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Abstract: Due to the inherent metals (Cu, As and Cr) in preserved wood waste (CCA-treated wood
waste) that pose a risk to both the environment and human health, it is crucial to dispose of CCA-
treated wood properly. Carbon materials have received widespread attention for their high porosity,
renewability and simplicity of fabrication. This work presents a simple and effective process for
producing carbon materials from leftover CCA-treated wood (chromated copper arsenate). Utilizing
CCA-treated wood derived carbon (CCA-BC) and activating it with KOH (CCA-AC), electrode
materials for supercapacitor applications were created and its electrochemical characteristics were
investigated. The resulting material combines the conductivity of the metal in preserved wood
with the good porosity provided by carbon materials. Compared with common wood biomass,
carbon (W-BC) and common wood activated carbon (W-AC), CCA-BC and CCA-AC have better
electrochemical properties. After being pyrolyzed at 600 ◦C for two hours, CCA-AC performed
optimally electrochemically in 1 M Na2SO4 electrolyte, demonstrating a 72% capacity retention rate
after 2000 charge and discharge cycles and a specific capacity of 76.7 F/g. This study provides a novel
approach for the manufacture of supercapacitor electrodes, which also allows preserved wood waste
an environmentally nondestructive form of elimination.

Keywords: CCA-treated wood; activated carbon electrode; electrochemical properties

1. Introduction

Wood preservatives are used to prevent wood from biodeterioration. Waterborne
chromated copper arsenic (CCA) is a representative preservative that has been widely used
in wood structure building and outdoor landscaping for over 100 years [1,2]. Over the
next fifty years, large amounts of wood waste will enter the wood waste stream due to
the wood’s increased service life. Because the ingredients of CCA preservation are arsenic
pentoxide (As2O5, 34%), copper oxide (CuO) and chromium trioxide (CrO3, 47.5%), pre-
served wood waste treated by CCA can result in an excessive release of high concentrations
of toxic heavy metal ions into the environment, which can pose great threat to human
and ecological health [3–6]. Although many countries have prohibited the production and
utilization of CCA-treated wood [7,8], according to reports, the soils next to CCA-wood
have concentrations as high as 110 mg/kg [7], which is higher than the USEPA’s ecological
soil screening limit [8]. It is urgently necessary to figure out how to appropriately post-treat
the abandoned preserved wood.

Although many approaches have been investigated to reduce the adverse effects of
CCA-treated wood, recycling still attracts increasing attention. The upcycling of solid waste
is environmentally friendly, cost-effective and low energy, which meets the requirements of
sustainable development [9]. Various means have been used to reuse the waste of CCA-
treated wood, such as wood composites [10,11], copper-doped carbon nanodots [12] and
so on. However, there are few reports on upcycling CCA-treated wood waste at a high
added value. Wood, consisting of cellulose, hemicellulose and lignin, is a good carbon sink
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material. CCA-treated wood waste has been directly thermally transformed into biochar,
which has good dielectric properties [13,14].

Energy is one of the most important issues of the twenty-first century. Energy effi-
ciency is highly desired due to the quick depletion of fossil resources and the deteriorating
environmental contamination brought on by widespread usage of fossil fuels [15,16]. Under
these conditions, supercapacitors have drawn a lot of research interest due to their rapid
charging times, great power density and incredibly extended cycle life [17]. Generally,
supercapacitors can be broadly classified into three classical categories: hybrid, pseudo
and electrical double-layer (EDLC) supercapacitors. Carbon materials possess the merits of
excellent electrical conductivity, rapid electron transport velocity, substantial and adjustable
porosity and extensive electrolyte channels, as well as remarkable thermal stability, which
make them promising as EDLC supercapacitor candidates [18]. The combination of metals
and carbon have been widely reported in the field of supercapacitors [19–21]. Many studies
have reported that when metal compounds were hybridized with carbon, hybrid superca-
pacitors with high energy storage density could be obtained, in which carbon materials
primarily stored charge by an EDLC mechanism, possessing high specific surface area, fast
electron transport velocity and great electrical conductivity, while metal compounds could
store charge through a pseudocapacitance mechanism [22,23]. Reducing the electric double
layer that forms on the electrode surface as a result of the irreversible adsorption of ions in
the electrolyte can lower the capacitance of the carbon electrode [24]. Making composite
materials with higher stability capacitance—that is, combining bilayer capacitance with
REDOX (pseudocapacitance)—could be one way to get around these limitations. But as a
double-layer electrode, the poor capacitance of carbon materials can be fixed by adding
metal. Because it can successfully transmit ions and electrons via the electrode, it can
extend the life of the charge and discharge cycle in addition to improving power and
energy density [25]. Due to its low cost, wood-derived activated biochar has garnered
special attention recently as a potential supercapacitor electrode material with tunable
pore structure, multiple functional groups and environmental friendliness. Therefore,
CCA-treated wood can be potentially fabricated into EDLC and/or hybrid supercapacitors
through pyrolysis with activating agents. During this process the impregnated metal ions
could be converted in situ into corresponding metal compounds and anchored within the
biochar skeleton.

