cellular response to oxidative stress, proteostasis control via ubiquitination, and cell proliferation and epithelial-to-mesenchymal transition. Through specific bioinformatics resources, we showed their tight functional correlation in a close interaction niche mainly orchestrated by the interferon-induced double-stranded RNA-activated protein kinase (alternative name: protein kinase RNA-activated; PKR) (EIF2AK2/PKR). Finally, by combining gene expression and protein abundance data we obtained a hybrid network showing reciprocal integration of the CSC-deregulated factors and indicating KLF4 and PKR as the most relevant factors. Full article
(This article belongs to the Collection Feature Paper Collection in Biochemistry)
Show Figures

Figure 1

18 pages, 2704 KiB  
Article
E-Cigarette Aerosol Condensate Leads to Impaired Coronary Endothelial Cell Health and Restricted Angiogenesis
by Michael Chhor, Esra Tulpar, Tara Nguyen, Charles G. Cranfield, Catherine A. Gorrie, Yik Lung Chan, Hui Chen, Brian G. Oliver, Lana McClements and Kristine C. McGrath
Int. J. Mol. Sci. 2023, 24(7), 6378; https://doi.org/10.3390/ijms24076378 - 28 Mar 2023
Cited by 7 | Viewed by 3339
Abstract
Cardiovascular disease (CVD) is a leading cause of mortality worldwide, with cigarette smoking being a major preventable risk factor. Smoking cessation can be difficult due to the addictive nature of nicotine and the withdrawal symptoms following cessation. Electronic cigarettes (e-Cigs) have emerged as [...] Read more.
Cardiovascular disease (CVD) is a leading cause of mortality worldwide, with cigarette smoking being a major preventable risk factor. Smoking cessation can be difficult due to the addictive nature of nicotine and the withdrawal symptoms following cessation. Electronic cigarettes (e-Cigs) have emerged as an alternative smoking cessation device, which has been increasingly used by non-smokers; however, the cardiovascular effects surrounding the use of e-Cigs remains unclear. This study aimed to investigate the effects of e-Cig aerosol condensate (EAC) (0 mg and 18 mg nicotine) in vitro on human coronary artery endothelial cells (HCAEC) and in vivo on the cardiovascular system using a mouse model of ‘e-vaping’. In vitro results show a decrease in cell viability of HCAEC when exposed to EAC either directly or after exposure to conditioned lung cell media (p < 0.05 vs. control). Reactive oxygen species were increased in HCAEC when exposed to EAC directly or after exposure to conditioned lung cell media (p < 0.0001 vs. control). ICAM-1 protein expression levels were increased after exposure to conditioned lung cell media (18 mg vs. control, p < 0.01). Ex vivo results show an increase in the mRNA levels of anti-angiogenic marker, FKBPL (p < 0.05 vs. sham), and endothelial cell adhesion molecule involved in barrier function, ICAM-1 (p < 0.05 vs. sham) in murine hearts following exposure to electronic cigarette aerosol treatment containing a higher amount of nicotine. Immunohistochemistry also revealed an upregulation of FKBPL and ICAM-1 protein expression levels. This study showed that despite e-Cigs being widely used for tobacco smoking cessation, these can negatively impact endothelial cell health with a potential to lead to the development of cardiovascular disease. Full article
Show Figures

