Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = chromated copper arsenate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 24780 KiB  
Article
Performance of Polystyrene-Impregnated and CCA-Preserved Tropical Woods Against Subterranean Termites in PNG Field and Treatment-Induced Color Change
by Yusuf Sudo Hadi, Cossey Yosi, Paul Marai, Mahdi Mubarok, Imam Busyra Abdillah, Rohmah Pari, Gustan Pari, Abdus Syukur, Lukmanul Hakim Zaini, Dede Hermawan and Jingjing Liao
Polymers 2025, 17(14), 1945; https://doi.org/10.3390/polym17141945 - 16 Jul 2025
Viewed by 298
Abstract
Logs supplied in Papua New Guinea and Indonesia are predominantly sourced from fast-growing tree species of plantation forests. The timber primarily consists of sapwood, which is highly susceptible to biodeterioration. At a training center, CCA (chromated copper arsenate) is still used for wood [...] Read more.
Logs supplied in Papua New Guinea and Indonesia are predominantly sourced from fast-growing tree species of plantation forests. The timber primarily consists of sapwood, which is highly susceptible to biodeterioration. At a training center, CCA (chromated copper arsenate) is still used for wood preservation, while in the wood industry, ACQ (alkaline copper quaternary) is commonly applied to enhance the service life of timber. In the future, polystyrene impregnation or other non-biocidal treatments could potentially serve this purpose. This study aimed to determine the discoloration and resistance of polystyrene-impregnated and CCA-preserved woods. Wood samples, Anisoptera thurifera and Octomeles sumatrana from Papua New Guinea, and Anthocephalus cadamba and Falcataria moluccana from Indonesia, were used. The wood samples were treated with polystyrene impregnation, CCA preservation, or left untreated, then exposed at the PNG Forest Research Institute site for four months. After treatment, the color change in polystyrene-impregnated wood was minor, whereas CCA-preserved wood exhibited a noticeably different color compared to untreated wood. The average polymer loading for polystyrene-impregnated wood reached 147%, while the average CCA retention was 8.4 kg/m3. Densities of untreated-, polystyrene-, and CCA-wood were 0.42, 0.64, and 0.45 g/cm3, respectively, and moisture contents were 15.8%, 9.4%, and 13.4%, respectively. CCA preservation proved highly effective in preventing termite attacks; however, CCA is hazardous to living organisms, including humans. Polystyrene impregnation also significantly improved wood resistance to subterranean termites, as indicated by lower weight loss and a higher protection level compared to untreated wood. Additionally, polystyrene treatment is nonhazardous and safe for living organisms, making it a promising option for enhancing wood resistance to termite attacks in the future as an alternative to the biocides currently in use. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

17 pages, 279 KiB  
Article
Advancing Sustainable Timber Protection: A Comparative Study of International Wood Preservation Regulations and Chile’s Framework Under Environmental, Social, and Governance and Sustainable Development Goal Perspectives
by Consuelo Fritz and Rosemarie Garay
Buildings 2025, 15(9), 1564; https://doi.org/10.3390/buildings15091564 - 6 May 2025
Viewed by 902
Abstract
Wood is an essential construction material because of its renewable nature, versatility, and ability to store carbon, which aids in climate change mitigation. However, its biodegradability requires preservation treatments to prolong its service life and improve its durability. This study compares international wood [...] Read more.
Wood is an essential construction material because of its renewable nature, versatility, and ability to store carbon, which aids in climate change mitigation. However, its biodegradability requires preservation treatments to prolong its service life and improve its durability. This study compares international wood preservation regulations with the Chilean framework and evaluates their alignment with Environmental, Social, and Governance (ESG) criteria and the Sustainable Development Goals (SDGs). The findings reveal a global trend focused on reducing hazardous preservatives like chromated copper arsenate (CCA) while promoting environmentally friendly alternatives. The discussion emphasizes the need for strategic regulatory updates and investment in sustainable wood protection technologies. These efforts are essential for ensuring long-term structural performance, resource efficiency, and market competitiveness. Full article
(This article belongs to the Special Issue Research on Timber and Timber–Concrete Buildings)
17 pages, 4766 KiB  
Article
Visible Light-Induced Photocatalytic Degradation of Methylene Blue Using Copper-Doped Carbon Dots One-Step Derived from CCA-Wood
by Dan Xing, Jingfa Zhang, Sara Magdouli, Yubo Tao, Peng Li, Hassine Bouafif and Ahmed Koubaa
Forests 2024, 15(4), 680; https://doi.org/10.3390/f15040680 - 10 Apr 2024
Viewed by 1795
Abstract
Developing novel eco-friendly broad-spectrum visible light photocatalysts for dye removal is one of the urgent problems for water treatment. Here, copper-doped carbon dots (CDs) were reported to be directly fabricated from chromated copper arsenate (CCA) wood waste for the photocatalytic degradation of the [...] Read more.
Developing novel eco-friendly broad-spectrum visible light photocatalysts for dye removal is one of the urgent problems for water treatment. Here, copper-doped carbon dots (CDs) were reported to be directly fabricated from chromated copper arsenate (CCA) wood waste for the photocatalytic degradation of the methylene blue dye. The properties of the resulting CDs were thoroughly characterized and analyzed, preceding an investigation into the adsorption kinetics of dye degradation. The kinetic study showed that reactant concentration was the rate-limiting factor. The obtained CDs showed a 151 mg/g photocatalytic degradation capacity. Comparing pure CDs to CDs/TiO2 composites, the former demonstrated higher photodegradation efficiency. This superiority can be attributed to the synergistic action of adsorption and photocatalytic degradation working in tandem. This study prepared Cu doped CDs and elucidated the photocatalysis mechanism of methylene blue degradation by CDs. The photodegradation of organic dyes through CDs derived from waste CCA wood emerges as an eco-friendly, facile, and highly efficient method. Full article
(This article belongs to the Special Issue Sustainable Materials in the Forest Products Industry)
Show Figures