In this study, activated biochar was prepared from CCA-treated wood waste by
direct pyrolysis combined with chemical activation, in which KOH was introduced as the
activation agent. The prepared biochar samples were used afterwards as the electrode of a
supercapacitor. In order to find out how the calcination temperature affected the functional
group and electrochemical characteristics of the BC and AC electrodes, an assessment
of the associated characterization and performance measurements was also carried out
concurrently. The effects of impregnation with CCA preservative on the electrochemical
characteristics of the biochar electrodes were also compared.

2. Materials and Methods
2.1. Preparation of CCA-Treated Wood Waste Biochar (CCA-BC) and Its Activation by KOH (CCA-AC)

You can find a list of the raw materials and chemicals utilized in this investigation in
Text S1 of the Supplementary Materials. The CCA-treated wood was first ground into a
powder, put through a screen with an 80–100 mesh size and then roasted for 24 h at 60 ◦C
in an oven to dry it out before processing. Then, in a tube furnace with a N2 environment,
ground wood powder was heated to a predetermined temperature at a rate of 5 ◦C/min and
pyrolyzed at the corresponding temperature for a given time (2 h). Upon reaching room
temperature, the resulting CCA-BC-x was produced, where x represents the temperature
at which pyrolyzing occurred (400, 500 or 600 ◦C). Afterwards, CCA-BC-x (1.0 g) and
potassium hydroxide (KOH, 3.0 g) were added into 20 mL of distilled water, and stirred for
4 h. Afterwards, the solution was put into an oven and dried at 60 ◦C for 24 h. The dried
mixture was then pyrolyzed at 400, 500 and 600 ◦C for another 2 h for activation. Upon
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achieving a neutral pH through washing with distilled water and alcohol, the resulting
activated biochar was dried for 24 h at 60 ◦C. The resulting CCA-AC-x was obtained. For
comparison, Douglas fir pyrolyzed biochar samples (W-BC) and activated biochar samples
(W-AC) without CCA treatment were also prepared following similar routes.

2.2. Characterization and Analytical Methods

The thermogravimetric analysis (TGA) was conducted using NETZSCH-Gerätebau
GmbH-TG209F3 (the maximum temperature was set at 900 ◦C and the heating rate was
5 ◦C/min). FEI Quanta 200 was used to perform scanning electron microscopy (SEM)
at a working distance of 15–20 mm with an electron beam intensity of 20 kV. A Cu-Kα

radiation source-equipped Rigaku Smartlab XRD apparatus was used to study the X-ray
diffraction (XRD) patterns. The AXIS UltraDLD spectrometer was used to perform X-ray
photoelectron spectroscopy (XPS). An Ar laser (532 nm, 180 mW) was used as the excitation
light source, and the DXR532 Raman spectrometer was used to record the Raman spectra.
Measurements of the nitrogen adsorption–desorption isotherms at 77 K were made with a
Micromeritics ASAP 2020 HD88. Both total pore volume and BET surface area and pore
size were within 5% error.