Figure 1

21 pages, 2989 KiB  
Review
Airway Smooth Muscle Regulated by Oxidative Stress in COPD
by Hiroaki Kume, Ryuki Yamada, Yuki Sato and Ryuichi Togawa
Antioxidants 2023, 12(1), 142; https://doi.org/10.3390/antiox12010142 - 6 Jan 2023
Cited by 35 | Viewed by 8279
Abstract
Since COPD is a heterogeneous disease, a specific anti-inflammatory therapy for this disease has not been established yet. Oxidative stress is recognized as a major predisposing factor to COPD related inflammatory responses, resulting in pathological features of small airway fibrosis and emphysema. However, [...] Read more.
Since COPD is a heterogeneous disease, a specific anti-inflammatory therapy for this disease has not been established yet. Oxidative stress is recognized as a major predisposing factor to COPD related inflammatory responses, resulting in pathological features of small airway fibrosis and emphysema. However, little is known about effects of oxidative stress on airway smooth muscle. Cigarette smoke increases intracellular Ca2+ concentration and enhances response to muscarinic agonists in human airway smooth muscle. Cigarette smoke also enhances proliferation of these cells with altered mitochondrial protein. Hydrogen peroxide and 8-isoprostans are increased in the exhaled breath condensate in COPD. These endogenous oxidants cause contraction of tracheal smooth muscle with Ca2+ dynamics through Ca2+ channels and with Ca2+ sensitization through Rho-kinase. TNF-α and growth factors potentiate proliferation of these cells by synthesis of ROS. Oxidative stress can alter the function of airway smooth muscle through Ca2+ signaling. These phenotype changes are associated with manifestations (dyspnea, wheezing) and pathophysiology (airflow limitation, airway remodeling, airway hyperresponsiveness). Therefore, airway smooth muscle is a therapeutic target against COPD; oxidative stress should be included in treatable traits for COPD to advance precision medicine. Research into Ca2+ signaling related to ROS may contribute to the development of a novel agent for COPD. Full article
(This article belongs to the Special Issue Airway Inflammation Induced by Oxidative Stress)
Show Figures

Graphical abstract

13 pages, 2857 KiB  
Article
Protective Effects of Chestnut (Castanea crenata) Inner Shell Extract in Macrophage-Driven Emphysematous Lesion Induced by Cigarette Smoke Condensate
by Ji-Soo Jeong, Jeong-Won Kim, Jin-Hwa Kim, Chang-Yeop Kim, Je-Won Ko and Tae-Won Kim
Nutrients 2023, 15(2), 253; https://doi.org/10.3390/nu15020253 - 4 Jan 2023
Cited by 4 | Viewed by 2796
Abstract
Chestnut (Castanea crenata) inner shell extract (CIE), a curative herb in Korea, has diverse pharmacological effects against various diseases including pulmonary fibrosis, asthma, and chronic obstructive pulmonary disease (COPD). However, its molecular mechanisms of anti-emphysematous effects are still not fully elucidated. [...] Read more.
Chestnut (Castanea crenata) inner shell extract (CIE), a curative herb in Korea, has diverse pharmacological effects against various diseases including pulmonary fibrosis, asthma, and chronic obstructive pulmonary disease (COPD). However, its molecular mechanisms of anti-emphysematous effects are still not fully elucidated. In the present study, we elucidate the efficacy of CIE against emphysematous lesion progression in a cigarette smoke condensate (CSC)-instilled mice and CSC-stimulated H292 cell line. The mice are administered CSC via intranasal instillation at 7-day intervals for 1 month after 1 week of pretreatment with CIE. CIE (100 or 300 mg/kg) is administered by oral gavage for 1 month. CIE decreased the macrophage count in bronchoalveolar lavage fluid and the severity of emphysematous lesions in lung tissue. Additionally, CIE suppressed the phosphatidylinositol 3-kinase/protein kinase B/nuclear factor kappa B signal pathway and thereby downregulated matrix metalloprotease-9 expression, which was confirmed in CSC-stimulated H292 cells. Thus, CIE effectively inhibited CSC-induced macrophage-driven emphysema progression in airways; this inhibition was associated with the suppression of protease–antiprotease imbalance. Our results propose that CIE has the potential for the alleviation of COPD. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Figure 1