Figure 1

12 pages, 4565 KiB  
Article
Sustainable Supercapacitor Electrode Based on Activated Biochar Derived from Preserved Wood Waste
by Meiling Huang, Boren Dai, Jiangtao Shi, Jiayao Li and Changlei Xia
Forests 2024, 15(1), 177; https://doi.org/10.3390/f15010177 - 15 Jan 2024
Cited by 4 | Viewed by 2427
Abstract
Due to the inherent metals (Cu, As and Cr) in preserved wood waste (CCA-treated wood waste) that pose a risk to both the environment and human health, it is crucial to dispose of CCA-treated wood properly. Carbon materials have received widespread attention for [...] Read more.
Due to the inherent metals (Cu, As and Cr) in preserved wood waste (CCA-treated wood waste) that pose a risk to both the environment and human health, it is crucial to dispose of CCA-treated wood properly. Carbon materials have received widespread attention for their high porosity, renewability and simplicity of fabrication. This work presents a simple and effective process for producing carbon materials from leftover CCA-treated wood (chromated copper arsenate). Utilizing CCA-treated wood derived carbon (CCA-BC) and activating it with KOH (CCA-AC), electrode materials for supercapacitor applications were created and its electrochemical characteristics were investigated. The resulting material combines the conductivity of the metal in preserved wood with the good porosity provided by carbon materials. Compared with common wood biomass, carbon (W-BC) and common wood activated carbon (W-AC), CCA-BC and CCA-AC have better electrochemical properties. After being pyrolyzed at 600 °C for two hours, CCA-AC performed optimally electrochemically in 1 M Na2SO4 electrolyte, demonstrating a 72% capacity retention rate after 2000 charge and discharge cycles and a specific capacity of 76.7 F/g. This study provides a novel approach for the manufacture of supercapacitor electrodes, which also allows preserved wood waste an environmentally nondestructive form of elimination. Full article
Show Figures