2.3. Electrochemical Test

To investigate the electrochemical characteristics of the produced biochar samples,
using as synthesized biochar as the working electrode and a platinum sheet as the counter
electrode, a three electrode system was put together; Ag/AgCl served as the reference
electrode (RE) and Na2SO4 (1 M) served as the electrolyte. The working electrode was
prepared by slurry coating. To be more precise, a slurry (~5 mg) of biochar, acetylene black
and polyvinyl difluoride (PVDF) with a weight ratio of 8/1/1 was made using N-methyl
pyrrolidinone (NMP) as the solvent. After that, the combination slurry was applied to a
1.5 × 1.0 cm2 nickel foam slice. The coated sections were squeezed at a pressure of roughly
10 MPa after being dried for 24 h at 60 ◦C in a vacuum drying oven. The galvanostatic
charge–discharge (GCD), electrochemical impedance spectra (EIS) and cyclic voltammetry
(CV) measurements were performed using a CHI660E electrochemical workstation.

3. Results and Discussion
3.1. Thermo Gravimetric Analysis of Raw Wood Materials

In order to obtain information about the change in sample mass and mass change
rate as a function of the process temperature, thermogravimetric analysis of the original
wood samples (common Douglas fir and preserved wood) in air and N2, respectively. The
TGA curves of the raw materials pyrolyzed under air atmosphere are shown in Figure 1a,
which shows that the final residue of preserved wood is higher than that of common
wood, it is the metal compounds in the preserved wood that lead to this result, and the
total amount of metal compounds remaining is about 4.5 wt%. On the other hand, the
TGA curves demonstrated the stages of mass loss during the complete charring process
of the two wood materials, and it can be clearly seen that under a nitrogen atmosphere
(Figure 1b), the mass of the two samples changed very little between 50–200 ◦C, indicating
that the samples had a low water content, and the mass decreased sharply at the 200–350 ◦C
stage, which was due to the pyrolysis of hemicellulose and cellulose. The lower structural
stability of hemicellulose and cellulose leads to the earlier completion of pyrolysis of these
two components. Between 400–900 ◦C, the mass loss rate of the sample tends to stabilize,
which is due to the fact that after the completion of hemicellulose and cellulose pyrolysis,
the remaining lignin pyrolysis temperature in the sample is at 900 ◦C or above.
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Figure 1. TGA curves of common wood and CCA-treated wood under (a) air and (b) N2 atmosphere.