13 pages, 2154 KiB  
Article
YPL-001 Shows Various Beneficial Effects against Cigarette Smoke Extract-Induced Emphysema Formation: Anti-Inflammatory, Anti-Oxidative, and Anti-Apoptotic Effects
by Kyoung-Hee Lee, Jisu Woo, Jiyeon Kim, Chang-Hoon Lee and Chul-Gyu Yoo
Antioxidants 2023, 12(1), 15; https://doi.org/10.3390/antiox12010015 - 22 Dec 2022
Cited by 4 | Viewed by 2440
Abstract
Inflammation, oxidative stress, and apoptosis are thought to be important causes of chronic obstructive pulmonary disease (COPD). We investigated the effect of YPL-001 (under phase 2a study, ClinicalTrials.gov identifier NCT02272634), a drug derived from Pseudolysimachion rotundum var. subintegrum, on cigarette smoke extract [...] Read more.
Inflammation, oxidative stress, and apoptosis are thought to be important causes of chronic obstructive pulmonary disease (COPD). We investigated the effect of YPL-001 (under phase 2a study, ClinicalTrials.gov identifier NCT02272634), a drug derived from Pseudolysimachion rotundum var. subintegrum, on cigarette smoke extract (CSE)-induced inflammation, the anti-oxidative pathway, and apoptosis in human lung epithelial cells and on CSE-induced emphysema in mice. YPL-001 suppressed CSE-induced expression of IL8 mRNA and protein. This was due to the reduction in NF-κB transcriptional activity by YPL-001, which resulted from the blockade of acetylation of the NF-κB subunit p65 (Lys310). Histone deacetylases (HDACs) prevent gene transcription by condensing the DNA structure and affecting NF-κB nuclear binding. YPL-001 alone increased HDAC2 activity and enhanced CSE-induced activation of HDAC2. YPL-001-induced suppression of NF-κB transcriptional activity might be caused by increased HDAC2 activity. YPL-001 increased nuclear factor (erythroid-derived 2)-like 2 (Nrf2) expression via both degradation of its inhibitory protein, Kelch-like ECH-associated protein 1, and an increase in de novo protein synthesis. YPL-001 increased the DNA binding activity of Nrf2. Consequently, YPL-001 upregulated the expression of Nrf2-targeted anti-oxidant genes such as NAD(P)H quinone dehydrogenase 1 and heme oxygenase 1. Moreover, YPL-001 significantly suppressed CSE-induced apoptotic cell death. In vivo study showed that CSE-induced emphysematous changes, neutrophilic inflammation, protein leakage into bronchoalveolar space, and lung cell apoptosis in mice were suppressed by YPL-001 treatment. Taken together, these results suggest that YPL-001 is a good therapeutic candidate for the treatment of COPD by blocking inflammation and apoptosis and activating the anti-oxidative pathway. Full article
Show Figures

Figure 1

15 pages, 4115 KiB  
Article
Loranthus tanakae Franch. & Sav. Suppresses Inflammatory Response in Cigarette Smoke Condensate Exposed Bronchial Epithelial Cells and Mice
by So-Won Park, A Yeong Lee, Je-Oh Lim, Se-Jin Lee, Woong-Il Kim, Yea-Gin Yang, Bohye Kim, Joong-Sun Kim, Sung-Wook Chae, Kun Na, Yun-Soo Seo and In-Sik Shin
Antioxidants 2022, 11(10), 1885; https://doi.org/10.3390/antiox11101885 - 23 Sep 2022
Cited by 7 | Viewed by 2673
Abstract
Loranthus tanakae Franch. & Sav. found in China, Japan, and Korea is traditionally used for managing arthritis and respiratory diseases. In this study, we analyzed the components of L. tanakae 70% ethanol extract (LTE) and investigated the therapeutic effects of LTE on pulmonary [...] Read more.
Loranthus tanakae Franch. & Sav. found in China, Japan, and Korea is traditionally used for managing arthritis and respiratory diseases. In this study, we analyzed the components of L. tanakae 70% ethanol extract (LTE) and investigated the therapeutic effects of LTE on pulmonary inflammation using cells exposed to cigarette smoke condensate (CSC) and lipopolysaccharide (LPS) in vitro and in vivo in mice and performed a network analysis between components and genes based on a public database. We detected quercitrin, afzelin, rhamnetin 3-rhamnoside, and rhamnocitrin 3-rhamnoside in LTE, which induced a significant reduction in inflammatory mediators including interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α and inflammatory cells in CSC exposed H292 cells and in mice, accompanied by a reduction in inflammatory cell infiltration into lung tissue. In addition, LTE increased translocation into the nuclei of nuclear factor erythroid-2-related factor 2 (Nrf2). By contrast, the activation of nuclear factor (NF)-κB, induced by CSC exposure, decreased after LTE application. These results were consistent with the network pharmacological analysis. In conclusion, LTE effectively attenuated pulmonary inflammation caused by CSC+LPS exposure, which was closely involved in the enhancement of Nrf2 expression and suppression of NF-κB activation. Therefore, LTE may be a potential treatment option for pulmonary inflammatory diseases including chronic obstructive pulmonary disease (COPD). Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Graphical abstract