Figure 1

17 pages, 3815 KiB  
Article
A Comparative Study on Heavy Metal Removal from CCA-Treated Wood Waste by Yarrowia lipolytica: Effects of Metal Stress
by Dan Xing, Sara Magdouli, Jingfa Zhang, Hassine Bouafif and Ahmed Koubaa
J. Fungi 2023, 9(4), 469; https://doi.org/10.3390/jof9040469 - 13 Apr 2023
Cited by 6 | Viewed by 2395
Abstract
Bioremediation is an effective way to remove heavy metals from pollutants. This study investigated the effects of Yarrowia lipolytica (Y. lipolytica) on the bioremediation of chromated copper arsenate (CCA)-treated wood wastes. Copper ions stressed the yeast strains to improve their bioremediation [...] Read more.
Bioremediation is an effective way to remove heavy metals from pollutants. This study investigated the effects of Yarrowia lipolytica (Y. lipolytica) on the bioremediation of chromated copper arsenate (CCA)-treated wood wastes. Copper ions stressed the yeast strains to improve their bioremediation efficiency. A comparison of changes in morphology, chemical composition, and metal content of CCA wood before and after bioremediation was conducted. The amount of arsenic (As), chromium (Cr), and copper (Cu) was quantified by microwave plasma atomic emission spectrometer. The results showed that yeast strains remained on the surface of CCA-treated wood after bioremediation. The morphologies of the strains changed from net to spherical because of the Cu2+ stress. Fourier-transform infrared spectroscopy showed that carboxylic acid groups of wood were released after removing heavy metals. A large amount of oxalic acid was observed when the optical density (OD600nm) was 0.05 on the 21st day. Meanwhile, the highest removal rate of Cu, As, and Cr was 82.8%, 68.3%, and 43.1%, respectively. Furthermore, the Cu removal from CCA-treated wood increased by about 20% after Cu2+ stress. This study showed that it is feasible to remove heavy metals from CCA-treated wood by Y. lipolytica without destroying the wood structure, especially by copper-induced Y. lipolytica. Full article
(This article belongs to the Special Issue Heavy Metals in Mushrooms)
Show Figures

Figure 1

25 pages, 4063 KiB  
Article
Distribution and Speciation of Heavy Metal(loid)s in Soils under Multiple Preservative-Treated Wooden Trestles
by Xiu Zeng, Qian Jin, Panpan Wang and Chengmin Huang
Toxics 2023, 11(3), 249; https://doi.org/10.3390/toxics11030249 - 7 Mar 2023
Cited by 6 | Viewed by 2122
Abstract
The widespread use of wood preservatives, such as chromated copper arsenate (CCA), alkaline copper quaternary (ACQ), and copper azole (CA), may cause environmental pollution problems. Comparative studies on the effect of CCA-, ACQ-, and CA-treated wood on soil contamination are rarely reported, and [...] Read more.
The widespread use of wood preservatives, such as chromated copper arsenate (CCA), alkaline copper quaternary (ACQ), and copper azole (CA), may cause environmental pollution problems. Comparative studies on the effect of CCA-, ACQ-, and CA-treated wood on soil contamination are rarely reported, and the behavior of soil metal(loid) speciation affected by preservatives has been poorly understood. Soils under the CCA-, ACQ-, and CA-treated boardwalks were collected to investigate metal(loid) distribution and speciation at the Jiuzhaigou World Natural Heritage site. The results showed that the maximum mean concentrations of Cr, As, and Cu were found in soils under the CCA, CCA, and CCA plus CA treatments and reached 133.60, 314.90, and 266.35 mg/kg, respectively. The Cr, As, and Cu contamination in soils within a depth of above 10 cm was high for all types of boardwalks and limited in the horizontal direction, not exceeding 0.5 m. Cr, As, and Cu in soils were mainly present as residual fractions in all profiles and increased with depth. The proportion of non-residual As in soil profiles under CCA- and CCA plus CA-treatment and exchangeable Cu in CA- and CCA plus CA-treatment were significantly higher than those in the profiles under the other preservative treatments. The distribution and migration of Cr, As, and Cu within soils were influenced by the preservative treatment of trestles, in-service time of trestles, soil properties (e.g., organic matter content), geological disasters (e.g., debris flow), and elemental geochemical behavior. With the CCA treatment for trestles successively replaced by ACQ and CA treatments, the types of contaminants were reduced from a complex of Cr, As, and Cu to a single type of Cu, achieving a reduction in total metal content, toxicity, mobility, and biological effectiveness, thus reducing environmental risks. Full article
(This article belongs to the Section Metals and Radioactive Substances)
Show Figures