3.2. Characterizations of the Prepared Biochar Samples

Because of the color of the metallic components in the preservative, the CCA-treated
wood had a light green tint prior to pyrolyzing (Figure S1a). Figure S2 demonstrates
the EDS analysis of the raw material of preserved wood powder, and the results show
that it contains metal elements such as Cu, Cr and As, whereas this was not found in the
wood without preservative treatment. Figure 2 shows the SEM images of the CCA-BC-x
and CCA-AC-x samples. As shown in the Figure 2a–c, all CCA-BC-x samples exhibited
similar appearance, in which curled biochar fibers and sheets derived from pristine wood
interlapped tightly. Comparatively, it was clearly seen from Figure 2e–g that due to the
activating of the KOH, compared with BC samples, the fiber structures of AC samples were
destroyed. All CCA-AC-x samples showed that a sponge-like morphology with abundant
pores existed within the skeleton. As the pyrolysis temperature got higher, the pores became
more pronounced. A similar phenomenon could be also observed for W-BC-500 and W-
AC-500, except that small white particles only appeared in CCA-treated wood derived
biochar samples, corresponding to the metal compound particles converted from the CCA
preservative. The elements C, O, Cu, Cr and As were all evenly distributed throughout
the CCA-AC-600 biochar, according to the X-ray spectroscopy (EDS) elemental mapping
images (Figure S3). In addition, in CCA-BC-600, the mass ratio of Cu was 0.66 wt%. The
presence of Cu was responsible for the light green color of the preserved wood.
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The structure of the generated biochar samples was then examined via XRD; the
findings are displayed in Figure 3a,b. It was shown that every sample had a large peak at
about 22◦ that may be attributed to the (002) plane of a graphitic-structured carbonaceous
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substance [26]. This indicated that all the wood precursors were converted to carbon with
a conjugated structure under pyrolysis treatment. Furthermore, compared to the matching
ordinary sample, the graphite peak’s strength was lower in the CCA-BC/AC sample.
This implies that the biochar’s graphite structure’s order is weakened by interactions
between the metal compounds in CCA and the biochar. It was also revealed that all the
patterns contain several sharp peaks. These peaks are related to the conversion of metal
compounds from CCA preservative in CCA-treated wood, since these peaks were not
observed in the common wood derived biochar samples (Figure S4). The presence of these
metal compounds will contribute to the capacitance of the electrode. Through comparing
the peaks with the standard spectra, these peaks were identified to be Cu3As (JCPDS
No. 74-1068) and CrO2 (JCPDS No. 76-1232) [27,28]. In addition, CrO2 only existed in
CCA-AC-x, which indicated that KOH had a certain degree of oxidizing capability. The
metal compounds presented in the biochar samples might contribute to the capacitance
enhancement capacity of the biochar samples as the electrode.
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Figure 3c,d displays the biochar sample that was created and its Raman spectrum.
Both of the typical peaks, at around 1345 cm−1 and 1580 cm−1, were clearly visible in
every biochar sample. It was evident that every biochar exhibited two characteristic
peaks at around 1345 cm−1 and 1580 cm−1, respectively. These peaks were attributed to
the carbonaceous material’s D-band (defective C) and G-band (graphite C) peaks [29,30].
Typically, the intensity ratio (ID/IG) between the two bands is utilized to assess the carbon
materials’ degree of crystallization or defect density [31]. It was revealed that as the
pyrolysis temperature rose, the intensity ratio ID/IG increased (Table S1). Among them,
CCA-AC-600 was as high as 1.46, thus, the condensation process is responsible for the high
ID/IG values of these carbon samples, which indicated that the biochar samples obtained
at higher pyrolysis temperature had more structural defects because, during the pyrolysis
process, tiny organic molecules are removed and defective edges are simultaneously formed
along the biochar boundary [32]. In addition, all CCA-AC-x had higher ID/IG values than
their corresponding CCA-BC-x samples. This may be explained by the chemical activation
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process’s highly porous and disordered structure, which also further damaged the biochar’s
conjugated structure [33].

Figure 4 shows the XPS spectra of CCA-BC-x samples and CCA-AC-x samples. It
was proven that all of the biochar samples included the elements C, O, Cu, Cr and As
from the wide-scan XPS spectra displayed in Figure 4a,b, which was consistent with the
EDS results. Comparatively, pristine BC and AC derived biochar did not contain metal
elements (Figure S5). Based on the elemental proportion analysis (Table S2), it was found
that the oxygen proportions of CCA-AC-x samples were all higher than those of their
corresponding CCA-BC-x samples, which was because more carbon was oxidized via
KOH activation [34,35]. Due to their ability to contribute to the pseudocapacitance of
the quinone/hydroquinone redox pair, carbons with oxygen functions may have better
electrochemical characteristics than CCA-AC samples [36]. It was further calculated that
C/O elemental ratios of CCA-AC samples were all lower than those of their corresponding
CCA-BC ones, manifesting that KOH activation brought about more oxygen containing
functional groups to the biochar skeleton. It was also found that the C/O ratios of the
CCA-BC samples increased with increasing pyrolysis temperature, indicating that during
the pyrolysis process, oxygenated groups were progressively eliminated. In contrast,
the C/O ratio of the CCA-AC samples dropped as the pyrolysis temperature increased,
indicating that a greater temperature promoted the chemical activation of the biochar.
Figure 4c,d displays the core-level C1s spectra of the CCA-BC-600 and CCA-AC-600. It
was observed that the deconvoluted spectra contain three main peaks located at 284.81 eV,
285.92 eV and 289.41 eV; the peak at 284.81 eV is ascribed to the physically absorbed carbon
species or graphitic bonding and the peak at 285.92 eV is assigned to the ether/amide
bonding. Additionally, it is possible to relate the peak at 289.41 eV to the carbon structure’s
ester/carboxylic bond [37,38]. As illustrated, CCA-BC-600 contained a higher proportion
of graphitic carbon bonding than CCA-AC-600, suggesting that KOH activation destroyed
the graphitic structure in the biochar, which was in accordance with the above discussed
results. Additionally, it was discovered that the percentage of graphitic carbon rose for
both the CCA-BC and CCA-AC samples as the pyrolysis temperature increased (Figure S6),
indicating that greater temperatures might be used to anneal the wood in order to achieve a
larger degree of graphitization. Strong interactions between oxygen atoms and metals were
also shown in the de-convoluted O1s spectra (Figure S6) in the BC and AC samples [39],
and this aligns with the findings of the XRD. Additionally, the hydroxyl group percentages
were highest in the activated carbons (CCA-AC-600). This can be explained by the fact that
KOH affects activated carbon’s properties more noticeably. An ion exchange mechanism
changes the -OK groups that are generated on the surface during the KOH activation into
-OH groups when the activated carbon is rinsed with water [40].