32 pages, 7475 KiB  
Article
β-Caryophyllene Counteracts Chemoresistance Induced by Cigarette Smoke in Triple-Negative Breast Cancer MDA-MB-468 Cells
by Antonella Di Sotto, Marco Gullì, Marco Minacori, Romina Mancinelli, Stefania Garzoli, Ester Percaccio, Alessio Incocciati, Donatella Romaniello, Gabriela Mazzanti, Margherita Eufemi and Silvia Di Giacomo
Biomedicines 2022, 10(9), 2257; https://doi.org/10.3390/biomedicines10092257 - 12 Sep 2022
Cited by 8 | Viewed by 2451
Abstract
Exposure to cigarette smoke (CS) has been associated with an increased risk of fatal breast cancers and recurrence, along with chemoresistance and chemotherapy impairment. This strengthens the interest in chemopreventive agents to be exploited both in healthy and oncological subjects to prevent or [...] Read more.
Exposure to cigarette smoke (CS) has been associated with an increased risk of fatal breast cancers and recurrence, along with chemoresistance and chemotherapy impairment. This strengthens the interest in chemopreventive agents to be exploited both in healthy and oncological subjects to prevent or repair CS damage. In the present study, we evaluated the chemopreventive properties of the natural sesquiterpene β-caryophyllene towards the damage induced by cigarette smoke condensate (CSC) in triple negative breast cancer MDA-MB-468 cells. Particularly, we assessed the ability of the sesquiterpene to interfere with the mechanisms exploited by CSC to promote cell survival and chemoresistance, including genomic instability, cell cycle progress, autophagy/apoptosis, cell migration and related pathways. β-Caryophyllene was found to be able to increase the CSC-induced death of MDA-MB-468 cells, likely triggering oxidative stress, cell cycle arrest and apoptosis; moreover, it hindered cell recovery, autophagy activation and cell migration; at last, a marked inhibition of the signal transducer and activator of transcription 3 (STAT3) activation was highlighted: this could represent a key mechanism of the chemoprevention by β-caryophyllene. Although further studies are required to confirm the in vivo efficacy of β-caryophyllene, the present results suggest a novel strategy to reduce the harmful effect of smoke in cancer patients and to improve the survival expectations in breast cancer women. Full article
(This article belongs to the Special Issue Feature Papers in Cancer Biology and Therapeutics)
Show Figures