Figure 1

10 pages, 4595 KiB  
Article
Physical and Mechanical Properties of Plywood Produced with Thermally Treated Pinus taeda Veneers
by Bruno Santos Ferreira, Felipe Nascimento Arroyo, Marcel Yuzo Kondo, Herisson Ferreira dos Santos, Rogério Lima Barreto, Alfredo Manuel Pereira Geraldes Dias, Francisco Antônio Rocco Lahr, André Luis Christoforo and Cristiane Inácio de Campos
Forests 2022, 13(9), 1398; https://doi.org/10.3390/f13091398 - 31 Aug 2022
Cited by 11 | Viewed by 3801
Abstract
Plywood is a structural composite mainly applied in construction. For this purpose, some sort of preservative treatment is recommended to increase its durability. One option of the available treatments is heat treatment, which promotes the modification of the wood properties. This treatment is [...] Read more.
Plywood is a structural composite mainly applied in construction. For this purpose, some sort of preservative treatment is recommended to increase its durability. One option of the available treatments is heat treatment, which promotes the modification of the wood properties. This treatment is carried out on the final product (plywood), because it can reduce strength if applied to the veneers. However, no study has proven such a reduction. Therefore, the aim of this work was to evaluate three different temperatures (160 °C, 180 °C and 200 °C) of the heat treatment on the veneer surface and on the physical properties (specific gravity, moisture content and swelling in thickness) and mechanical properties (MOE and MOR in static bending) of Pinus taeda plywood. A reduction was observed in the roughness of the veneer’s surfaces and the total extractives content changed, with a minimum value reached in the 160 °C treatment. The plywood specific gravity initially increased with the heat treatment and did not change at higher temperatures, moisture content reduced, and thickness swelling was not affected. There was no change in the mechanical properties of the plywood, evidencing that the veneer heat treatment does not prejudice mechanically the final product. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

16 pages, 2463 KiB  
Article
Comparative Study of Plywood Boards Produced with Castor Oil-Based Polyurethane and Phenol-Formaldehyde Using Pinus taeda L. Veneers Treated with Chromated Copper Arsenate
by Estefani Sugahara, Bruno Casagrande, Felipe Arroyo, Victor De Araujo, Herisson Santos, Emerson Faustino, Andre Christoforo and Cristiane Campos
Forests 2022, 13(7), 1144; https://doi.org/10.3390/f13071144 - 20 Jul 2022
Cited by 9 | Viewed by 3769
Abstract
Plywood is widely used in civil construction. Due to the importance of preservation and gluing in bio-composites, this study compares the influence of a chemical treatment with CCA (chromated-copper-arsenate) on Pinus taeda L. wood veneers to produce two plywood types using phenol-formaldehyde (PF) [...] Read more.
Plywood is widely used in civil construction. Due to the importance of preservation and gluing in bio-composites, this study compares the influence of a chemical treatment with CCA (chromated-copper-arsenate) on Pinus taeda L. wood veneers to produce two plywood types using phenol-formaldehyde (PF) and castor oil-based polyurethane (PU). Four different treatments were performed to analyze both varieties’ physical and mechanical properties. As a result, an improvement in the properties of the treated panels was observed. Lower moisture contents and better interactions caused by less thickness swelling and water absorption were identified in the PU-based plywoods. The treatment with CCA was efficient, improving these properties when they were compared to the reference panels. Most treatments evidenced increases in the modulus of elasticity and modulus of rupture for both adhesives when the CCA treatment was applied to the veneers. Comparing the resins, the PF showed the best values of modulus of elasticity. All treatments met the requirements defined by the Brazilian standard document for the glue line shear. Full article
(This article belongs to the Special Issue Frontiers in Modification of Wood and Wood-Based Composites)
Show Figures

Figure 1

15 pages, 2654 KiB  
Article
Pyrolysis of Chromated Copper Arsenate-Treated Wood: Investigation of Temperature, Granulometry, Biochar Yield, and Metal Pathways
by Mouna Gmar, Hassine Bouafif, Besma Bouslimi, Flavia L. Braghiroli and Ahmed Koubaa
Energies 2022, 15(14), 5071; https://doi.org/10.3390/en15145071 - 12 Jul 2022
Cited by 6 | Viewed by 2595
Abstract
Chromated copper arsenate-treated (cca) wood disposal faces environmental restrictions due to its toxicity, heavy metal leaching in storage sites, and greenhouse gas emissions during incineration. Thus, finding new management methods for this contaminated wood at the end of life is crucial. This study [...] Read more.
Chromated copper arsenate-treated (cca) wood disposal faces environmental restrictions due to its toxicity, heavy metal leaching in storage sites, and greenhouse gas emissions during incineration. Thus, finding new management methods for this contaminated wood at the end of life is crucial. This study evaluated the effect of pyrolysis temperature (300, 400, and 500 °C), particle size, biochar yield, and the behavior of arsenic (As), chromium (Cr), and copper (Cu) during treated-wood pyrolysis. The highest biochar yield was obtained at 300 °C for fine particles. The biochar retention of heavy metals decreased with increasing pyrolysis temperature. At 300 °C, the highest biochar As, Cr, and Cu retentions were 76, 91, and 83%. At 500 °C, biochar only retained 43% of the As. Additionally, heavy metal leaching from the biochar exceeded the Environmental Protection Agency’s (EPA) maximum concentration limit of 5 mg/L. High-density polyethylene encapsulation of contaminated biochar reduced the leaching of As, Cr, and Cu by 96, 95, and 91%, respectively. Thus, combining pyrolysis and plastic encapsulation to produce a composite material could be a solution for reducing waste (conversion of CCA-wood into biochar) and for the safe disposal of contaminated wood. Full article
(This article belongs to the Special Issue Wood-Based Bioenergy)
Show Figures