The structural characteristics of the biochar samples were determined by N2 adsorp-
tion/desorption experiments, and the results are shown in Figure 5 and Table 1. Figure 5a
made it evident that CCA-BC-400 had a typical type IV isotherm. The isotherms pro-
gressively transitioned to type I isotherms as the pyrolysis temperature rose. The results
indicated that micropores dominated CCA-BC-500 and CCA-BC-600. This tendency was
also supported by the CCA-BC sample pore size distribution graph (Figure 5b). On the
other hand, all CCA-AC samples had H3 type hysteresis loops and a typical type IV
isotherm. Figure 5c indicated the mesoporous structures’ existence [41], where a small
desorption hysteresis and a significant rise at low pressure (P/P0 < 0.1) were also noted.
This suggested that the CCA-BC samples had a hierarchical structure in which both mi-
cropores and mesopores were presented within the biochar skeleton [42]. The average
pore size, total pore volume, and BET specific surface area (SSA) of each examined sample
are listed in Table 1. The outcome showed that the samples obtained at higher pyrolysis
temperature had larger SSA. Meanwhile, KOH activation enriched porosity of the biochar
since the activation process produced abundant gaseous materials including CO, CO2, H2O
and H2, which enlarged pores in the internal biochar structure [43]. When the pyrolysis
temperature reached 600 ◦C, the SSA of CCA-AC-600 (885 m2/g) was almost two times of
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that of CCA-BC-600 (445 m2/g). A similar trend was also observed for total pore volume
values. Because the average pore size of the activated materials is larger than 2 nm, the
electrolyte ions can more readily enter the pores of the electrode materials. High porosity
can also promote the creation of additional electrochemical active centers and electrolyte
penetration [44].
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Table 1. Detailed values of surface area, pore size and average pore volume of the samples.

Samples Surface Area
(m2/g)

Pore Size
(nm)

Average Pore Volume
(cm3/g)

CCA-BC-400 99.85 2.463 0.0575
CCA-BC-500 311.34 2.752 0.1825
CCA-BC-600 444.85 1.710 0.1978
CCA-AC-400 191.10 4.290 0.1413
CCA-AC-500 570.18 2.651 0.3191
CCA-AC-600 884.62 2.638 0.4503

3.3. The Electrochemical Properties of the Biochar Samples

Electrochemical experiments were subsequently conducted on the CCA-BC-x and
CCA-AC-x samples to examine their potential as supercapacitance electrodes. Figure 6a,b
illustrates the volt–ampere characteristic (CV) curves of CCA-AC and CCA-BC samples
scanned at 80 mV/s. The specific capacitance values of these samples were also listed
in Table 2 compared with their corresponding W-AC and W-BC samples (Figure S7a,b);
the CCA treated wood derived biochar samples provided higher CV area, indicating
that the existence of metal compounds could remarkably enhance the energy storage
capability of the biochar sample. Meanwhile, it was also illustrated that all CCA-AC and
CCA-BC samples exhibited a quasi-rectangular loop in their CV curves in which a non-
obvious redox peak was observed, which revealed their quick electrochemical response
with electrical double layer capacitance behavior [21,45]. The reality is different from
what we would ideally like due to relatively low amounts of incorporation of the metal
compounds in the biochar (~3 wt% from XPS results). Moreover, all CCA-AC-x samples
exhibited higher specific capacitance values than their corresponding CCA-BC-x samples,
manifesting that the chemical activation treatment could facilitate the storage and transfer of
charges due to the generation of more abundant hierarchical pore structures and functional
groups. Specifically, both CCA-AC and CCA-BC obtained at 600 ◦C had the highest specific
capacitance compared with the samples obtained at lower pyrolysis temperatures, which
indicated that a higher pyrolysis temperature was beneficial for the establishment of charge
transfer pathways. The CCA-AC-600 CV curves at various scan rates (Figure S7c) showed
that there was no discernible distortion in the enclosed area as the scan rate rose. This
indicates that carbon electrodes have a high-quality and fast scanning speed capacitance
when the electrode–electrolyte ion interaction is restricted [25].
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Table 2. The specific capacitance calculated from the CV and GCD curves.