Figure 1

15 pages, 14297 KiB  
Article
Effect of Cigarette and E-Cigarette Smoke Condensates on Candida albicans Biofilm Formation and Gene Expression
by Farnoosh Haghighi, Leah Andriasian, Nini Chaichanasakul Tran and Renate Lux
Int. J. Environ. Res. Public Health 2022, 19(8), 4626; https://doi.org/10.3390/ijerph19084626 - 12 Apr 2022
Cited by 15 | Viewed by 3686
Abstract
Smoking triggers environmental changes in the oral cavity and increases the risk of mucosal infections caused by Candida albicans such as oral candidiasis. While cigarette smoke has a significant impact on C. albicans, how e-cigarettes affect this oral pathogen is less clear. [...] Read more.
Smoking triggers environmental changes in the oral cavity and increases the risk of mucosal infections caused by Candida albicans such as oral candidiasis. While cigarette smoke has a significant impact on C. albicans, how e-cigarettes affect this oral pathogen is less clear. Here, we investigated the effect of cigarette and e-cigarette smoke condensates (CSC and ECSC) on C. albicans growth, biofilm formation, and gene expression. Whereas pure nicotine (N) at the minimum inhibitory concentration (MIC, 4 mg/mL) prevented C. albicans growth, enhanced biofilm formation was observed at 0.1 mg/mL. In contrast, at this nicotine sub-MIC (0.1 mg/mL) concentration, CSC and ECSC had no significant effect on C. albicans biofilm formation. Additionally, N, CSC, and ECSC increased the expression of HWP1 and SAP2 genes. The ECSC group exhibited elevated expression levels of the EAP1 and ALS3 genes, compared to the nicotine-free ECSC (−) control. Moreover, our in vitro study illustrated that the antifungal drugs, fluconazole and amphotericin B, alleviated the effect of nicotine on C. albicans gene expression. Overall, the results of the study indicated nicotine from different sources may affect the pathogenic characteristics of C. albicans, including hyphal growth, biofilm formation, and particularly the expression of virulence-related genes. Full article
Show Figures

Figure 1

17 pages, 2702 KiB  
Article
NMR Spectroscopy Identifies Chemicals in Cigarette Smoke Condensate That Impair Skeletal Muscle Mitochondrial Function
by Ram B. Khattri, Trace Thome, Liam F. Fitzgerald, Stephanie E. Wohlgemuth, Russell T. Hepple and Terence E. Ryan
Toxics 2022, 10(3), 140; https://doi.org/10.3390/toxics10030140 - 14 Mar 2022
Cited by 9 | Viewed by 4835
Abstract
Tobacco smoke-related diseases such as chronic obstructive pulmonary disease (COPD) are associated with high healthcare burden and mortality rates. Many COPD patients were reported to have muscle atrophy and weakness, with several studies suggesting intrinsic muscle mitochondrial impairment as a possible driver of [...] Read more.
Tobacco smoke-related diseases such as chronic obstructive pulmonary disease (COPD) are associated with high healthcare burden and mortality rates. Many COPD patients were reported to have muscle atrophy and weakness, with several studies suggesting intrinsic muscle mitochondrial impairment as a possible driver of this phenotype. Whereas much information has been learned about muscle pathology once a patient has COPD, little is known about how active tobacco smoking might impact skeletal muscle physiology or mitochondrial health. In this study, we examined the acute effects of cigarette smoke condensate (CSC) on muscle mitochondrial function and hypothesized that toxic chemicals present in CSC would impair mitochondrial respiratory function. Consistent with this hypothesis, we found that acute exposure of muscle mitochondria to CSC caused a dose-dependent decrease in skeletal muscle mitochondrial respiratory capacity. Next, we applied an analytical nuclear magnetic resonance (NMR)-based approach to identify 49 water-soluble and 12 lipid-soluble chemicals with high abundance in CSC. By using a chemical screening approach in the Seahorse XF96 analyzer, several CSC-chemicals, including nicotine, o-Cresol, phenylacetate, and decanoic acid, were found to impair ADP-stimulated respiration in murine muscle mitochondrial isolates significantly. Further to this, several chemicals, including nicotine, o-Cresol, quinoline, propylene glycol, myo-inositol, nitrosodimethylamine, niacinamide, decanoic acid, acrylonitrile, 2-naphthylamine, and arsenic acid, were found to significantly decrease the acceptor control ratio, an index of mitochondrial coupling efficiency. Full article
(This article belongs to the Section Environmental Chemistry)
Show Figures

Figure 1

Back to TopTop