Figure 1

12 pages, 773 KiB  
Review
Environmental and Health Hazards of Chromated Copper Arsenate-Treated Wood: A Review
by Simone Morais, Henrique M. A. C. Fonseca, Sónia M. R. Oliveira, Helena Oliveira, Vivek Kumar Gupta, Bechan Sharma and Maria de Lourdes Pereira
Int. J. Environ. Res. Public Health 2021, 18(11), 5518; https://doi.org/10.3390/ijerph18115518 - 21 May 2021
Cited by 48 | Viewed by 6467
Abstract
Copper chrome arsenate (CCA) water-borne solution used to be widely used to make timber highly resistant to pests and fungi, in particular, wood products designed for outdoor use. Nowadays, CCA is a restricted chemical product in most countries, since potential environmental and health [...] Read more.
Copper chrome arsenate (CCA) water-borne solution used to be widely used to make timber highly resistant to pests and fungi, in particular, wood products designed for outdoor use. Nowadays, CCA is a restricted chemical product in most countries, since potential environmental and health risks were reported due to dermal contact with CCA residues from treated structures and the surrounding soil, as well as the contamination of soils. However, large quantities of CCA-treated timber are still in use in framings, outdoor playground equipment, landscaping, building poles, jetty piles, and fencing structures around the world, thus CCA remains a source of pollutants to the environment and of increasing toxic metal/metalloid exposure (mainly in children). International efforts have been dedicated to the treatment of materials impregnated with CCA, however not only does some reuse of CCA-treated timber still occur, but also existing structures are leaking the toxic compounds into the environment, with impacts on the environment and animal and human health. This study highlights CCA mechanisms and the documented consequences in vivo of its exposure, as well as the adverse environmental and health impacts. Full article
Show Figures

Figure 1

16 pages, 2638 KiB  
Article
Proteomics Reveals Octyl Gallate as an Environmentally Friendly Wood Preservative Leading to Reactive Oxygen Species-Driven Metabolic Inflexibility and Growth Inhibition in White-Rot Fungi (Lenzites betulina and Trametes versicolor)
by Jin-Wei Xu, Chen-Chung Liao, Ke-Chang Hung, Zhong-Yao Wang, Yu-Tang Tung and Jyh-Horng Wu
J. Fungi 2021, 7(2), 145; https://doi.org/10.3390/jof7020145 - 17 Feb 2021
Cited by 4 | Viewed by 3061
Abstract
The most commonly applied wood preservatives are based on creosote, pentachlorophenol, and waterborne chromate copper arsenate, which negatively affect the environment. Thus, environmentally friendly wood preservatives are required. This study investigated the antifungal activity and mechanism of several long-chain alkyl gallates (3,4,5-trihydroxybenzoates) against [...] Read more.
The most commonly applied wood preservatives are based on creosote, pentachlorophenol, and waterborne chromate copper arsenate, which negatively affect the environment. Thus, environmentally friendly wood preservatives are required. This study investigated the antifungal activity and mechanism of several long-chain alkyl gallates (3,4,5-trihydroxybenzoates) against white-rot fungi, Lenzites betulina and Trametes versicolor. The results revealed that octyl gallate (OG) had the best antifungal activity. Additionally, OG may have a mechanism of action similar to surfactants and inhibit ATPase activity, causing mitochondrial dysfunction and endogenous reactive oxygen species (ROS) production. Upon exposure to endogenous ROS, cells rapidly inhibit the synthesis of 60S ribosomal subunits, thus reducing the mycelial growth rate. L. betulina and T. versicolor also remodeled their energy metabolism in response to low ATP levels and endogenous ROS. After OG treatment, ATP citrate synthase activity was downregulated and glycolytic activity was upregulated in L. betulina. However, the activity of aerobic pathways was decreased and the oxidative branch of the pentose phosphate pathway was redirected form nicotinamide adenine dinucleotide phosphate (NADPH) to minimize endogenous ROS-mediated damage in T. versicolor. Taken together, these observations reveal that OG is a potent inhibitor of white-rot fungus. Further structural optimization research and pharmacological investigations are warranted. Full article
Show Figures