Sample Specific Capacitance (CV)
(F/g)

Specific Capacitance (GCD)
(F/g)

CCA-BC-400 3.91 2.57
CCA-BC-500 11.91 3.91
CCA-BC-600 5.13 6.60
CCA-AC-400 14.26 17.91
CCA-AC-500 22.23 58.98
CCA-AC-600 32.69 76.66

W-BC-500 4.34 5.16
W-AC-500 6.53 8.25

GCD testing was used to further examine the electrochemical characteristics of the pro-
duced biochar electrodes; the findings are displayed in Figure 6c,d. Two charge–discharge
plateaus were visible in the electrode GCD curves of the BC sample. Excellent redox re-
versibility between the electrolyte and electrodes was indicated by two electrodes that dis-
played almost symmetric charge and discharge curves [39]. Nonetheless, for the electrode
of the AC samples, the charged capacitance is greater than the corresponding discharged
value, most likely as a result of the electrolyte ions’ irreversible adsorption or redox reac-
tion onto the more resistant amorphous carbon matrix [46]. Additionally, some kind of
distortions was also observed from all curves due to the presence of metal compounds
which generated pseudocapacitance behaviors. As anticipated, the CCA-AC and CCA-BC
samples also exhibited better performance than their corresponding W-AC and W-BC
electrodes (Figure S7c,d). In the meantime, CCA-AC samples had longer charge/discharge
times than their CCA-BC samples, indicating that the electrodes made of activated biochar
had a higher capacity for storing charge, which was in line with the findings of the CV
test. The GCD results showed that the CCA-AC-600 had the highest specific capacitance
values (Table 2), calculated at 76.7 F/g at 0.5 A/g. Additionally, when the current density
was raised from 0.2 A/g to 1 A/g, CCA-AC-600 only lost 30% of its initial specific capaci-
tance, indicating its promising charge/discharge stability. Compared with many reported
wood derived biochar electrodes [47,48], CCA-AC-600 also exhibited a more remarkable
electrochemical performance.

Figure 7 shows the Nyquist impedance plots for the CCA-BC and CCA-AC samples,
which revealed the ohmic resistance of the biochar-based electrodes. The Nyquist diagram
typically consists of a straight-line component in the region of low frequencies that repre-
sents the internal resistance of the circuit and electrolyte, and a semicircle with a straight
line in the high-frequency zone that comprises a diameter reflecting the charge-transfer
reluctance [49]. Figure 7 showed that all sample resistances were less than 4 Ω and that, as
the pyrolysis temperature increased, the semicircle diameters of the CCA-BC and CCA-AC
electrodes shrank. The results indicated that the biochar obtained at a higher pyrolysis
temperature had a smaller resistance, which is in accordance with the above discussed
results. Compared with the CCA-BC electrodes, all the corresponding CCA-AC electrodes
presented a much smaller resistance semicircle and a more approximate vertical curve,
which revealed their more remarkable capacitance performance. Figure 7c displays the
findings of an investigation into the electrode’s cyclic stability. As shown, under 2000 cycles
of charge and discharge with a current density of 1 A/g, the CCA-AC-600-based electrode
could still maintain 72% of its initial specific capacitance, which verified its promising
cycling stability.
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