Figure 1

15 pages, 1898 KiB  
Article
Macrophyte Potential to Treat Leachate Contaminated with Wood Preservatives: Plant Tolerance and Bioaccumulation Capacity
by Emmanuelle Demers, Margit Kõiv-Vainik, Sara Yavari, Michel Mench, Lilian Marchand, Julie Vincent, Chloé Frédette, Yves Comeau and Jacques Brisson
Plants 2020, 9(12), 1774; https://doi.org/10.3390/plants9121774 - 14 Dec 2020
Cited by 5 | Viewed by 2777
Abstract
Pentachlorophenol and chromated copper arsenate (CCA) have been used worldwide as wood preservatives, but these compounds can toxify ecosystems when they leach into the soil and water. This study aimed to evaluate the capacity of four treatment wetland macrophytes, Phalaris arundinacea, Typha [...] Read more.
Pentachlorophenol and chromated copper arsenate (CCA) have been used worldwide as wood preservatives, but these compounds can toxify ecosystems when they leach into the soil and water. This study aimed to evaluate the capacity of four treatment wetland macrophytes, Phalaris arundinacea, Typha angustifolia, and two subspecies of Phragmites australis, to tolerate and treat leachates containing wood preservatives. The experiment was conducted using 96 plant pots in 12 tanks filled with three leachate concentrations compared to uncontaminated water. Biomass production and bioaccumulation were measured after 35 and 70 days of exposure. There were no significant effects of leachate contamination concentration on plant biomass for any species. No contaminants were detected in aboveground parts of the macrophytes, precluding their use for phytoextraction within the tested contamination levels. However, all species accumulated As and chlorinated phenols in belowground parts, and this accumulation was more prevalent under a more concentrated leachate. Up to 0.5 mg pentachlorophenol/kg (from 81 µg/L in the leachate) and 50 mg As/kg (from 330 µg/L in the leachate) were accumulated in the belowground biomass. Given their high productivity and tolerance to the contaminants, the tested macrophytes showed phytostabilization potential and could enhance the degradation of phenols from leachates contaminated with wood preservatives in treatment wetlands. Full article
Show Figures

Figure 1

30 pages, 1334 KiB  
Review
Natural Background and Anthropogenic Arsenic Enrichment in Florida Soils, Surface Water, and Groundwater: A Review with a Discussion on Public Health Risk
by Thomas M. Missimer, Christopher M. Teaf, William T. Beeson, Robert G. Maliva, John Woolschlager and Douglas J. Covert
Int. J. Environ. Res. Public Health 2018, 15(10), 2278; https://doi.org/10.3390/ijerph15102278 - 17 Oct 2018
Cited by 101 | Viewed by 11773
Abstract
Florida geologic units and soils contain a wide range in concentrations of naturally-occurring arsenic. The average range of bulk rock concentrations is 1 to 13.1 mg/kg with concentrations in accessary minerals being over 1000 mg/kg. Florida soils contain natural arsenic concentrations which can [...] Read more.
Florida geologic units and soils contain a wide range in concentrations of naturally-occurring arsenic. The average range of bulk rock concentrations is 1 to 13.1 mg/kg with concentrations in accessary minerals being over 1000 mg/kg. Florida soils contain natural arsenic concentrations which can exceed 10 mg/kg in some circumstances, with organic-rich soils often having the highest concentrations. Anthropogenic sources of arsenic have added about 610,000 metric tons of arsenic into the Florida environment since 1970, thereby increasing background concentrations in soils. The anthropogenic sources of arsenic in soils include: pesticides (used in Florida beginning in the 1890’s), fertilizers, chromated copper arsenate (CCA)-treated wood, soil amendments, cattle-dipping vats, chicken litter, sludges from water treatment plants, and others. The default Soil Cleanup Target Level (SCTL) in Florida for arsenic in residential soils is 2.1 mg/kg which is below some naturally-occurring background concentrations in soils and anthropogenic concentrations in agricultural soils. A review of risk considerations shows that adverse health impacts associated with exposure to arsenic is dependent on many factors and that the Florida cleanup levels are very conservative. Exposure to arsenic in soils at concentrations that exceed the Florida default cleanup level set specifically for residential environments does not necessarily pose a meaningful a priori public health risk, given important considerations such as the form of arsenic present, the route(s) of exposure, and the actual circumstances of exposure (e.g., frequency, duration, and magnitude). Full article
Show Figures

Figure 1

10 pages, 2317 KiB  
Article
Use of Recycled Pulped Chromated Copper Arsenate-Treated Wood Fibre in Polymer Composites
by Wouter Peerbooms and Kim L. Pickering
J. Compos. Sci. 2018, 2(2), 35; https://doi.org/10.3390/jcs2020035 - 11 Jun 2018
Cited by 4 | Viewed by 3633
Abstract
The goal of this study was to investigate if it is possible to recycle chromated copper arsenate (CCA)-treated wood for use in wood polymer composites. This was done by soda pulping wood chips of CCA-treated lumber in a laboratory-scale digester. Composites of 10–30 [...] Read more.
The goal of this study was to investigate if it is possible to recycle chromated copper arsenate (CCA)-treated wood for use in wood polymer composites. This was done by soda pulping wood chips of CCA-treated lumber in a laboratory-scale digester. Composites of 10–30 weight percentage of filler in polypropylene were produced with and without the addition of maleic anhydride grafted polypropylene (MAPP) as a coupling agent. These composites were produced using extrusion compounding and injection moulding. The mechanical properties were determined using tensile testing; the properties examined in this study are the ultimate tensile strength, Young’s modulus and strain at break. The effect of the CCA-treated filler on the dimensional stability was investigated by comparing the moisture absorption with virgin wood-filled composites. It was found that ultimate tensile strength improves with increasing filler percentage for the compositions with MAPP. The Young’s modulus increases with increasing filler percentage for all compositions, and failure strain decreases with increasing filler percentage for all compositions. Moisture absorption studies show that the moisture absorption decreases when MAPP is added to the composite, and a slight decrease in moisture uptake is observed for the CCA-treated wood composites with respect to the virgin wood composites. Full article
Show Figures

Figure 1

14 pages, 1476 KiB  
Article
Selective Reduction of Cr(VI) in Chromium, Copper and Arsenic (CCA) Mixed Waste Streams Using UV/TiO2 Photocatalysis
by Shan Zheng, Wenjun Jiang, Mamun Rashid, Yong Cai, Dionysios D. Dionysiou and Kevin E. O'Shea
Molecules 2015, 20(2), 2622-2635; https://doi.org/10.3390/molecules20022622 - 3 Feb 2015
Cited by 36 | Viewed by 8095
Abstract
The highly toxic Cr(VI) is a critical component in the Chromated Copper Arsenate (CCA) formulations extensively employed as wood preservatives. Remediation of CCA mixed waste and discarded treated wood products is a significant challenge. We demonstrate that UV/TiO2 photocatalysis effectively reduces Cr(VI) [...] Read more.
The highly toxic Cr(VI) is a critical component in the Chromated Copper Arsenate (CCA) formulations extensively employed as wood preservatives. Remediation of CCA mixed waste and discarded treated wood products is a significant challenge. We demonstrate that UV/TiO2 photocatalysis effectively reduces Cr(VI) to less toxic Cr(III) in the presence of arsenate, As(V), and copper, Cu(II). The rapid conversion of Cr(VI) to Cr(III) during UV/TiO2 photocatalysis occurs over a range of concentrations, solution pH and at different Cr:As:Cu ratios. The reduction follows pseudo-first order kinetics and increases with decreasing solution pH. Saturation of the reaction solution with argon during UV/TiO2 photocatalysis had no significant effect on the Cr(VI) reduction demonstrating the reduction of Cr(VI) is independent of dissolved oxygen. Reduction of Cu(II) and As(V) does not occur under the photocatalytic conditions employed herein and the presence of these two in the tertiary mixtures had a minimal effect on Cr(VI) reduction. The Cr(VI) reduction was however, significantly enhanced by the addition of formic acid, which can act as a hole scavenger and enhance the reduction processes initiated by the conduction band electron. Our results demonstrate UV/TiO2 photocatalysis effectively reduces Cr(VI) in mixed waste streams under a variety of conditions. Full article
(This article belongs to the Special Issue Photocatalysis)
Show Figures

Figure 1

Back to TopTop